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We study the notion of approximate entropy within the framework of network theory. Approximate entropy is
an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define
a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This
is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine
this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show
that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second
step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy
of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of
temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy
distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater
extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer
genomics are finally considered in the light of both approaches.
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I. INTRODUCTION

Concepts such as information, entropy, and measures of
complexity are highly connected topics within the core of
dynamical systems and chaos theory. The area benefits from a
wealth of literature that dates back to the works of Kolmogorov
on metric entropies, and continues with the developments of
Sinai, Eckmann, Ruelle, and others (see [1] and references
therein for a review on the topic). Roughly speaking, this
branch of science is relatively mature for answering questions
such as how a system which is sensitive to initial conditions
(with positive characteristic Lyapunov exponents) generates
uncertainty as time evolves, and how this entropy production
is related to the structure (invariant measure) of the system.

In recent years, in parallel with the advent of the study
of complex networks (see, for example, [2,3]), similar ideas
aiming to describe the amount of organization of these systems
have started to take root. As a matter of fact, to describe
mathematically the amount of heterogeneity and complexity
found in natural and technological networks is nowadays
a major endeavor in the frameworks provided by network
theory, general data analysis, and inference. Several recent
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works point toward an entropic origin for a variety of key
properties of complex networks that we find around us, such
as the biodiversity maintenance in ecological networks [4,5],
or, more generally, the emergence of robust degree-degree
correlations [6] and communities in social and biological
networks [7]. Indeed, the amount of heterogeneity in a
network is a basic ingredient for quantifying properties of
diffusion processes, such as the spread of human epidemics
and computer viruses [8–10].

Some theoretical approaches to deal with the notion
of network heterogeneity include Refs. [11,12], where a
statistical mechanics perspective is adopted to estimate the
(thermodynamic) entropy of network ensembles given by a set
of constraints. Other lines of research make use of spectral
theory to derive optimal network configurations [13–15].
However, the majority of the proposed network-based entropic
functionals are, so far, entropies à la Shannon (see also [16] for
a recent review). Less work has been reported on the extension
of other invariant measures to the network theoretic context
(see however [17]).

To begin filling the gap, we consider the notion of approx-
imate entropy (often denoted ApEn) as introduced by Pincus
[18]. ApEn is a finite-size statistic of the Eckmann-Ruelle
entropy originally proposed as a measure of the complexity of
a system changing in time. At present, time series are the main
area of application. We explore network-based extensions of
approximate entropy and ask questions about the usefulness
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of this parameter in estimating the degrees of uncertainty both
in the case of static and growing networks. It is important
to see that any attempt of defining an approximate entropy of
network parameters (following along the same lines as Pincus)
must be based on some ordering of the data. As a starting point,
it is natural to consider certain orderings associated with the
degree sequence and its related quantities.

The present work contains several contributions: (1) The
general point is the novelty of studying the notion of approx-
imate entropy in a network theoretic context; (2) this requires
the translation of network parameters into a time series that is
amenable to be investigated with analytic tools; accordingly,
we define a binary string associated with the degree sequence
as is suggested by the notion of frequency partition; (3) as
expected, given that the string reflects some coarse-grained
properties of the degree sequence, we are able to show that
the approximate entropy of the string distinguishes between
common network ensembles; (4) we then consider visibility
graphs, since these objects are associated with dynamical
systems and therefore present a natural time ordering. We show
that approximate entropy of those visibility graphs allows us
to distinguish between series generated by different types of
process.

The remainder of the paper is organized as follows. In Sec. II
we recall the definition and main properties of approximate
entropy. In Sec. III we study how to extend such notion to the
context of networks, defining a network-based approximate
entropy. Given this measure, we study both the case of static
networks (Sec. IV), where the measure is purely structural,
and the case of growing networks (Sec. V), where the measure
acquires a more dynamical meaning. This latter situation
is studied within the context of visibility graphs [19,20].
The measure is finally tested in Sec. VI with real data. By
considering networks constructed from data obtained in the
context of cancer statistics, we probe the capability of the
measure to distinguish among different cancer phenotypes.
Finally, we present a discussion in Sec. VII. The main open
question concerns the study of approximate entropies of
parameters beyond the degrees. One may take a number of
different approaches depending on the parameters considered.
Sequences of combinatorial nature obtained from counting
paths and sequences of algebraic nature, such as graph spectra,
seem to be good candidates for this purpose. Concerning
the latter idea, it is an open direction to determine whether
approximate entropy has any role in characterizing matrix
ensembles when applied to their spectra.

II. APPROXIMATE ENTROPY

We begin by recalling the notion of approximate entropy.
Due to Pincus [18,21–23], its definition is based on ideas of
Eckmann, Ruelle, and ultimately Kolmogorov-Sinai. Whereas
originally defined for time series, when the series is drawn
from an alphabet of finitely many symbols, it has a powerful
combinatorial interpretation due to Rukhin [24]. Moreover,
approximate entropy has in general a geometric interpretation
given when comparing “densities” of the Takens embedding of
the time series in dimensions m and m + 1. Indeed, let m ∈ N,
r ∈ R>0, u = (u(t))Nt=1 a time series of N points and consider
the mth Takens embedding delay map x(t) = (u(t),u(t +

1),...,u(t + m − 1)), with image Xm = {x(1),...,x(n)} ⊂ Rm,
where n = N − (m − 1). Recall that if u arises from a
dynamical system with a strange attractor of box dimension d

then, when m > 2d, the image Xm “reconstructs” the strange
attractor in an appropriate sense. We write xi(t) for the ith
component of x ∈ Rm and let ‖ · ‖∞ be the usual L∞ norm on
Rm, i.e., ‖x‖∞ = maxi |xi |. By denoting

�m(r) = − 1

|Xm|
∑
x∈Xm

ln

( |{y ∈ Xm : ‖x − y‖∞ � r}|
|Xm|

)
,

the approximate entropy of the N data points u is defined as

ApEn(m,r,N ) = �m+1(r) − �m(r),

with the convention that ApEn(0,r,N ) = �1(r) and X0 = {}.
The upshot of this is that small values of ApEn imply strong
regularity (or persistence), while large values amount to
considerable irregularity in the time series u. From a more
concrete perspective, approximate entropy can be interpreted
as a measure of how far a sequence is from having a clear
repetitive structure. The geometric picture is completed by
observing that the Eckmann-Ruelle entropy is indeed recovered
in the small r , large m limit:

lim
r→0

lim
m→∞ lim

N→∞
ApEn(m,r,N ).

Among the practical uses of approximate entropy, for example
when studying time-series data of financial markets [25] or
heart EEG data [26,27], the literature often uses m = 1 or 2,
together with r proportional to the standard deviation.

The combinatorial picture gives the key insight for esti-
mating the limiting distribution of approximate entropy and
also identifying sequences of extremal approximate entropy.
Indeed, let u ∈ {0,1,...,S − 1}N be a sequence of length N on
S symbols (here we are taking 0 < r < 1). Let νi1,...,im be the
frequency with which the block (i1,...,im) ∈ {0,1,...,S − 1}m
occurs in ũ = (u1,...,uN ,u1,...,um−1). This amounts to the
frequency of the block in u arranged around in a circle. As
before, set

�̃m = −
∑

I∈{0,1,...,S−1}m
ν(I ) ln ν(I ).

The modified approximate entropy is

˜ApEn(m) := �̃m+1 − �̃m

so that its computation amounts purely to counting the relative
frequencies associated with every possible block of length m

occurring in the sequence. This allowed Rukhin to get analytic
proofs of the distribution of ApEn: For fixed embedding
dimension m, we have then

2N (ln S − ˜ApEn(m)) → χ2(Sm+1 − Sm),

where χ2r denotes the so chi-squared distribution with r

degrees of freedom. Thus, the same behavior follows for
ApEn(m) because

N (ApEn(m) − ˜ApEn(m)) = OP

(
1

N

)
.
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III. APPROXIMATE ENTROPIES OF A NETWORK

The degree sequence of a (finite, unweighted, and undi-
rected) network G with nodes labeled {1,...,N} is d =
(d1,...,dN ) where d1 � · · · � dN and di = deg(i) [3]. Note
at this point that not all decreasing sequences of integers are
degree sequences of networks. The best known criterion was
given by Erdös and Gallai [28]: d1 � · · · � dN is the degree
sequence of a network with N nodes if and only if

∑
di is even

and
∑k

i=1 di � k(k − 1) + ∑N
i=k+1 min(di,k) holds for every

1 � k � N . What this really says is that the trivial bounds for
the partial sums d1 + · · · + dk of the first k largest degrees,
obtained by combining the contributions of k(k − 1) for the
links between those first k and min(dk+1,k) + · · · + min(dN,k)
for the rest, is in fact optimal. In other words, whenever the
condition is satisfied for every k, there exists a network with
such a degree sequence. A constructive proof of this fact was
given by Tripathi, Venugopalan, and West in [29]. In fact,
Tripathi and Vijay [28] observed that it is enough to check the
condition for k = n and every k such that dk > dk+1.

Good asymptotic bounds for the number of degree se-
quences of networks on N nodes were given by Burns [30]; in
this reference it was shown that the existence of constants C0

and C1 such that the number of degree sequences of graphs on
N vertices, �N , satisfies 4N/C0N � �N � 4N/(ln N )C1

√
N .

It is worth noting however that among the sensible candidates
for degree sequences, i.e., among monotone decreasing se-
quences of the appropriate length, the proportion of these that
are degree sequences tends to zero, a fact conjectured by Wilf
and proven by Pittel [31].

From now on, let d1 � · · · � dN be the degree sequence
of a finite network with distinct values D1 > · · · > Ds such
that Di occurs ni times (so N = n1 + · · · + ns). How best
to assign an approximate entropy to a degree sequence? We
consider three options in turn:

(1) The simplest thing to do is just to compute the approx-
imate entropy of this monotone sequence viewed as a time
series, due to a lack of a natural ordering of nodes.

(2) More sophisticated is to assign some combinatorial
description of the degree sequence, with potentially interesting
entropic properties.

(3) For networks with a natural ordering to their vertices,
we can compute approximate entropy of such an ordering. For
example, a network that has grown by a process of sequential
node addition has a natural ordering on the nodes according
to when they were added. An example of this is the standard
Barabási-Albert model of preferential attachment [33].

A. The degree sequence as a monotone time series

Option (1) does not seem to coincide with intuition of what
an entropic sequence should be: Indeed if m and m + 1 divide
N then in the small r limit, the behavior captures more the
dimension than the disorder in the sequence. This feature
is highlighted by the following observation: Suppose that
Di − Di+1 > r; then ApEn(m,r,N : m and m + 1 divide N )
is maximal when s = N/m and n1 = · · · = ns = m and
minimal when n1 = · · · = ns = m + 1. Let us sketch how to
show this statement. We may take 0 < r < 1 and suppose the
Di to be integers. Optimizing ApEn(m,r,N ) = �m+1 − �m

for a degree sequence d amounts to optimizing the ratio R

of geometric means of the numbers of points in Xm of ‖.‖∞
distance � r for each x ∈ Xm. Hence,

R =
(∏

x∈Xm
|{y ∈ Xm : ‖x − y‖∞ � r}|)1/|Xm|(∏

x∈Xm+1
|{y ∈ Xm+1 : ‖x − y‖∞ � r}|

)1/|Xm+1| .

In this case, 0 < r < 1 implies that we need only optimize

R =
(∏s

i=1 �i(m)�i (m)
)1/|Xm|(∏s

i=1 �i(m + 1)�i (m+1)
)1/|Xm+1| ,

i.e.,

R =
s∏

i=1

�i(m)�i (m)/|Xm|

�i(m + 1)�i (m+1)/|Xm+1| .

Here �i(m) := max (1,ni − (m − 1)) such that n1 + · · · +
ns = N and 1 � s � N . We are also free to sort the
ni such that n1 � · · · � ns . Now, suppose that there are
j � s separate ni such that �i(m) = ni − (m − 1) > 1
and k � j distinct ni such that �i(m + 1) = ni − m > 1.
Set ri = ni − m then r1 � · · · � rj � 3 > 2 = rj+1 = · · · =
rk > 1 � rk+1 � · · · rs . The ratio R now reads

R =
j∏

i=1

r
ri/|Xm|
i

(ri − 1)(ri−1)/|Xm+1|

k∏
i=j+1

41/|Xm|.

The statement follows by writing out the behavior of xx/k/(x −
1)(x−1)/(k+1) for k an integer at least 2.

Thus this gives only an idea of proximity to such non-
intuitively entropic sequences. For example, with 0 < r < 1
and m = 0, the approximate entropy is maximal for the
sequence (N − 1,N − 2,...,�N/2	,�N/2	,...,2,1); if m = 1
and N = 9, the maximum is realized by the sequence
(8,8,7,7,6,6,4,4,4). A graph is regular if all its vertices
have the same degree. The frequency partition of a graph
is a partition of its vertices grouped by their degrees. Such
a notion is graph invariant, but intuitively there are many
non-isomorphic graphs with the same frequency partition. It
is known that every partition is a frequency partition of some
graph, with the exception of (1,1,...,1) (see [32]). A graph has
a regular frequency partition if each block of the partition is of
the same size. In general, if m = 1, the graphs that realize the
maximum have degree sequence (N − 1,N − 1,N − 2,N −
2,...,N − (N + 1)/2,N − (N + 1)/2,(N − 1)/2) when N is
odd and (N − 1,N − 1,N − 2,N − 2,...,N/2,N/2) when N

is even (we take N � 4).

B. The slide of a degree sequence

Let us now explore option (2). Given a degree sequence
d = (d1,...,dN ), for each i = 1,...,N − 1 write down 0 if
di = di+1 and otherwise write a string of di − di+1 1’s if
di > di+1. We denote this sequence by slide(d). For a network
G with degree sequence d, write slide(G). Note that for a
network G on N nodes, N − 1 � No. of slide(G) � 2(N − 2)
with the minimum length attained by (for example) regular
networks and the maximum attained by stars (i.e., complete
bipartite networks with the singlet as a class of the bipartition).
Thus a degree sequence with s distinct degrees is associated
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with a binary sequence of N − s zeros and d1 − dN ones and
the collection of associated sequences of networks with N

nodes is a certain subset of binary sequences with up to N

zeros and up to N − 1 ones. For example, the degree sequence
(4,3,3,3,1) is encoded as (1,0,0,1,1). The associated binary
code has a simple interpretation in terms of “sliding” down
the degree sequence: 0 means “go horizontally right” and 1
means “continue going down.” Note that not every binary
sequence arises as the slide of some network. For example,
there is no network G with slide(G) = 001: Indeed such a
degree sequence must be d1 = d2 = d3 = d4 + 1 and none of
the possibilities (3,3,3,2), (2,2,2,1), or (1,1,1,0) are graphical
because they all have odd sum. Obviously the slide map is
not injective and further, networks of different numbers of
nodes can have the same slides. The approximate entropy of
binary sequences was studied by Pincus [23] in the context
of developing properties of normal numbers. The notion of
approximate entropy allows us to compare binary sequences.
The language used by Pincus to do so is as follows: A binary
sequence u ∈ {0,1}N of length N is called “(m,N ) random”
if ApEn(m,N )(u) is maximal among all binary sequences of
the same length. Let m∗(N ) be the largest integer such that
22m∗ (N) � N , and call a binary sequence u “N random” if
for m = 0,1,2,...,m∗(N ) it is (m,N ) random. Finally, we can
compare two binary sequences u and v of the same length N

and say that u is more N random than v if ApEn(m,N )(u) �
ApEn(m,N )(v) holds for all m such that 1 � m � m∗(N ).

A characterization of binary sequences of the largest
approximate entropy was also given by Pincus: For N � 5,
the N -random binary sequences amount to equivalence classes
of sequences of length N of a partially exchangeable process
in which “approximate stability of frequencies holds,” in the
sense that∣∣∣∣No. of {(a0,...,am) blocks in the sequence}

N − m
− 1

2m+1

∣∣∣∣
is as small as possible for each block type (a0,...,am) ∈
{0,1}m+1 and for every 0 � m � m∗(N ). That such sequences
are asymptotically of large approximate entropy can be seen
immediately from Rukhin’s characterization. What this says
is that the binary sequences of maximal approximate entropy
amount to optimal “truncations” of normal numbers written in
base 2.

If asymptotically all binary sequences arose as the slides
of some degree sequence, while the proportion of binary
sequences of length n that are n random tends to 0, we could
expect networks whose slides were arbitrarily nearby (it is
unknown for which n there exist networks with n-random
slides). In particular, we conjecture the following statement:
The probability that a uniformly chosen slide of length n

is graphical tends to 1 as n → ∞. Even if the outcome
of this is largely a curiosity, it is recorded to assert the
existence of sufficiently many slides to guarantee a variety
of distinct values of the approximate entropy. In other words,
this would show that the notion asymptotically exhibits a good
range. A potentially fruitful approach to a proof proceeds
in three steps: First, one may consider Pittel’s approach for
proving the Wilf conjecture. The approach refines the insight
of Erdös-Richmond in associating an integral estimate of
the probability of surviving the Nash-Williams graphicality

condition. Subsequently, one should combine the Kolmogorov
0-1 law with a sample family of networks whose slides make
an asymptotically nonzero contribution. An alternative is to try
show that with high probability, one can construct a network
(perhaps via the arguments of [29]) exploiting the “slack”
gifted by the considerable nonuniqueness of slides. We have
computed the first few terms of the sequence s2,s3,...,s6. The
respective values are 3/4,3/8,13/16,20/32,58/64. We are
now ready to define the slide entropy of a network:

Definition. If G is a network with N nodes then the slide
entropy of G in dimension m is

SlideApEn(G,m) = ApEn(slide(G),m,r)

for any 0 < r < 1. This notion is the topic of the next section.

IV. APPROXIMATE ENTROPY OF SLIDE SEQUENCES:
APPLICATION TO STATIC COMPLEX NETWORKS

Scale-free networks are of interest due to their abundance
in nature and technology [2,3,33]. Computationally, estimates
of their behavior as complex networks are often made by
treating their degree sequences as random variables sampled
from a scale-free distribution π (x) = (γ − 1)x−γ (for real
x > 0). A natural construction via growth through preferential
attachment was popularized by Barabási and Albert [33]. The
probability distributions beyond the degree distribution this
yields on networks of N nodes (for each N ) is quite distinct
from simply sampling a scale-free distribution and trying to
assemble a network from that, the so-called configuration
model [2]. Scale-free networks are often compared with
an older and very well studied notion of random network,
introduced by Erdös and Rényi; these are constructed by
adding each edge with a fixed probability p. For N nodes, with
λ = Np, their degree distribution is asymptotically Poisson,
π (x) = λke−λ/k! (x > 0). Also of interest are random net-
works with exponential degree distributions, which naturally
arise as the renormalization group fixed point of visibility
graphs associated with random uncorrelated time series, with
π (x) = λe−λx (x > 0) [20,34].

The approximate entropy of a generic slide with d1 − dN

ones and N − s zeros can be computed by considering the
Markov chain with state space X = {0,1} and transition matrix
P given by P00 = P10 = p and P11 = P01 = q = 1 − p [thus
π (0) = p and π (1) = q]. We recall the following result
of Pincus. For a first-order stationary Markov chain with
discrete state space X ⊂ N, transition probabilities Pxy =
P (travel from x to y), and stationary distribution π with r <

minx �=y∈X |x − y|, then almost surely for every m

lim
N→∞

ApEn(m,r,N ) = −
∑

x,y∈X

π (x)Pxy ln(Pxy).

It follows that a good approximation is often given (asymptot-
ically and independently of m) by

SlideApEn(G,m) ≈ H

(
N − s

N − s + d1 − dN

)
,

where as usual H (p) = −[p ln p + (1 − p) ln(1 − p)]. How-
ever for a scale-free network on N nodes with degree
distribution sampled from a truncated scale-free distribution
π̃ (k) ∼ k−γ for k ∈ {1,...,N − 1}. In the large γ limit the
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Scale Free Poisson

FIG. 1. Circularly arranged slides of random scale free and
Poisson networks of N = 50 nodes illustrating typical structure. Note
that while N = 50 is perhaps far too small to meaningfully refer to the
distribution as scale free the figure is intended only to be illustrative
of the general appearance of the slides.

network is dominated by degree 1 nodes as we can expect
to have at least Nk−γ /ζ (γ ) nodes of degree k which tends
to zero for all k except k = 1. This creates large regions of
zeros in their slides. Assuming generic behavior in the region
of the slide not accounting for the degree 1 nodes, the ˜ApEn
estimate of Rukhin suggests intuitively that the slide entropy
should be roughly monotone decreasing in γ for each fixed N .
This intuition can be seen numerically in Fig. 1. Estimating
d1 − dN can be done by using the following elementary result.
Let X1,...,XN be drawn from a probability distribution π on
R with cumulative density 
. Then Em := E (mth largest Xi)
is given by∫

R
xπ (x)

N !

(N − m)!(m − 1)!

(x)m−1[1 − 
(x)]N−mdx.

As usual, here we denote by E the expectation operator. If we
are drawing the degrees deg(v) of nodes v ∈ {1,...,N} then
E(d1 − dN ) = E1 − EN can be computed for the scale-free
degree distribution (we have EN = 1 almost surely) given
approximately (following Ghoshal-Barabási [35]) by

E1 ≈ (N − 1)1/(γ−1)�

(
γ − 2

γ − 1

)
.

The approximation for E1 is good for large N , but performs
poorly near γ = 2 due to the pole at 0. To estimate the expected
number of distinct degrees s, we associate with the continuous
probability distribution π on R a distribution π on N. An
elementary argument says that the expected number of distinct
values of a random sample of size N from the distribution π

is

s(N ) =
∑
n∈N

(1 − [1 − π (n)]
N

).

In this way, for a sample of N random variables from a
scale-free distribution π (n) := n−γ /ζ (γ ) and upon comparing
with the integral, we approximate s(N ) by the following
hypergeometric function:

s(N ) ≈ 2F1

(
− 1

γ
, − N ;

γ − 1

γ
;

1

ζ (γ )

)
.

This provides an analytic expression for the entropy of
a generic slide of the same 0-1 distribution, but is a
considerable overestimate for real scale-free slides. This is a
bad approximation but the previous computations illustrate
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FIG. 2. (Color online) Slide entropies for scale-free and Poisson
(Erdös-Rényi) networks of N = 2000 nodes. Generic values given are
those of random slide entropies of slides with the same distribution
of 0‘s and 1’s (corresponding to the analytic approximation for
γ � 2 and for Poisson sequences). Error bars indicate two standard
deviations obtained from simulations.

the approach for obtaining good analytics in other cases.
We similarly obtain generic estimates for exponential degree
sequences by computing E1 − EN = 1

λ

∑N−1
i=1

1
i

∼ ln(N −
1) + O( 1

N
) and s(N ) ≈ ∫ ∞

1 [1 − (1 − λe−λx)N ]dx. For
Poisson networks, we find numerically that the generic
estimate provides a good approximation. It is interesting to
ask which probability distributions π on N tend to give rise to
networks of the largest and smallest slide entropies. Among
such distributions on N nodes, we expect that the uniform
distribution on {0,1,...,N − 1} is of the greatest typical
slide entropy. Note that the point distribution on any fixed
k ∈ {0,1,...,N − 1}, such that the networks desired exist,
always gives rise to 0 slide entropy networks (see Fig. 2).

To conclude this section, we note the heuristic difference
between using the approximate entropic measure proposed
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and existing alternatives including the variance and Shannon
entropy of the degree distribution viewed as a probability dis-
tribution on the vertices. Indeed, approximate (slide) entropy
works by measuring how far away the degree sequence is
from decreasing in a predictable and repetitive manner, while
the variance simply measures how “spread out” the different
degrees are. Further, the Shannon entropy measures more how
distinct the overall shape of the distribution is from being
the uniform distribution on a finite set of points. As such the
variance and Shannon entropy do not see the subtleties of the
ordering of the sequence. Slide entropy also encodes entirely
different information from the Gibbs entropy considered by
Bianconi [11,12] which effectively computes the numbers of
networks with a given degree distribution.

V. APPROXIMATE ENTROPY OF GROWING NETWORKS:
HORIZONTAL VISIBILITY GRAPHS

Within nonlinear time series analysis, the so-called visibility
algorithms [19,20,34,36,37] are a family of methods that
directly map a given time series of N data into a network
of N vertices (a so-called visibility graph), where the edge
set is constructed according to specific geometric criteria to
be applied among the data set. In previous works it has
been shown that the associated visibility graph of a time
series with a given information is conserved or inherited
in the topology of the associated visibility graph, including
nontrivial structures such as chaotic or fractal dynamics. To
cite a few, within the so-called visibility algorithm approach
[19,36], series extracted from a fractional Brownian motion
with Hurst exponent H map into scale-free visibility graphs
with degree distribution P (k) ∼ k−γ , where the linear relation
γ = 3 − 2H quantitatively relates the structure of the dynam-
ical process (H ) with the topology of the associated graph
(γ ). Within an alternative approach coined as the horizontal
visibility algorithm [20,38], it was shown [37] that horizontal
visibility graphs distinguish between correlated stochastic,
uncorrelated, and chaotic processes, and in each of these
cases the visibility graph has exponential degree distribution
P (k) ∼ e−λk with the value of λ characterizing the particular
process. Recently, it has been also suggested that the Shannon
entropy over the degree distribution of a horizontal visibility
graph is a first-order approximation to the Kolmogorov-Sinai
entropy of the associated dynamical system [34].

As an initial observation, note that the visibility graph
associated with a given time series conserves, by construction,
the temporal ordering of the data, i.e., temporal correlations
among the data. This is due to the fact that in the mapping
algorithm, each datum xi maps into a labeled vertex ni , that is
to say, a natural ordering of the vertex set emerges, respecting
the temporal correlations in the series. The implications are
twofold: (i) Within (horizontal) visibility graphs one has a
natural ordering of the degree sequence, which allows us
to unambiguously calculate the approximate entropy of such
series, and (ii) since that ordering is related to the temporal
correlations of the associated series, the approximate entropy
of a visibility graph may provide a measure of the associated
series complexity; that is, it becomes a measure directly
related to the original one introduced by Pincus in the
framework of dynamical systems. In other words, whereas

our previously defined, network-based slide entropy accounts
for the heterogeneity of the degree sequence itself (with no
dynamical or temporal information whatsoever), in the context
of visibility graphs this network-based measure is indeed
capturing some dynamical information. Notice also that since
each datum in a time series is associated with a labeled vertex
in the graph, one can view a visibility graph as a dynamically
growing network: As time evolves, the dynamical process
generates a trajectory (time series) whose associated visibility
graph grows. The approximate entropy of its degree sequence
accounts for the information stored in the network growing
process.

In order to test the aforementioned conjectures, we will
address, within the so-called horizontal visibility algorithm,
three types of time series whose associated approximate
entropy, associated with the amount of information needed
to unravel the underlying dynamics, is qualitatively different:
periodic series (i.e., regular dynamics with pointlike attractor
measure), chaotic series (deterministic dynamics with finite
attractor measure), and white noise (stochastic dynamics
with infinite attractor measure). We proceed as follows: Let
{xt }t=1,...,N be a real-valued time series of N data. The
horizontal visibility algorithm assigns each datum of the series
to a vertex in the horizontal visibility graph (HVg). Then, two
vertices i and j in the graph are connected if one can draw a
horizontal line in the time series joining xi and xj that does
not intersect any intermediate data height. Hence, i and j are
two connected nodes if the following geometrical criterion is
fulfilled within the time series:

xi,xj > xn, ∀ n | i < n < j. (1)

The generated HVg has a degree sequence of the kind
{k1,k2,...,kN }, where ki is the degree of vertex i, that is to
say, associated to datum xi in the original series (as opposed
the definition in Sec. III, note that this degree sequence is
not monotonically decreasing since it has a natural ordering
already explained above). We finally calculate our network-
based ApEn. Results for periodic, chaotic, and noisy series,
for specific values of the ApEn parameters, are summarized
in Table I and in Fig. 3. In this respect, we can highlight the
following comments:

TABLE I. Values of ApEn for concrete parameters m = 2, r = 2,
and size N = 214 of the HVg associated with three types of time
series: (i) a periodic series of period 2 (deterministic dynamics with
an underlying attractor of zero measure), (ii) a chaotic series extracted
from the fully chaotic logistic map xt+1 = 4xt (1 − xt ) (deterministic
dynamics with an underlying attractor of finite measure), and (iii) a
series of uncorrelated random variables extracted from a uniform
distribution U [0,1] (stochastic dynamics, i.e., dynamics with a
hypothetical infinite-dimensional attractor). The approximate entropy
of the visibility graphs increases as a function of the associated series
information.

Series Description ApEn(2,2,214)

Periodic series (T = 2) 0.001
Chaotic series (logistic map, μ = 4) 0.47
U [0,1] uncorrelated 0.62
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FIG. 3. Top: Sample series extracted from (left) the fully chaotic logistic map xt+1 = 4xt (1 − xt ) and (right) uncorrelated random variables
from U [0,1]. Below, we show a sample of the degree sequences of their associated HVg’s. Bottom: Values of ApEn(2,2,N ) of each HVg, as a
function of the series size N . Note that the time is in logarithmic scales. The values for the graph associated with the noisy process are larger
than those associated with the chaotic process, in concordance with the entropy associated with the underlying dynamical process.

(1) HVg associated with periodic series: By construction,
these networks have a very homogeneous structure [20], which
can indeed by seen as a concatenation of a network motif,
the structure of this network motif being intimately related
to the series periodicity. Accordingly, their ApEn is small,
having a vanishing value for large embedding dimension m.
If we make use of small values of m, the ApEn statistic
can be used to distinguish several degrees of periodicity,
associated with the heterogeneity of the visibility network root
motif.

(2) Visibility graphs associated with random uncorrelated
white noise: White noise is a maximally entropic signal
according to any well-defined information theoretic measure.
In a previous work [34], it was shown that the Shannon entropy
over the degree distribution of an HVg is indeed maximized for
uncorrelated white noise. Here, unlike periodic series, results
are close to convergence for m = 2. For a given series size N ,
noise yields the maximal ApEn, but this value increases with
the series size N , as it should.

(3) Visibility graphs associated with chaotic maps: The
ApEn of the associated networks reach a nonzero value,
reminiscent of the underlying attractor of the dynamics. Con-
vergence is reached for m = 2 and, unlike noise, convergence
as a function of series size is also reached here, as it should be.
This preliminary analysis suggests that the network structure
captures the inherent complexity of the associated time series.
This supports the well-posedness of the visibility graphs as
a tool for time-series analysis. Based on this conclusion, we
can also point out that the network theoretical variation of
the approximate entropy statistic can effectively distinguish
different network structures according to their associated
“complexity.”

Mixed statistic. So far, two alternative ways have been
considered in order to define the sequence over which
the approximate entropy is computed, namely (i) net-
works without a predefined time arrow—computation is
performed over the slide of the (monotonically decreasing)
degree sequence—and (ii) growing networks—computation is
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performed over the (time ordered) degree sequence. A mixed
approach consists of computing ApEn over the slide of a
time-ordered degree sequence. We consider an example of this
next.

VI. APPROXIMATE ENTROPY AND BIOLOGICAL
NETWORKS: AN APPLICATION TO CANCER

GENOMICS

Finally, we focus on a potential application of these ideas to
the field of cancer genomics. A key feature of cancer genomes
is the abnormal copy number of genes. Since healthy cells are
diploid they have 2 copies of each gene; however, in cancer
cells, genes are deleted or may be present in multiple copies.
Genes also have a natural ordering since they can be located
to specific positions on the genome. Thus, for each tumor we
can measure a copy-number profile along the genome. For
technical reasons this is represented as a continuous valued
variable (segmented data) [39], with neighboring genes more
likely to have the same value. This copy-number profile varies
along the genome, and can therefore be mapped as a time
series, where genomic position plays the role of time. Thus,
an HVg can be constructed for this genomic series of copy
number values. We hypothesized that this HVg construc-
tion could encapsulate important information concerning the
distribution and shape of the copy-number profiles of each
individual tumor, a hypothesis that we test a posteriori by

correlating the resulting entropy scores with known cancer
phenotypes.

As a data set we considered the copy-number data of
171 breast cancer patients [39], for which three phenotypic
categories were available: estrogen receptor status (ER),
whether the patient’s tumor metastasized or not (DM), and
histological grade (3 levels represent levels of differentiation
from normal healthy tissue). For each tumor we computed the
slide and ordered entropies from the HVg graphs and asked
whether these differed between phenotypes.

For brevity, we shall say that two phenotypes are dis-
tinguished by some associated quantity if the means of the
quantity for each phenotype are statistically significantly
different (say, around the 5% level). Interestingly, we find
increases in both entropies between ER-negative (0) and
ER-positive (1) breast cancer, between the successive grades
of the cancers, and in relation to distant metastasis (DM).
In particular, the slide and ordered approximate entropy
distinguish grade 1 breast cancer from grade 3 (Welch t

test with p value 0.003 and 0.0004, respectively). However,
slide entropy better distinguishes distal metastasis (p value
of 0.036 compared with 0.242) while ordered approximate
entropy of the HVg better distinguishes ER status (p value of
0.005 compared with 0.057). These results show that the
ApEn and HVg construction can indeed capture interesting
clinico-pathological features of cancer genomes. Our analysis
is reported in Fig. 4.
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FIG. 4. (Color online) Slide entropy (m = 1) and ordered degree sequence entropy (m = 1 and r < 1) of degree sequences of HVg’s
constructed from copy number data of 171 breast cancer patients split according to phenotype. ER denotes estrogen receptor status, indicating
whether the cancer cells depend on estrogen for their growth, GRADE indicates the extent to which the cells have differentiated away from
being normal cells, and DM denotes whether or not the patient has suffered distal metastasis (i.e., whether the cancer has spread). The bars
represent 5% and 95% quantiles of the distribution.
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VII. CONCLUSIONS

The original definition of approximate entropy quantifies
the structure of a system’s underlying phase space by looking
at time-evolving trajectories over such phase space; hence
it requires a time-ordered sequence. If the system under
study is a network, its structure can still be studied with a
use of approximate entropy, but it obviously requires some
modifications or assumptions. If the network under study is
generated by a dynamical process, then a natural time ordering
can be defined over the vertex set, and ApEn is naturally
extended to this domain: Such is the case of visibility graphs
addressed in this work; further study of other dynamically
growing networks, such as Barabási-Albert-like, is left for
future research. Conversely, if the network under study is
static, the natural extension of ApEn is not straightforward.
In this case, we can still compute the approximate entropy
of various networks’ parameters, but this requires us to make
some choices. In this work we have computed the approximate
entropy of parameters related to the degree sequence. In
the attempt of capturing only the relevant information, we
have introduced the slide sequence of a network. We have
shown that approximate entropy permits us to distinguish
between the usual ensembles of Poisson and scale-free
networks.

Moving from static to dynamical networks, we have focused
on horizontal visibility graphs. Our findings suggest that the
approximate entropy of these objects is intimately related
to the amount of information generated by the underlying
dynamical process. Indeed, we have given further evidence
that just the degree sequence of an HVg has the power
of discriminating between different dynamical processes.
Finally, we have applied our statistic to a specific HVg
generated from cancer genomic data, and have shown that
this statistic can discriminate cancer phenotypes according to
their histopathological characteristics and malignant potential.
While we have previously shown that more aggressive breast
cancers are characterized by an increased molecular entropy
at the gene expression level [40], the results obtained in this
manuscript demonstrate that more aggressive breast cancers
(ER negative or high grade) are also characterized by a higher
entropy at the genomic copy-number level. In this regard,
an appealing feature of the entropy measures considered
here is that they are sample specific, and thus may provide
valuable insights into tumor taxonomy as shown recently
using a different nonentropic set of measures in [41]. It will
therefore be very interesting to explore and compare the
entropy measures considered here to other proposed measures
in the context of tumor classification and prediction of clinical
outcome. It will also be interesting but challenging to observe
analogues of phase transitions in statistics related to this type
of data. We briefly conclude with two open problems. The first
problem is about giving an interpretation to the approximate
entropy as defined here; the second one is about identifying
naturally ordered sequences associated with networks.

(1) What does the slide ApEn tell us about a network?
If we take a series and measure the ApEn of its visibility
graph, what information do we learn from the dynamical
process that generated the series? There should be a neat
correlation between the ApEn of the series and the one

of the visibility graph. Such a correlation may be used to
determine what kind of information about a series is not seen
by the visibility graphs approach. The gain is to uncover the
limits of methods for time series analysis based on visibility
graphs.

(2) We have already mentioned that ApEn makes sense only
when applied to an ordered list of numbers obtained from a
network. The first intuitive choice was the degree sequence
when arranged in the nonincreasing order. Clearly, this is not
only the most natural choice, but it is also the easiest one. There
are many potential generalizations based on different criteria.
From a dynamical viewpoint, one could label the vertex set
and then generate random walks over a given network. These
are analogous to run trajectories over a dynamical system’s
phase space. ApEn is then computed over these trajectories, as
was performed for the KS entropy in [17].

From a combinatorial viewpoint, the most straightforward
generalization consists of looking at the second, third neigh-
bors, and so on. These are sometimes called the shells of a
node. In this way, we may consider ApEn of the sequences
generated by the number of (deterministic) walks of a given
length. A variety of choices is then available: to look at
the sequence of the number of walks of growing length, to
count the number of walks starting from different nodes, etc.
Remarkably, this allows us to associate various sequences with
each node, which can be then compared, averaged, etc. The
gain is the possibility of introducing network parameters for
quantifying the disorder in the cycle structure of the graph.
Graphs with a particularly disordered cycle structure, such as
the controllable graphs introduced in [42], are expected to have
higher ApEn of their walks.

If instead of combinatorial criteria, we aim at a more
algebraic perspective, a first choice consists of taking the
spectrum of a matrix that represents the network faithfully, like
the adjacency matrix or a Laplacian. Indeed the spectrum of a
network is a graph invariant and a naturally ordered sequence.
A very superficial analysis based on Fig. 5 suggests that ApEn
does not contain valuable information, or at least information
that is not easy to interpret. Hence, it remains an open problem
to determine what kind of network properties are identified by
computing ApEn of spectra and whether this quantity grasps
something about different matrix ensembles.
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