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Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm,

which prompts interest in its capability for capturing the nature of different classes of series in a

network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical

systems can be studied from a novel perspective via the use of this method. Specifically, the

period-doubling and band-splitting attractor cascades that characterize unimodal maps transform

into families of graphs that turn out to be independent of map nonlinearity or other particulars.

Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together

with analytical derivations that relate to the degree distributions, mean distances, clustering

coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe

how the resultant families of graphs can be framed into a renormalization group scheme in which

fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an

entropy optimization process defined for the graph sets, confirming a suggested connection between

renormalization group and entropy optimization. Finally, we provide analytical and numerical

results for the graph entropy and show that it emulates the Lyapunov exponent of the map

independently of its sign. VC 2012 American Institute of Physics. [doi:10.1063/1.3676686]

In recent years, a new general framework to make time

series analysis has been coined. This framework is based

on the mapping of a time series into a network represen-

tation and the subsequent graph theoretical analysis of

the network, offering the possibility of describing the

structure of complex signals and the associated dynami-

cal systems from a new and complementary viewpoint

and with a full set of alternative measures. Here, we focus

on a specific type of mapping called the horizontal visibil-

ity algorithm and, via this approach, we address the spe-

cific case of the period-doubling route to chaos. We

extend our preliminary results on this topic1 and provide

a complete graph theoretical characterization of unimo-

dal iterated maps undergoing period doubling route to

chaos that, we show, evidence a universal character. Our

approach allows us to visualize, classify, and characterize

periodic, chaotic, and onset of chaos dynamics in terms of

their associated networks.

I. INTRODUCTION

Very recently,1 a connection between nonlinear dynami-

cal systems and complex networks has been accounted for

by means of the horizontal visibility (HV) algorithm,2,3 as

the latter transforms time series into graphs. The families of

trajectories generated by nonlinear low-dimensional iterated

maps conform a distinctive class of time series. Accordingly,

they make up ideal candidates to test the capabilities of the

HV algorithm for capturing meaningfully the information

contained in them, and, if so, see how these manifest in the

network central quantities. The possibility of observation of

novel properties adds to the motivation to carry on these

studies. We have chosen to inspect first the well-known one-

dimensional (therefore, dissipative) unimodal maps and their

common period-doubling route to chaos, when periodic

attractors transform into aperiodic attractors, the bifurcation

cascade, or Feigenbaum scenario.4,5 This route to chaos

appears an infinite number of times amongst the family of

attractors generated by unimodal maps within the windows

of periodic attractors that interrupt sections of chaotic

attractors. In the opposite direction, a route out of chaos

accompanies each period-doubling cascade by a chaotic

band-splitting cascade, and their shared bifurcation accumu-

lation points form transitions between order and chaos that

possess universal properties.4–6 Low-dimensional dynamics

benefits from added interest as systems with many degrees of

freedom relevant to various problems in physics and else-

where are known to undergo a drastic simplification and

display this type of dynamics.7

There is a growing number of methods designed to

transform series into networks, involving concepts such as

recurrence in phase space9,10 or Markov processes11 to cite a

few, and our approach forms part of this enterprise.8 Once a

time series is converted into a network, the interest lies in

the observation of the characteristic properties of dynamicala)Electronic mail: lucas.lacasa@upm.es.
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systems in a different environment. And to achieve this, it is

necessary to use the characteristic tools of network

analysis.12–16 The family of visibility algorithms has been

successful in obtaining information relevant to the descrip-

tion of fractal behavior17 or to the distinction between ran-

dom and chaotic series.3 Here, we detail the Feigenbaum

scenario as seen through the HV formalism by providing a

complete description of its associated set of graphs. These

graphs represent the time evolution of all trajectories that

take place within the attractors of unimodal maps. The out-

line of the presentation is the following: We start in Sec. II

by recalling the construction of a HV graph from a time

series and deduce general expressions for the mean degree

and distance when the series is periodic. We advance a visual

illustration of the graphs and their location in the Feigen-

baum diagram. In Sec. III, we focus on the period-doubling

cascade and derive a simple closed-form expression for the

degree distribution of periodic attractor graphs and their

accumulation point. We obtain from the latter the mean

degree, the variance, and the clustering coefficient. In

Sec. IV, we center on the reverse bifurcation cascade of

chaotic-band attractors and derive the expression for the

degree distribution and the mean degree. As the number of

bands increases, there is a growing similarity with the same

quantities for the period-doubling cascade, since, as shown,

the contribution from chaotic motion is confined only to the

shrinking top band. The properties of graphs stemming from

both chaotic-band attractors and windows of periodicity are

derived with help of the self-affine properties of the bifurca-

tion cascades. In Sec. V, we describe a renormalization

group (RG) transformation, equivalent to the original func-

tional composition RG transformation but specially designed

for the Feigenbaum graphs, which leads to a set of fixed

point graphs that further explain and give unity to, the two

previous sections. In Sec. VI, we turn attention to the entropy

associated to the degree distributions and find that under

optimization we recover the RG fixed points. Finally, we

compare the behavior of this entropy as we move along the

bifurcation cascades and notice that this quantity follows

closely the variation of the map’s Lyapunov exponent, point-

ing out to a property reminiscent of the Pesin equality but

suitable for both periodic and chaotic graphs. In Sec. VII, we

summarize our results. A brief preliminary account of the

contents of this paper is given in Ref. 1.

II. FEIGENBAUM GRAPHS

The HV graph2 associated with a given time series

fxigi¼1;…;N of N real data is constructed as follows: First, a

node i is assigned to each datum xi, and then two nodes i and

j are connected if the corresponding data fulfill the criterion

xi; xj > xn for all n such that i < n < j. Let us now focus on

the Logistic map4 defined by the quadratic difference equa-

tion xtþ1 ¼ f ðxtÞ ¼ lxtð1� xtÞ; where xt 2 ½0; 1� and the

control parameter l 2 ½0; 4�. According to the HV algorithm,

a time series generated by the Logistic map for a specific

value of its control parameter l (after an initial transient of

approach to the attractor) is converted into a Feigenbaum

graph (see Figure 1). Notice that this is a well-defined

subclass of HV graphs where consecutive nodes of degree

k¼ 2, that is, consecutive data with the same value, do not

appear, what is actually the case for series extracted from

maps (besides the trivial case of a constant series). Also, as

proven in Ref. 18, a HV graph is, by construction, a planar

graph, that is, it has a diagram representation in which any

pair of links intersect only at their endpoints. Moreover, a

HV graph is also outerplanar: each node contacts the infinite

face, where a face is a bounded region of a planar graph and

the infinite face is its outer region. In what follows, we take

advantage of these facts and outline some generic properties

of Feigenbaum graphs.

A. Mean degree �k

Consider a periodic orbit of period T. Without lack of

generality, we represent the orbit as the infinite time series

f:::; x0; x1; :::; xT ; x1; x2; :::g, where x0 ¼ xT corresponds to

the largest value of the series. By construction, the associated

Feigenbaum graph consists of a concatenation of identical

motifs of T þ 1 nodes associated to the subseries

fx0; x1; :::; xTg. Suppose that the motif is a graph with V
links, and let xi be the smallest datum of the subseries which,

by construction, will have degree k¼ 2 (and since no data

repetitions are allowed in the motif, xi will always be well

defined). Now remove this node and its two links from the

motif. The resulting motif will have V � 2 links and T nodes.

Iterate this operation T � 1 times (see Figure 2 for a graphi-

cal illustration of this process in a particular case with

T¼ 5). The resulting graph will have only two nodes, associ-

ated with x0 and xT , connected by a single link, and the total

number of deleted links will be 2ðT � 1Þ. The mean degree �k
of the graph corresponds to the mean degree of the motif

made of T nodes (the nodes associated with x0 and xT only

introduce half of their degree in the motif, what is equivalent

to an effective reduction of one node). Hence,

�kðTÞ � 2
# edges

# nodes
¼ 2ð2ðT � 1Þ þ 1Þ

T
) �kðTÞ ¼ 4 1� 1

2T

� �
:

(1)

The above result holds for every periodic or aperiodic

(T !1) series, independent of the deterministic process

that generates them, as the only constraint in its derivation is

that data within a period are not repeated. It, therefore,

includes all graphs generated by unimodal maps irrespective

of their degree of nonlinearity. Observe that the maximum

mean degree (achieved for aperiodic series) is �kð1Þ ¼ 4, in

agreement with previous theory (see Ref. 18).

B. Normalized mean distance �d

On the other hand, the normalized mean distance �d of

the graph is defined as �d ¼ �D=N, where �D is the mean dis-

tance (the average over all pairs of nodes of the smallest path

that connects each pair) and N the number of nodes. For

graphs associated with periodic orbits �d depends on T (as

this is the maximal amount of nodes that can be jumped

through a link), and straightforwardly gives �dðTÞ ¼ 1
3T for
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N !1. Therefore, for HV graphs, �d and �k are linearly

related by

�dð�kÞ ¼ 1

6
ð4� �kÞ: (2)

This latter analytical relation is checked numerically in the

inset of Figure 1. The limiting solution �k ! 4, �d ! 0 holds

for all aperiodic, chaotic or random series. In addition to the

numerical results shown in the inset of Figure 1 for the spe-

cific case of the Logistic map, we have also examined the

accuracy of the latter relation for several unimodal maps,

giving perfect agreement in every case (data not shown).

III. PERIOD-DOUBLING ROUTE TO CHAOS: RESULTS

A. Order of visits of stable branches and chaotic
bands

A deep-seated feature of the period-doubling cascade is

that the order in which the positions of a periodic attractor

are visited is universal.20 That is, the visiting order of the

positions fxig (where the subindex i denotes the iteration

time) of a periodic attractor along the period-doubling route

to chaos is the same for all unimodal maps.20 This ordering

turns out to be a decisive property in the derivation of the

structure of the Feigenbaum graphs (see Figure 3 where we

plot the graphs for a family of attractors of increasing period

T ¼ 2n, that is, for increasing values of l < l1). Here, we

describe the rule that such ordering follows for orbits of

period T ¼ 2n, and how this in turn induces the structure of

the associated Feigenbaum graphs. This is illustrated graphi-

cally in Figure 4.

Consider the first period-doubling bifurcation that pro-

duces attractors with period T ¼ 21 and for which repeated

jumps are observed between two positions in time, x1, x2,

x1,., with x1 > x2 (Figure 4(a)). Without lack of generality

label x1 as the largest data, this series is transformed into a

Feigenbaum graph made up of a concatenation of a root

motif of 3 nodes, where by construction the inner node is

associated with datum x2. As the family of attractors reaches

FIG. 1. (Color online) Feigenbaum graphs from the Logistic map xtþ1 ¼ f ðxtÞ ¼ lxtð1� xtÞ. The main figure portrays the family of attractors of the Logistic

map and indicates a transition from periodic to chaotic behavior at l1 ¼ 3:569946::: through period-doubling bifurcations. For l � l1, the figure shows the

merging of chaotic-band attractors where aperiodic behavior appears interrupted by windows that, when entered from their left-hand side, display periodic

motion of period T ¼ m � 20 with m > 1 (for l < l1, m ¼ 1) that subsequently develops into m period-doubling cascades with new accumulation points

l1ðmÞ. Each accumulation point l1ðmÞ is in turn the limit of a chaotic-band reverse bifurcation cascade with m initial chaotic bands, reminiscent of the self-

affine structure of the entire diagram. All unimodal maps exhibit a period-doubling route to chaos with universal asymptotic scaling ratios between successive

bifurcations that depend only on the order of the nonlinearity of the map,19 the Logistic map belongs to the quadratic case. Adjoining the main figure, we show

time series and their associated Feigenbaum graphs according to the HV mapping criterion for several values of l where the map evidences both regular and cha-

otic behaviors (see the text). Inset: Numerical values of the mean normalized distance �d as a function of mean degree �k of the Feigenbaum graphs for 3 < l < 4

(associated to the time series of 1500 data after a transient and a step dl ¼ 0:05), in good agreement with the theoretical linear relation (see the text).
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the next period-doubling bifurcation, each point xi of the

period-2 attractor splits into two new stable “offspring” posi-

tions: xi and xiþT , and the visiting order is such that

x1 > x3 > x4 > x2 (Figure 4(b)). This ordering is reminiscent

of the T ¼ 21 orbit that was present before the bifurcation

(namely, the orbit returns to a neighborhood of the point

after a journey along the attractor). In particular, this means

that the second largest value x3 (the offspring of x1) is visited

only after a T ¼ 21 journey, that is, in the middle of the

T ¼ 22 periodic orbit. Observe also that the bottom pair of

offspring positions appears inverted (grey box in the figure).

The corresponding Feigenbaum graph is a concatenation of

the T ¼ 21 motif (left and right portions in the figure) linked

by the largest node x1, which repeats after T ¼ 22 iteration

times. Left and right portions in the graph are equivalent

since the orbit follows the same pattern of visits across the

FIG. 3. Periodic Feigenbaum graphs for

l < l1. The sequence of graphs associ-

ated to periodic attractors with increasing

period T ¼ 2n undergoing a period-

doubling cascade. The pattern that occurs

for increasing values of the period is

related to the universal ordering with

which an orbit visits the points of the

attractor. Observe that the hierarchical

self-similarity of these graphs requires

that the graph for n� 1 is a subgraph of

that for n.

FIG. 2. (Color online) Graphical illustra-

tion of the constructive proof of the expres-

sion for the mean degree �kðTÞ through the

consideration of a motif extracted from a

periodic series of period T¼ 5. Observe that

the second data is the one with the lowest

value. By deleting it, the graph loses 2 links.

This process is iterated three more times. A

total amount of 2 � ð5� 1Þ ¼ 8 links has

been deleted, independently of the inner

structure of the T¼ 5 motif.
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stable branches (each portion according to a given offspring).

The same procedure can be iterated for increasing period-

doubling bifurcations (see Figure 4(c)), leading to Feigen-

baum graphs which are progressively self-similar and

become so in the limit n!1. Summing up, the period-

doubling bifurcation of an orbit of period T ¼ 2n generates

two identical copies of the T ¼ 2n root motif of the graph,

which are now concatenated by the node associated to datum

x1þ2n and linked by the bounding nodes x1, and this in turn

is the root motif of the T ¼ 2nþ1 Feigenbaum graph. In

Sec. III B, we will take advantage of this structure to analyti-

cally derive several topological properties of the Feigenbaum

graphs along the period-doubling cascade.

B. Topological properties of Feigenbaum graphs
along the period-doubling cascade

1. Degree distribution Pðn;k Þ

The above-described order of visits generates a hierar-

chy of self-similar Feigenbaum graphs along the period-

doubling bifurcation cascade. The degree distribution of a

graph is defined as a discrete probability distribution that

expresses the probability of finding a node with degree

k.13–15 By construction, the degree distribution of a Feigen-

baum graph for a series of period T ¼ 2n, n¼ 0, 1, 2,., is

Pðn; kÞ ¼ 1

2

� �k=2

; k ¼ 2; 4; 6; :::; 2n;

Pðn; kÞ ¼ 1

2

� �n

; k ¼ 2ðnþ 1Þ;

Pðn; kÞ ¼ 0; k ¼ 3; 5; 7; :::; or k > 2ðnþ 1Þ:

(3)

At the accumulation point l1 ¼ 3:5699456…, the period

diverges (n!1), and the degree distribution of the Feigen-

baum graph at the onset of chaos becomes a (non truncated)

exponential for even values of the degree,

Pð1; kÞ ¼ 1

2

� �k=2

; k ¼ 2; 4; 6; :::;

Pð1; kÞ ¼ 0; k ¼ 3; 5; 7;…:

(4)

In Figure 5, we show the accuracy with which this analytical

result is reproduced by a finite series of 106 data. Numerical

and theoretical distributions are in good agreement.

2. Mean degree �k ðnÞ and normalized distance �dðnÞ

The mean degree �kðnÞ is the first moment of the degree

distribution

�kðnÞ ¼
X2ðnþ1Þ

k¼2

kPðn; kÞ ¼ 4ð1� 1

2nþ1
Þ; (5)

FIG. 4. (Color online) Graphical illustra-

tion that explains how the order of visits

to the stable branches of the map induces

the structure of the Feigenbaum graphs all

along the period-doubling bifurcation cas-

cade (l < l1).

FIG. 5. Dots Semi-log plot of the degree distribution of a Feigenbaum

graph associated with a time series of 106 data extracted from a Logistic

map at the onset of chaos l1 ¼ 3:5699456:::. The straight line corresponds

to Eq. (4), in agreement with the numerical calculation (the deviation for

large values of the degree are due to finite size effects).
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which, at the accumulation point, yields �kð1Þ ¼ 4, indeed

the maximal degree for a HV graph.

Furthermore, by induction, it can be shown that the

mean distance D(n, N) within a Feigenbaum graph of N
nodes after n period-doubling bifurcations is given approxi-

mately by

�Dðn;NÞ � 1

2n

N þ 1

3
þ 1

9
ð6n� 1Þ2n þ ð�1Þn½ �

� �
: (6)

Observe that for a fixed period T ¼ 2n the mean distance

increases linearly with the size N of the graph. Normalization

of this measure in the limit of infinite size leads to a well-

defined mean distance per node �dðnÞ with the simple form

�dðnÞ ¼ 1

3

1

2n
; (7)

such that the linear relation depicted in Eq. (2) is recovered.

3. Clustering coefficient c(n, k)

The local clustering coefficient is a topological measure

that quantifies how close a given node’s neighbors are to

being a clique.13–15 The local clustering coefficient of a

Feigenbaum graph that corresponds to an attractor of period

T ¼ 2n is given by

cðn; kÞ ¼ k � 1

k

2

� � ¼ 2

k
; k ¼ 2; 4; 6; :::; 2n;

cðn; kÞ ¼ k � 2

k

2

� � ¼ 2ðk � 2Þ
kðk � 1Þ ; k ¼ 2ðnþ 1Þ;

(8)

a result indicative of a so-called hierarchical structure.21

Since the degree distribution P(n, k) is known in closed form

throughout the period-doubling cascade, use of the approxi-

mation cðn; 2ðnþ 1ÞÞ � 1=ðnþ 1Þ leads to

Pðn; kÞ ¼ 1

2

� �k=2

¼ Pðn; 2=cðn; kÞÞ;

k ¼ 2; 4; 6; :::; 2n; 2ðnþ 1Þ;

Pðn; cÞ ¼ 1

2

� �1=c

:

(9)

Consequently, the mean clustering coefficient �cðnÞ is given

by

�cðnÞ¼
X2ðnþ1Þ

k¼2

cðn;kÞPðn;kÞ¼
X2n

k¼2

2

k

1

2

� �k=2

þ 2n

ðnþ1Þð2nþ1Þ
1

2

� �n

¼
Xn

m¼1

1

m2m
þ n

2n�1ðnþ1Þð2nþ1Þ: (10)

This last summation does not possess a solution in closed

form except in the limit n!1 which yields

�cð1Þ ¼ log 2 ¼ 0:693…. Nevertheless, the series converges

to log 2 extremely fast: cð0Þ ¼ 0; cð1Þ ¼ 0:666:::;

cð2Þ ¼ 0:691666:::; cð3Þ ¼ 0:693452:::, which suggests that

�cðnÞ rapidly loses its dependence on the bifurcation order n
and remains basically constant for all n.

4. Higher moments of the degree distribution:
Variance r2ðnÞ

The moments of the degree distribution P(n, k) can be

easily calculated by making use of the generating function,

MðtÞ ¼ hetki ¼ 1þ 4� 2

2n

� �
tþ 12� 10þ 4n

2n

� �
t2

þ 104

3
� ð100=3Þ þ 20nþ 4n2

2n

� �
t3 þ O t4

� �
:

In particular, the variance is given by

r2ðnÞ ¼ 8� 4þ 8n

2n
� 41�n;

which, at the accumulation point, becomes r2ð1Þ ¼ 8.

IV. REVERSE BIFURCATION CASCADE OF CHAOTIC
BANDS: RESULTS

The Logistic map at l ¼ 4 is said to be fully chaotic as

the Lyapunov exponent attains its maximum value of log 2

there, and also the single-band attractor spans the unit inter-

val. As l is decreased smoothly from l ¼ 4 towards l1, this

first chaotic band (n¼ 0) suffers a contraction and a series of

successive band splittings (see Figure 1), which are in sev-

eral respects analogous to the period-doubling bifurcations at

l < l1. Since the band splittings occur from right to left,

they are called reverse bifurcations.4–6,20 After the first

reverse bifurcation (n¼ 1), the first chaotic band splits into

two disconnected chaotic bands, such that the iteration of an

initial condition in this zone generates an orbit that alternates

between these two bands. While the exact location of each

position gives the evidence of sensitive dependence on initial

conditions, the band alternation is fixed. Significantly, while

in the chaotic zone orbits are aperiodic, for reasons of conti-

nuity, they visit each of the 2n chaotic bands in the same

order as positions are visited in the attractors of period

T ¼ 2n.20 In Figure 6, we have plotted the Feigenbaum

graphs generated through chaotic time series at different val-

ues of l that correspond to an increasing number of reverse

bifurcations.

The first of the reverse bifurcation points, called Misiur-

ewicz points, is located at l1�2 ¼ 3:6785:::. As in the

period-doubling region l < l1, a cascade of chaotic band

reverse bifurcations takes place in the complementary region

l > l1, such that after n bifurcations the attractor consists

of 2n non-overlapping chaotic bands. The location of the

Misiurewicz points converges to l1 in the limit n!1, and

their relative locations also obey the same asymptotic ratio

d ¼ 4:669::: (Feigenbaum constant for quadratic maps) as n
increases as that occurring for the period-doubling bifurca-

tions at l > l1.4,22

Furthermore, the chaotic bands that are formed after

each reverse bifurcation are self-affine copies of the previous
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Downloaded 24 Jan 2012 to 163.1.246.65. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



ones.23 This is illustrated in Figure 7, where it can be

observed that the two chaotic bands (left boxes) appearing

after the first reverse bifurcation (at l1�2) are rescaled copies

of the first chaotic band (right box). Accordingly, each value

of l within the first chaotic band has n self-affine images af-

ter n reverse bifurcations. For instance, the first Misiurewicz

point l1�2 ¼ 3:6785::: is a self-affine image of l ¼ 4 after

the first reverse bifurcation, the second Misiurewicz point

l2�4 ¼ 3:5925::: is also a self-affine image of l ¼ 4 after the

second reverse bifurcation, and so on. Consider now a cha-

otic time series extracted at l 2 ½l2�4 � l1�2� in which the

iterate position values alternate between both chaotic bands.

Now separate this series into two time-ordered subseries,

each of which contain only data belonging to either the top

or the bottom chaotic bands. These subseries are indeed

rescaled copies of a series extracted from the first chaotic

band at the corresponding preimage value of l. Notice that

the HV algorithm is invariant under affine transformations in

the series. Accordingly, the Feigenbaum graphs of these

subseries are the same as the graph obtained for the self-

affine value of l belonging to the first chaotic band.

A. Self-affine properties of chaotic bands: Mean
degree and degree distribution

As mentioned, the interband motion that an orbit experi-

ences within an attractor composed of 2n chaotic bands fol-

lows the same order of visits as that we described for a

periodic orbit of period 2n. And as in the case of the periodic

region, this property possibilitates the derivation of the main

characteristics of the Feigenbaum graphs in the chaotic

region. Consider the Feigenbaum graph of a chaotic series

generated by the Logistic map after n reverse bifurcations.

By construction, the structure of this graph is in many

respects a mirror image of the Feigenbaum graph in the peri-

odic region after n period-doubling bifurcations. The only

differences originate from the data located within the top

chaotic band. This feature is due to the fact that chaotic

bands do not overlap and that the HV algorithm filters out

the precise locations of data in favor of unspecified relative

positions. Denoted by Plðn; kÞ, its degree distribution,

where, in order to not overburden the notation, we refer to l
indistinctly of the self-affine image of l we study. By con-

struction, and up to k¼ 2 n, the degree distribution Plðn; kÞ
is equivalent to its periodic region counterpart, i.e.,

Plðn; kÞ ¼
1

2

� �k=2

; k ¼ 2; 4; 6; :::; 2n: (11)

Now, the data belonging to the top chaotic band transmit a

specific contribution to the associated Feigenbaum graph

which in general cannot be determined analytically, and as

we shall see shows up in Plðn; kÞ for k > 2n. This

FIG. 6. (Color online) Aperiodic Feigenbaum graphs for l > l1. A sequence of graphs associated with chaotic series after n chaotic-band reverse bifurca-

tions, starting at l ¼ 4 for n¼ 0, when the attractor extends along a single band and the degree distribution does not present any regularity (non-black links).

For n> 0, the phase space is partitioned in 2n disconnected chaotic bands, and the n-th self-affine image of l ¼ 4 is the n-th Misiurewicz point l2n�1�2n . In all

cases, the orbit visits each chaotic band in the same order as in the periodic region l < l1. This order of visits induces an ordered structure in the graphs

(black links) analogous to that found for the period-doubling cascade.

FIG. 7. (Color online) Self-affinity in the chaotic region: the two discon-

nected chaotic bands at l2�4 < l < l1�2 are rescaled copies of the first cha-

otic band l1�2 < l < 4. An orbit at l2�4 < l < l1�2 makes an alternating

journey between both bands.
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contribution is denoted Ptop
l ðn; kÞ, where, by definition,

Ptop
l ð0; kÞ ¼ Plð0; kÞ, the degree distribution of the Feigen-

baum graph at the first chaotic band n¼ 0, l1�2 < l � 4.

While the precise shape of the l-dependent distribution

Ptop
l ðn; kÞ is unknown, the self-affine structure of the band-

splitting cascade described previously makes it possible to

relate it to the first chaotic band, i.e.,

Ptop
l ðn; kÞ ¼ Plð0; kÞ:

This important property, that, as we shall comment below,

corresponds to a crossover phenomenon in the RG flows,

breaks down the structure of the Feigenbaum graphs within

the chaotic region into two contributions: (1) an interband

contribution stemming from the order of visits amongst cha-

otic bands that is equivalent to that for periodic attractors

(with associated black links in Figure 6) and (2) a contribu-

tion from the first chaotic band (with associated non-black

links in Figure 6). For normalization reasons, this second

contribution can be coarse-grained as a cumulative distribu-

tion, leading to

Plðn; kÞ ¼
1

2

� �k=2

; k ¼ 2; 4; 6; :::; 2n;

Plðn; k � 2ðnþ 1ÞÞ ¼ 1

2

� �n

:

(12)

Interestingly, as n increases, the contributions from the inter-

band motion of the chaotic attractor become more and more

dominant, and the contribution associated with the first cha-

otic band is progressively smeared out, disappearing at the

accumulation point l1 (see Figure 6).

Based on the previous arguments on self-affinity, the

contribution from the first chaotic band can be determined

quantitatively as follows. For concreteness, let us focus on a

chaotic attractor located after the first reverse bifurcation.

The attractor is divided into two non-overlapping chaotic

bands, and every orbit in it alternates between the “top” and

“bottom” bands. While the precise location of the visits

within each band is unknown, by construction the nodes asso-

ciated to the data located in the “bottom” band have degree

k¼ 2, and this occurs for half of the iteration times, so

Plð1; 2Þ ¼
1

2
:

Also, for parity reasons (even number of chaotic bands) one

has

Plð1; 3Þ ¼ 0;

independently of l. For k > 3, the contribution comes neces-

sarily from the top band, and normalization yields

Plð1; kÞ ¼
1

2
Ptop

l ð1; k � 2Þ; k � 4:

Finally, self-affinity implies

Ptop
l ð1; kÞ ¼ Plð0; kÞ:

Repeating this same procedure, we find that, after n reverse

bifurcations, the degree distribution of a Feigenbaum graph

fulfills the expressions

Plðn; kÞ ¼
1

2

� �k=2

; k ¼ 2; 4; 6; :::; 2n; (13)

Plðn; kÞ ¼ 0; k ¼ 3; 5; 7; :::; 2nþ 1; (14)

independently of l, and

Plðn; kÞ ¼
1

2

� �n

Ptop
l ðn; k � 2nÞ ¼ 1

2

� �n

Plð0; k � 2nÞ;

k � 2ðnþ 1Þ;
(15)

which depends on l. As expected, the last expression only

depends on the structure of the first chaotic band, decreases

for increasing values of n, and disappears in the limit

n!1.

The above expressions for Plðn; kÞ can be used to derive

the mean degree �klðnÞ of a Feigenbaum graph in the chaotic

regime,

�klðnÞ ¼
X2n

k¼2

k
1

2

� �k=2

þ 1

2

� �n X1
k¼2ðnþ1Þ

kPlð0; k � 2nÞ

¼ 4 1� 1

2n

� �
þ

�klð0Þ
2n

: (16)

This last expression relates the mean degree after n reverse

bifurcations to that in the first chaotic band. Interestingly, the

only solution with constant mean degree in the chaotic re-

gime is �klð0Þ ¼ �klðnÞ ¼ 4, in full agreement with the gen-

eral theory.

B. Periodic windows: Self-affine copies of the
Feingenbaum diagram

The Feigenbaum diagram shows a rich self-affine struc-

ture; periodic windows of initial period m that undergo suc-

cessive period-doubling bifurcations with new accumulation

points l1ðmÞ appear interwoven with chaotic attractors at

l > l1. These period-doubling cascades taking place

beyond l1 are self-affine copies of the fundamental period-

doubling route to chaos (l < l1). For instance, the window

that initiates with period m¼ 3 (l � 3:84) generates three

period-doubling cascades, each one being a properly rescaled

copy of the fundamental one (see Figure 8 for a graphical

illustration). In order to take into account such phenomenol-

ogy in the labeling of Feigenbaum graphs, we make use of

the following notation: G(m, n) is the Feigenbaum graph

associated with a periodic attractor of period T ¼ m � 2n, that

is, the graph belonging to a periodic window of initial period

m, after n period-doubling bifurcations. Observe that the pro-

cess of chaotic band reverse bifurcations that take place from

l ¼ 4 towards l1 is again repeated in a self-affine manner;

indeed, each accumulation point l1ðmÞ is the limiting value

of a chaotic-band reverse bifurcation cascade. In Figure 8,

this aspect is also illustrated. Accordingly, we may also
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extend the notation of Feigenbaum graphs belonging to cha-

otic regions, such that Glðm; nÞ is associated with a chaotic

attractor composed by m � 2n bands (that is, after n reverse

bifurcations of m initial chaotic bands).

Given a periodic window with initial period m within

the first chaotic band (l1�2 < l � 4), we note that after n
reverse bifurcations, the chaotic-band attractors contain a

self-affine image of that window, where there is an initial

periodic attractor of period m � 2n developing into m � 2n

period-doubling cascades inside the window. In this case,

Eq. (16) reads

�klðn;m � 2nÞ ¼ 4 1� 1

2n

� �
þ

�klð0;mÞ
2n

;

which together with Eq. (1) yield

�klðn;m � 2nÞ ¼ 4ð1� 1

2ðm2nÞÞ;

as expected.

V. RENORMALIZATION GROUP APPROACH

A. RG transformation: Definition, flows, and fixed
points

In order to recast previous findings in the context of the

renormalization group, let us define a RG operation R on a

graph as the coarse-graining of every couple of adjacent

nodes where one of them has degree k¼ 2 into a block node

that inherits the links of the previous two nodes (see Figure

9(a)). This is a real-space RG transformation on the Feigen-

baum graph,24 dissimilar from recently suggested box-

covering complex network renormalization schemes.25–27 As

a matter of fact, this scheme turns out to be equivalent for

l < l1 to the construction of a HV graph from the com-

posed map f ð2Þ instead of the original f, in correspondence to

the original Feigenbaum renormalization procedure.6,19 We

first note that RfGð1; nÞg ¼ Gð1; n� 1Þ, thus, an iteration

of this process yields a RG flow that converges to the (1st)

trivial fixed point RðnÞfGð1; nÞg ¼ Gð1; 0Þ � G0 ¼ RfG0g.
This is the stable fixed point of the RG flow 8l < l1. We

note that there is only one relevant variable in our RG

scheme, represented by the reduced control parameter

Dl ¼ l1 � l; hence, to identify a nontrivial fixed point, we

set Dl ¼ 0 or equivalently n!1, where the structure of

the Feigenbaum graph turns to be completely self-similar

under R. Therefore, we conclude that Gð1;1Þ � G1 is the

nontrivial fixed point of the RG flow,RfG1g ¼ G1. In con-

nection with this, let PtðkÞ be the degree distribution of a

generic Feigenbaum graph Gt in the period-doubling

cascade after t iterations of R, and point out that the RG

operation, RfGtg ¼ Gtþ1, implies a recurrence relation

ð1� Ptð2ÞÞPtþ1ðkÞ ¼ Ptðk þ 2Þ, whose fixed point coincides

with the degree distribution found in Eq. (4). This confirms

that the nontrivial fixed point of the flow is indeed G1.

FIG. 8. (Color online) Zoom of the Feigenbaum diagram close to the period m¼ 3 window. Starting with a period 3 orbit, each one of the stable branches

develops into a period-doubling bifurcation cascade with a new accumulation point l1ð3Þ, beyond which the attractor becomes chaotic, interwoven with peri-

odic windows: each part of the diagram is indeed a rescaled copy of the full Feigenbaum tree. The locations of several Feigenbaum graphs (with the notation

defined in the text) within the period three window are depicted.
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Next, under the same RG transformation, the self-affine

structure of the family of chaotic attractors yields

RfGlð1; nÞg ¼ Glð1; n� 1Þ, generating a RG flow that con-

verges to the Feigenbaum graph associated to the 1st chaotic

band, RðnÞfGlð1; nÞg ¼ Glð1; 0Þ. Repeated application of R
breaks temporal correlations in the series, and the RG flow

leads to a 2nd trivial fixed point Rð1ÞfGlð1; 0Þg ¼ Grand

¼ RfGrandg, where Grand is the HV graph generated by a

purely uncorrelated random process. This graph has a univer-

sal degree distribution PðkÞ ¼ ð1=3Þð2=3Þk�2
, independent

of the random process underlying probability density (see

Refs. 2 and 3).

Finally, let us consider the RG flow inside a given peri-

odic window of initial period m. As the renormalization pro-

cess addresses nodes with degree k¼ 2, the initial

applications of R only change the core structure of the graph

associated with the specific value m (see Figure 9(b) for an

illustrative example). The RG flow will, therefore, converge

to the 1st trivial fixed point via the initial path

RðpÞfGðm; nÞg ¼ Gð1; nÞ, with p � m, whereas it converges

to the 2nd trivial fixed point for Glðm; nÞ via

RðpÞfGlðm; nÞg ¼ Glð1; nÞ. In the limit of n!1, the RG

flow proceeds towards the nontrivial fixed point via the path

RðpÞfGðm;1Þg ¼ Gð1;1Þ. Incidentally, extending the defi-

nition of the reduced control parameter to DlðmÞ
¼ l1ðmÞ � l, the family of accumulation points is found at

DlðmÞ ¼ 0. A complete schematic representation of the RG

flows can be seen in Figure 9(c).

Interestingly, and at odds with standard RG applications

to (asymptotically) scale-invariant systems, we find that

invariance at Dl ¼ 0 is associated in this instance to an

exponential (rather than power-law) function of the observ-

ables, concretely, for the degree distribution. The reason is

straightforward: R is not a conformal transformation (i.e., a

scale operation) as in the typical RG, but rather a translation

procedure. The associated invariant functions are, therefore,

non homogeneous (with the property g(ax)¼ bg(x)), but

exponential (with the property gðxþ aÞ ¼ cgðxÞ).

B. Crossover phenomenon

When the RG transformation for a Feigenbaum graph is

applied repeatedly, it generates flows terminating at two dif-

ferent trivial fixed points Gð1; 0Þ � G0 and Grand or at a non-

trivial fixed point Gð1;1Þ � G1. G0 is a chain graph where

every node has two links, Grand is a graph associated with a

purely random uncorrelated process, whereas G1 is a self-

similar graph that represents the onset of chaos. The RG

properties within the periodic windows are incorporated into

a general RG flow diagram (see Figures 9(c) and 10 for an

alternative representation). Here, we add a comment on the

standard presence of crossover phenomena in the RG appli-

cations, in our case for large n (or l ’ l1) for both l < l1
and l > l1. In both cases, the graphs Gð1; n� jÞ and

Glð1; n� jÞ with j	 n closely resemble the self-similar G1
(obtained only when l ¼ l1) for a range of values of the

number j of repeated applications of the transformation R
until a clear departure takes place towards G0 or Grand when j
becomes comparable to n. Hence, for instance, the graph

RðjÞfGlð1; nÞg will only show its true chaotic nature (and

FIG. 9. (Color online) Renormalization process and network RG flow structure. (a) Illustration of the renormalization process R: a node with degree k¼ 2 is

coarse-grained with one of its neighbors (indistinctively) into a block node that inherits the links of both nodes. This process coarse-grains every node with degree

k¼ 2 present at each renormalization step. (b) Example of an iterated renormalization process in a sample Feigenbaum graph at a periodic window with initial pe-

riod m¼ 9 after n¼ 2 period-doubling bifurcations (an orbit of period T ¼ m � 2n ¼ 36). (c) RG flow diagram, where m identifies the periodic window that is initi-

ated with period m and ñ designates the order of the bifurcation, ñ¼ nþ 1 for period-doubling bifurcations and ñ¼�(nþ 1) for reverse bifurcations.

DlðmÞ ¼ l1ðmÞ � l denotes the reduced control parameter of the map, and l1ðmÞ is the location of the accumulation point of the bifurcation cascades within

that window. Feigenbaum graphs associated with periodic series (DlðmÞ > 0, ñ > 0) converge to Gð1; 0Þ � G0 under the RG, whereas those associated with aperi-

odic ones (DlðmÞ < 0, ñ < 0) converge to Grand. The accumulation point l1 � l1ð1Þ corresponds to the unstable (nontrivial) fixed point Gð1;1Þ � G1 of the

RG flow, which is nonetheless approached through the critical manifold of graphs Gðm;1Þ at the accumulation points l1ðmÞ. In summary, the nontrivial fixed

point of the RG flow is only reached via the family of the accumulation points, otherwise the flow converges to trivial fixed points for periodic or chaotic regions.
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therefore converge to Grand) once j and n are of the same

order. In other words, this happens once its degree distribu-

tion becomes dominated by the contribution of Ptop
l ðn; kÞ

(alternatively, once the graph core—related to the chaotic

band structure and the order of visits to chaotic bands—is

removed by the iteration of the renormalization process).

VI. NETWORK ENTROPY

A. Entropy optimization and RG fixed points

Recently,28 it has been point out that there exists a con-

nection between the extremal properties of entropy expressions

and the renormalization group approach, when applied to sys-

tems with scaling symmetry. Namely, that the fixed points of

RG flows can be obtained through a process of entropy optimi-

zation, providing the RG approach a variational flavor. In this

section, we investigate on this connection, and derive, via opti-

mization of an entropic functional for the Feigenbaum graphs,

all the RG flow directions and fixed points directly from the in-

formation contained in the degree distribution. We depart by

applying Jayne’s principle of maximum entropy29 with two

different restrictions and prove that the degree distribution

P(k) that maximizes its entropy h is in each case related to the

fixed points of the RG flow. We employ the standard optimiza-

tion technique that involves Lagrange multipliers.

Let us begin by defining a graph entropy as the Shannon

entropy of the graph degree distribution,

h ¼ �
X1
k¼2

PðkÞ log PðkÞ; (17)

and assume that the degree distribution PðkÞ has a well-

defined mean �k (this is true in general for HV graphs and, in

particular, for Feigenbaum graphs according to Eq. (1)).

Then consider the Lagrangian,

L ¼ �
X1
k¼2

PðkÞ log PðkÞ � ðk0 � 1Þ
X1
k¼2

PðkÞ � 1

 !

� k1

X1
k¼2

kPðkÞ � �k

 !
;

for which the extremum condition reads

@L
@PðkÞ ¼ � log PðkÞ � k0 � k1k ¼ 0

and has the general solution

PðkÞ ¼ e�k0�k1k:

The Lagrange multipliers k0 and k1 can be calculated from

their associated constraints. First, the normalization of the

probability density,

X1
k¼2

e�k0�k1k ¼ 1;

implies the following relation between k0 and k1:

ek0 ¼
X1
k¼2

e�k1k ¼ e�k1

ek1 � 1
;

and differentiation of this last expression with respect to k1

yields

�
X1
k¼2

ke�k1k ¼ e�k1 � 2

ðek1 � 1Þ2
:

FIG. 10. (Color online) Illustrative cartoon incorporating the RG flow of Feigenbaum graphs along the entire Feigenbaum diagram: aperiodic (chaotic or ran-

dom) series generate graphs whose RG flow converges to the trivial fixed point Grand, whereas periodic series (both in the region l < l1 and inside periodic

windows) generate graphs whose RG flow converges to the trivial fixed point G(0,1). The nontrivial fixed point of the RG flow Gð1; 1Þ is only reached

through the critical manifold of graphs at the accumulation points l1ðmÞ.
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Second, the assumption that the mean degree is a well-

defined quantity (true for HV graphs) yields

X1
k¼2

ke�k0�k1k ¼ �k ¼ 2� e�k1

1� e�k1
:

Combining the above results, we find

k1 ¼ log
�k � 1
�k � 2

� �

and

k0 ¼ log
ð�k � 2Þ2

�k � 1

 !
:

Hence, the degree distribution that maximizes h is

PðkÞ ¼
�k � 1

ð�k � 2Þ2
�k � 2
�k � 1

� �k

;

which is an increasing function of �k. The maximal entropy

is, therefore, found for the maximal mean degree �k ¼ 4, with

an associated degree distribution,

PðkÞ ¼ 3

4

2

3

� �k

¼ 1

3

2

3

� �k�2

:

Remarkably, we conclude that the HV graph with maximal

entropy is that associated with a purely uncorrelated random

process and coincides with Grand, a trivial fixed point of the

RG flow.

Observe now that, by construction, the Feigenbaum

graphs along the period-doubling route to chaos (l < l1) do

not have odd values for the degree. Let us assume this addi-

tional constraint in the former entropy optimization proce-

dure. The derivation proceeds along similar steps, although

summations now run only over even terms. Concretely, we

have

ek0 ¼
X1
k¼1

e�k12k ¼ 1

e2k1 � 1
;

which after differentiation over k1 gives

X1
k¼1

ke�k12k ¼ e2k1 � 2

ðe2k1 � 1Þ2

and

X1
k¼1

2ke�k0�k12k ¼ �k ¼ 2e2k1

e2k1 � 1
:

We obtain for the Lagrange multipliers

k1 ¼
1

2
log

�k
�k � 2

� �

and

k0 ¼ log
�k � 2

2

� �
:

The degree distribution that maximizes the graph entropy

turns now to be

PðkÞ ¼ 2
�k � 2

�k � 2
�k

� �k=2

:

As before, entropy is an increasing function of �k, attaining

its larger value for the upper bound value �k ¼ 4, which

reduces to PðkÞ ¼ 1=2ð Þk=2
, k¼ 2, 4, 6, …, (Eq. (4)). We

conclude that the maximum entropy of the entire family of

Feigenbaum graphs, if we require that odd values for the

degree are not allowed, is achieved at the accumulation

point, that is, the nontrivial fixed point of the RG flow.

Finally, the network entropy is trivially minimized for a

degree distribution P(2)¼ 1, that is, at the trivial fixed point

G0. These results indicate that the fixed point structure of a

RG flow can be obtained from an entropy optimization

process, confirming the aforementioned connection.

B. Network entropy and Pesin theorem

1. Periodic attractors

By making use of the expression, we have for the degree

distribution P(n, k) in the region l < l1 and we obtain for

the graph entropy h(n), after the n-th period-doubling bifur-

cation, following the result:

hðnÞ ¼ �
X2ðnþ1Þ

k¼2

Pðn; kÞ log Pðn; kÞ

¼ �
X2n

k¼2

1

2k=2
log

1

2k=2

� �
� 1

2n
log

1

2n

� �
¼ log 2

2
ð�k � 2

2n
Þ

¼ log 4 1� 1

2n

� �
:

(18)

We observe that the entropy increases with n and, interest-

ingly, depends linearly on the mean degree �k. This linear de-

pendence between h and �k is related to the fact that,

generally speaking, the entropy and the mean of a probability

distribution are proportional for exponentially distributed

functions, a property that holds exactly in the accumulation

point (Eq. (4)) and approximately in the periodic region

(Eq. (3)), where there is a finite cut off that ends the expo-

nential law. Interestingly, HV graphs associated with chaotic

series have also been found to have an asymptotically expo-

nential degree distribution.3 Finally, note that in the limit

n!1 (accumulation point) the entropy converges to a

finite value hð1Þ ¼ log 4.

2. Chaotic attractors

For Feigenbaum graphs Glð1; nÞ (in the chaotic region),

in general, h cannot be derived exactly since the precise

shape of P(k) is unknown (albeit the asymptotic shape is also

exponential3). However, arguments of self-affinity similar to
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those used for describing the degree distribution of Feigen-

baum graphs can be employed in order to find some regular-

ity properties of the entropy hlðnÞ. Concretely, the entropy

after n chaotic band reverse bifurcations can be expressed as

a function of n and of the entropy in the first chaotic band

hlð0Þ. Using the expression for the degree distribution, a lit-

tle algebra yields

hlðnÞ ¼ log 4þ
htop

l ðnÞ
2n

¼ log 4þ hlð0Þ
2n

:

In Figure 1, we observe how the chaotic-band reverse bifur-

cation process takes place in the chaotic region from right to

left and, therefore, leads in this case to a decrease of entropy

with an asymptotic value of log 4 for n!1 at the accumu-

lation point. These results suggest that the graph entropy

behaves qualitatively as the map’s Lyapunov exponent k,

with the peculiarity of having a shift of log 4, as confirmed

numerically in Figure 11. This unexpected qualitative agree-

ment is reasonable in the chaotic region in view of the Pesin

theorem,5 which relates the positive Lyapunov exponents of

a map with its Kolmogorov-Sinai entropy (akin to a topolog-

ical entropy) that for unimodal maps reads hKS ¼ k; 8k > 0,

since h can be understood as a proxy for hKS. Unexpectedly,

this qualitative agreement seems also valid in the periodic

windows (k < 0), since the graph entropy is positive and

approximately varies with the value of the associated (nega-

tive) Lyapunov exponent, even though hKS ¼ 0, hinting at a

Pesin-like relation valid also out of chaos which deserves

further investigation. The agreement between both quantities

leads us to conclude that the Feigenbaum graphs capture not

only the period-doubling route to chaos in a universal way

but also inherits the main feature of chaos, i.e., sensitivity to

initial conditions.

VII. SUMMARY

In summary, we have described how the horizontal visi-

bility algorithm transforms nonlinear dynamics into net-

works; in particular, how the entire Feigenbaum scenario

manifests in network language. The most important quality

of the HV algorithm when applied to this category of time

series is that it leads to definite and unique results, to well-

defined families of graphs, and to analytic expressions for

their main property, the degree distribution. In obtaining

these results, two basic ingredients played a decisive role;

these are the predetermined order in which positions or

bands are visited in the time series and the self-affinity of

periodic or chaotic-band attractors. As we have seen, the

graphs generated by the algorithm store in the connectivity

pattern amongst nodes, i.e., in their topological structure, the

dynamical nature of the nonlinear map. A significant feature

of the Feigenbaum graphs is their evident universality; as the

structure of all graphs and that of all families, their form is

independent of the specific form of the unimodal map includ-

ing the degree of nonlinearity of its extremum. We have also

shown that the families of networks and degree distributions

obtained from periodic and chaotic attractor bifurcation cas-

cades have scale-invariant limiting forms. And that the latter

occupy the dominant positions of RG fixed points and

extrema of the entropy associated with the degree distri-

bution. The capability of the HV algorithm to expose new

information is indicated by the property of the network

entropy to emulate the Lyapunov exponent for both periodic

and chaotic attractors. Applications of this approach to

other low-dimensional nonlinear circumstances, such as the

dynamical complexity associated with the quasiperiodic

route to chaos and the vanishing of Lyapunov exponents are

under study, and an obvious open question is how well

would these precise analytical results work for experimental

data.
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