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An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J.

Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where

the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic

work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is

adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out.

A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically

complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation

remains of the same form as in the subsonic regime for any value of the instability Mach number,

provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be

smaller than the macroscopic lengths, a generous bound that scales like a positive power of the

Lundquist number. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739787]

I. INTRODUCTION

Magnetic reconnection driven by the tearing instability

accounts for many important phenomena in space and labo-

ratory plasmas. Numerous studies have been devoted to this

topic, and the pioneering single-fluid theory1 has been gen-

eralized to many other, more detailed physical models.

These range from earlier kinetic2–5 and two-fluid6–9 analy-

ses, to recent works that use the gyrokinetic formalism.10,11

Also recently, the development of large scale two-fluid sim-

ulation codes12,13 has renewed the interest in accurate two-

fluid analytic results that could be used for code verification.

Motivated by this, Refs. 14 and 15 revisited the simplest

extension of single-fluid resistive magnetohydrodynamics

(MHD), i.e., the two-fluid Hall-MHD model, deriving new

analytic dispersion relations that apply to numerically rele-

vant intermediate parameter regimes between the asymp-

totic limits where the classic results1,3,6 hold. These novel

intermediate dispersion relations were used in a successful

benchmark16 of the NIMROD code.12 However, neither

Ref. 14 nor Ref. 15 considered the parameter regime where

the Hall-MHD tearing growth rate is comparable to the

sound frequency: Ref. 14 considered separately the subsonic

and hypersonic (zero-b) regimes, whereas the otherwise

more comprehensive Ref. 15 considered only the subsonic

regime. Tearing mode growth rates comparable or higher

than the sound frequency can occur only at extremely low

values of the ratio b between the squared sound and Alfven

velocities, but there is merit in the somehow academic study

of this regime. On the one hand, results here provide

grounds for additional verification tests of the numerical

codes, with the prominent new feature that the mode eigen-

functions become intrinsically complex. On the other hand,

because of its apparent simplicity, the zero-b limit of the

Hall-MHD tearing instability has long been the subject of

studies, with conflicting results reported in the literature and

no clear-cut resolution of the issue to date. In this regard,

both the early Ref. 8 and the more recent Ref. 17 claim a

transition from the single-fluid dispersion relation to the

electron-MHD dispersion relation for b ¼ 0 and sufficiently

large ion skin depth di, but Ref. 14 points out that, before

the zero-b equations could transition from the single-fluid

regime to the electron-MHD regime, the mode ion inertial

width would become comparable to the macroscopic length

scale thus invalidating the boundary layer asymptotics the

analytic results are based on.

In this work, we carry out a detailed normal mode analy-

sis of the two-fluid tearing instability, applicable to its super-

sonic regime. Our emphasis is in allowing general values of

the Mach number defined as M ¼ c=ðkcsÞ, where c and k are

the instability growth rate and periodicity wavenumber and

cs is the sound velocity, but we keep the rest of the model as

simple as possible for the sake of clarity and in order to facil-

itate the comparison with Refs. 8, 14, and 17. Thus, we adopt

the Hall-MHD model with zero-Larmor-radius ions and

polytropic closures considered in Ref. 15, in its resistive and

massless electron version. In the same spirit, we order the

dimensionless instability index D0=k and the ratio between

the “guide” and “transverse” components of the equilibrium

magnetic field as comparable to unity. The Hall parameter

a ¼ kdi is constrained only by the condition that the tearing

mode eigenfunction width be much smaller than the macro-

scopic equilibrium profile width L, so that the standard

multiple-scale asymptotic matching technique can be used.

Under these assumptions, we will obtain an exact solution

for the maximal ordering of the Mach number M � 1 that

matches the known subsonic solution15 in its M! 0 limit

and provides a well defined hypersonic or zero-b result in its

M!1 limit. A salient feature of this solution is that, for

M � 1, the eigenfunctions are intrinsically complex but the

growth rate remains purely real. More interestingly, even

though the form of the eigenfunctions depends on M, the
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instability growth rate remains of the same form as in

the subsonic regime for any value of M, subject only to the

general condition that the mode width be smaller than the

macroscopic length scale, something which is guaranteed if

kdi is below some bound that is always greater than S1=3, the

rather large cubic root of the Lundquist number. So we find

that, for Mach numbers comparable or greater than unity, the

electron-MHD regime cannot be reached within the validity

range of the multiple-scale asymptotic matching analysis and

that, in particular, the strictly b ¼ 0 limit is always in the

single-fluid dispersion relation regime.

II. GENERAL MODEL EQUATIONS

Following the physical model and the notation of Ref.

15 as closely as possible, we consider the system

@B

@t
¼ �r� E; (1)

r � B ¼ 0; (2)

l0 j ¼ r� B; (3)

@q
@t
þr � qv ¼ 0; (4)

q
Dv

Dt
¼ j � B�rðpi þ peÞ; (5)

E ¼ �v� Bþ g j þ 1

en
ð j � B�rpeÞ; (6)

psn
�Cs ¼ const ðs ¼ i; eÞ; (7)

with a static, force-free equilibrium of constant density and

temperatures,

q0; ps0 ¼ const; j0 � B0 ¼ 0; v0 ¼ 0; E0 ¼ g j0 ’ 0:

(8)

The emphasis in this model is to retain the Hall-MHD effects

in the generalized Ohm’s law and the plasma compressibility

effects. The most restrictive assumptions are the polytropic

equation of state, which would apply to high collisionality

regimes, and the neglect of finite ion Larmor radius effects,

which would apply to low ion beta.

A one-dimensional equilibrium slab geometry is also

assumed, with the inhomogeneity along the x direction and

the magnetic field of the form B0 ¼ B0yðxÞey þ B0zðxÞez, so

that the force-free condition requires that its magnitude B0

be constant. Typical sheet pinch profiles are

B0yðxÞ ¼ �BB0tanh
x

L
; B0zðxÞ ¼ ½B2

0 � B2
0yðxÞ�

1=2; (9)

and we treat �B as a parameter of order unity so as to allow

for arbitrary guide fields.

Linearizing the above system for normal mode perturba-

tions independent of z, with periodic spatial variation along

the y direction and growth rate c,

f ðx; y; tÞ � f0ðxÞ ¼ f1ðxÞexpðctþ ikyÞ; (10)

we obtain

ðc2
s k2 þ c2Þq1 ¼ �c2q0n

0 � kB0z

l0

kB1z þ
B00y

B0z
iB1x

� �
; (11)

c2l0ðq0r2nþ q01Þ ¼ ikðB0yr2B1x � B000yB1xÞ; (12)

gr2B1x ¼ cl0ðB1x � ikB0ynÞ �
mi

eq0

kB0y kB1z þ
B00y

B0z
iB1x

� �
;

(13)

gcq0r2B1z¼ kB2
0y kB1zþ

B00y

B0z
iB1x

� �
�c2l0ðB0zq1�q0B1zÞ

�mi

e
cðB0yr2B1x�B000yB1xÞ�c2l0q0

B00y

B0z
B0yn:

(14)

Here, we have defined the squared sound velocity

c2
s ¼ m�1

i

P
s CsTs0 and the Lagrangian displacement vari-

able n ¼ c�1v1x; the prime (0) denotes the derivative with

respect to x and the Laplacian operator is r2 ¼ d2=dx2 � k2.

This form of the linearized Eqs. (11)–(14) was given in Ref. 15,

except that the last term of Eq. (14) (which is inconsequential in

the subsonic analysis) was omitted there. Further algebraic

reduction is carried out by eliminating the perturbed density q1

and introducing the perturbed magnetic field variable,

Q ¼ B1z þ
B00y

kB0z
iB1x; (15)

to be used primarily instead of B1z. Using also the equilib-

rium relation B2
0yðxÞ þ B2

0zðxÞ ¼ B2
0, and the definitions of the

Alfven velocity cA ¼ B0ðl0q0Þ�1=2
and the ion skin depth

di ¼ miðe2l0q0Þ�1=2
, we arrive at the still exact linearized

system for the variables ðB1x; n;QÞ

g
l0

r2B1x � cB1x ¼ �B0y icknþ k2dicA
Q

B0

� �
; (16)

c2

c2
A

c2
s

c2 þ k2c2
s

n00 � n

� �
¼ c2

c2 þ k2c2
s

B0zQ

B2
0

� �0

þ i

kB2
0

ðB0yr2B1x � B000yB1xÞ;

(17)

gc
l0

r2Q� c2þ k2c2
A

c2þ k2c2
s

c2þ k2c2
s

B2
0y

B2
0

 !
� ickdicA

B0yB00y

B0B0z

" #
Q

¼ c4

c2þ k2c2
s

B0zn
0 � cdicA

B0

ðB0yr2B1x�B000yB1xÞ

þ igc
l0k

B00y

B0z

� �00
B1xþ 2

B00y

B0z

� �0
B01x

� �
: (18)

Equation (18) follows from a combination of Eqs. (13)–(15)

where the last term of Eq. (14) is canceled by the term pro-

portional to n from the right-hand-side of Eq. (13).

This general form of the linearized resistive-Hall-MHD

equations shows clearly its marginally stable ideal-MHD

solution, applicable to the “outer” region away from x¼ 0:
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g ¼ 0; c ¼ 0; Q ¼ 0; B0yr2B1x � B000yB1x ¼ 0; (19)

whose discontinuity at x¼ 0 defines the tearing stability

index, positive for an unstable mode,

D0 ¼
B01x

���x¼0þ

x¼0�

B1xð0Þ
: (20)

For the equilibrium profiles of Eq. (9), we have

D0 ¼ 2k½ðkLÞ�2 � 1�.
With little loss of generality, we can write an alternative

form of the system (16)–(18) by just assuming

0 < D0=k � 1, thus k � 1=L, and anticipating that the growth

rate will scale as a fractional (smaller than 1) power of the

resistivity, which allows to neglect gk2=l0 compared to c.

Substituting also Eq. (16) for r2B1x in Eqs. (17) and (18),

the result is

B001x ¼ �
l0c
g

�
B0y iknþ k2dicA

c
Q

B0

� �
� B1x

�
; (21)

c2

c2
A

c2
s

c2 þ k2c2
s

n00 � n

� �
¼ c2

c2 þ k2c2
s

B0zQ

B2
0

� �0

� il0cB0y

gkB2
0

�
B0y iknþ k2dicA

c
Q

B0

� �
� B1x

�
; (22)

gc
l0

Q00 �
�
c2 þ k2c2

A

c2B2
0 þ k2c2

s B2
0y

ðc2 þ k2c2
s ÞB2

0

� ikdiccA
B0yB00y

B0B0z

�
Q

¼ l0c
2dicAB0y

gB0

�
B0y iknþ k2dicA

c
Q

B0

� �
� B1x

�

þ c4

c2 þ k2c2
s

B0zn
0 þ igc

l0k

�
B00y

B0z

� �00
B1x þ 2

B00y

B0z

� �0
B01x

�
:

(23)

III. ASYMPTOTIC THEORY OF THE MODE SINGULAR
LAYER

The standard singular perturbation theory of the linear

tearing mode retains the non-ideal and inertial terms of the

system (21)-(23) only within a microscopic region near

x¼ 0, where k � B0 ’ 0. The solution obtained in this singu-

lar boundary layer smooths the discontinuity of the ideal-

MHD “outer” solution, matching asymptotically its x < 0

and x > 0 branches. The non-ideal boundary layer must have

a width much smaller than the equilibrium current sheet

width L, but may include several distinct asymptotic sub-

layers depending on the plasma parameters. Then, within it,

the equilibrium magnetic field components can be approxi-

mated by their lowest-order Taylor expansions about x¼ 0

B0y ’ B0x=LB and B0z ’ B0; (24)

where, for the profiles of Eq. (9), LB ¼ L=�B. Also, for the

considered D0=k � 1, we can use the so-called “constant-w
approximation” whereby B1x can be taken as constant within

the boundary layer whenever its locally large second deriva-

tive is not involved. This way, Eqs. (22) and (23) become a

system for ðn;QÞ alone, decoupled from Eq. (21) which

enters only in its integrated form across the layer to match

the “outer” discontinuity parameter D0. Accordingly, the

“inner” system for the singular layer becomes

D0 ¼ l0c
g

ð0þ

0�
dx 1� B0 x

B1xð0ÞLB
iknþ k2dicA

c
Q

B0

� �� �
; (25)

c2

c2
A

c2
s

c2þ k2c2
s

n00 � n

� �
¼ c2

c2þ k2c2
s

Q0

B0

� il0cx

gkLB

�
x

LB
iknþ k2dicA

c
Q

B0

� �
�B1xð0Þ

B0

�
; (26)

gc
l0

Q00 �
�
c2 þ k2c2

A

c2L2
B þ k2c2

s x2

ðc2 þ k2c2
s ÞL2

B

� ikdiccA
x

L2
B

�
Q

¼ l0c
2dicAx

gLB

�
B0x

LB
iknþ k2dicA

c
Q

B0

� �
� B1xð0Þ

�

þ c4

c2 þ k2c2
s

B0n
0 þ igc

l0k

B00y

B0z

� �00
ð0ÞB1xð0Þ: (27)

Next, we express the above system in dimensionless form.

Our basic dimensionless parameters are as follows: the

inverse Lundquist number S�1 ¼ �g ¼ gk=ðl0cAÞ � 1 which

is the fundamental expansion parameter in the theory; the

Hall parameter a ¼ kdi; the ratio between the squared sound

and Alfven velocities b ¼ c2
s=c2

A; and the Alfven-normalized

growth rate �c ¼ c=ðkcAÞ. Then, our equations will determine

the dispersion relation in the dimensionless form

�cð�g; a; b; kLB;D
0=kÞ. A characteristic length in the micro-

scopic layer analysis is

d0 ¼ ð�c�gÞ1=4ðLB=kÞ1=2 � LB; (28)

which is the layer width in the cases where the “inner” tear-

ing mode eigenfunction varies on a single length scale. In

the cases where the eigenfunction varies on two distinct mi-

croscopic scales, with an “innermost” diffusive layer of

width d1 and an “intermediate” ion inertial layer of width d2,

it turns out that d1 � d2 � LB and d0 ¼ ðd1d2Þ1=2
.15 We use

d0 to define the dimensionless scaled variables

�x ¼ x

d0

; �n ¼ d0B0

LBB1xð0Þ
ikn; �Q ¼ d0a

LB�c

Q

B1xð0Þ
: (29)

In terms of these, the dimensionless form of Eq. (25) is

k�1D0 ¼ �5=4
c ��3=4

g ðkLBÞ1=2

ðþ1
�1

d�x ½1� �xð�n þ �QÞ�: (30)

A set of parameters alternative to ð�g; a; bÞ is constituted by:

the relative thickness d ¼ d0=LB ¼ ð�c�gÞ1=4ðkLBÞ�1=2 � 1;

the Mach number M ¼ c=ðkcsÞ ¼ �cb�1=2; and the scaled

Hall parameter �r ¼ ad�1=2
c ��1=2

g . In terms of these, Eqs. (26)

and (27) take the dimensionless form

072519-3 E. Ahedo and J. J. Ramos Phys. Plasmas 19, 072519 (2012)



1

M2 þ 1

d2�n
d�x2
� d2k2L2

B
�n ¼ M2

M2 þ 1

i

�r
d �Q

d�x
þ �x2ð�n þ �QÞ � �x;

(31)

d2 d2 �Q

d�x2
� �2

c þ
M2 þ d2�x2

M2 þ 1
� id2�r�x

� �
�Q

¼ � M2

M2 þ 1
i�r

d�n
d�x
þ �r2½�x2ð�n þ �QÞ � �x�

þ i
d6�r
�2
c

L3
B

B00y

B0z

� �00
ð0Þ: (32)

The analysis of Eqs. (30)–(32) to be pursued assumes

kLB � D0=k � 1 (consistent with a general guide field

�B � 1) and will cover the whole range of M and the range

of �r such that the singular layer is effectively thin, i.e.,

d. d2=LB � 1.

A. Subsonic regimes

In order to facilitate the comparison with the finite-

Mach-number results to be shown next, it is worth summa-

rizing the subsonic results of Ref. 15. That work singled out

the orderings a � �1=5
g and b � �2=5

g , yielding �c � �3=5
g ,

�x � �n � �Q � 1, and d � M � �r � �2=5
g , as defining the char-

acteristic regime where the leading-order subsonic equations

take their most general form. Applying these orderings to

Eqs. (31) and (32), we get

d2�n
d�x2
¼ �x2ð�n þ �QÞ � �x; (33)

d2 �Q

d�x2
� ðsþ �x2Þ �Q ¼ r2½�x2ð�n þ �QÞ � �x�; (34)

which is the system that was investigated in Ref. 15 and

where the relevant subsonic parameters are r ¼ �r=d and

s ¼ M2ð1þ bÞ=d2. The different subsonic regimes of the

Hall-MHD tearing instability are obtained from special as-

ymptotic subsets of this system and are represented sche-

matically in Fig. 1. There, the different parametric regions

(PRs) corresponding to the different asymptotic forms of

the subsonic dispersion relation are shown in a plane

spanned by the basic primary parameters a ¼ kdi and

b ¼ c2
s=c2

A. The parametric region labeled PR0 corresponds

to the general form of the subsonic regimes. Regions PR1,

PR3, and PR5 are the domains of validity of the classic

tearing mode dispersion relations in the single-fluid,1 elec-

tron-MHD,6 and ion-sound-gyroradius-width (also called

semicollisional)3 regimes, respectively. Regions PR2 and

PR6 are the intermediate domains where the dispersion

relations newly derived in Ref. 15 apply. Region PR4 is the

validity domain of the intermediate dispersion relation

derived in Ref. 14 for large guide fields and shown to apply

also to arbitrary guide fields in Ref. 15. Two general condi-

tions establish overall applicability bounds for these results,

excluding the gray region in the diagram of Fig. 1. The first

one is the subsonic condition M� 1. The second one is the

condition that, in the electron-MHD regime where the

mode singular layer splits into two different scale sub-

layers, the broader ion inertial sublayer should still be

much narrower than the macroscopic equilibrium length

scale, d2 � L. The latter condition was not discussed in

Ref. 15 but limits the applicability of the conventional

electron-MHD dispersion relation to a ¼ kdi � ��1=3
g

� S1=3. Except for this d2 � L condition, the domains

defined in our subsonic diagram agree with the subsonic

part of the diagram put forward in Ref. 17, which did not

consider the d2 � L condition either and showed only the

range of the intermediate regions PR2, PR4, and PR6 with-

out obtaining the actual dispersion relations for them.

Of particular relevance to the finite-Mach-number anal-

ysis to follow is the low-b, subsonic region PR6. This region

(whose dispersion relation covers asymptotically those of

PR1 and PR5 too) is characterized by a2b � �4=5
g and

�6=5
g � b� �2=5

g , yielding �c � �3=5
g , �x � �n � �Q � 1, and

d � �2=5
g � M � �r � 1, hence r2 � s	 1. Under these

orderings, the singular layer system reduces to

�Q ¼ � r2

s
d2�n
d�x2

; 1þ r2

s
�x2

� �
d2�n
d�x2
� �x2�n þ �x ¼ 0; (35)

where r2=s! �r2=M2 since b� �2=5
g here.

B. Sonic-supersonic regimes

For the Mach numbers comparable or greater than unity

that the present work is mainly concerned about, the charac-

teristic regime where the leading-order equations take their

most general form corresponds to the extension to M � 1 of

the orderings in the above PR6: �x � �n � �Q � 1 and

d� M � �r � 1. Applying these orderings to Eqs. (31) and

(32), they become

1

M2 þ 1

d2�n
d�x2
¼ �x2ð�n þ �QÞ � �x þ M2

M2 þ 1

i

�r
d �Q

d�x
; (36)

FIG. 1. Sketch of the locations of the seven asymptotic parametric regions

(from PR0 to PR6) for the subsonic range of the tearing instability, as dis-

cussed in Ref. 15. That analysis excluded the grey region, which is limited by

either M � 1 (dotted line), corresponding to the transonic range, or d2 � L
(dashed line), marking the bound for a thin intermediate inertial sublayer.
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� M2

M2 þ 1
�Q ¼ �r2½�x2ð�n þ �QÞ � �x� � M2

M2 þ 1
i�r

d�n
d�x
: (37)

Clearly, the asymptotic approximation leading to this system

(36) and (37) remains valid both for M	 1 (i.e., in the

hypersonic or b! 0 limit) and for �r � 1. It is also valid for

large values of �r, provided the magnitudes of the normalized

eigenfunctions ð�n; �QÞ and their derivatives remain such that

the neglected terms proportional to d2 in Eqs. (31) and (32)

remain subdominant. The explicit solution to be obtained

next will confirm that this is indeed the case, if we restrict

ourselves to the validity domain of our multiple-scale singu-

lar perturbation analysis requiring the width d2 of the ion in-

ertial layer (when it becomes broader than the diffusive

layer) to remain much smaller than the macroscopic equilib-

rium width L.

It should be pointed out that, whereas the subsonic sys-

tem (33) and (34) for the normalized variables ð�n; �QÞ is

purely real, the finite-Mach-number system (36) and (37) is

intrinsically complex and gives rise to complex eigenfunc-

tions. However, these have definite parity properties such

that the real parts of �n and �Q are odd functions of �x and their

imaginary parts are even. Therefore, when taken to Eq. (30),

the contribution of the imaginary parts of �n and �Q to the

right-hand-side integral vanishes and the resulting growth

rate is always real (it was erroneously stated in Ref. 15 that

the complex eigenfunctions would yield complex growth

rates in the finite-Mach-number regime).

Equations (36) and (37) with eigenfunctions �n ¼ �nR

þ i�nI and �Q ¼ �QR þ i �QI admit the exact integral

�QI ¼ ��nI ¼ �r
d�nR

d�x
; (38)

�QR ¼ �
�r2

M2

d2�nR

d�x2
; 1þ �r2

M2
�x2

� �
d2�nR

d�x2
� �x2�nR þ �x ¼ 0:

(39)

So, besides the parity argument, the imaginary parts of �n and
�Q cancel completely in Eq. (30) and do not contribute to the

growth rate dispersion relation. Moreover, the real part sys-

tem (39) is identical to the one that applies in the 6th sub-

sonic asymptotic domain, Eq. (35). Therefore, the dispersion

relation for Mach numbers comparable or greater than unity

is identical to the subsonic one in PR6 (which also covers

PR1 and PR5), as derived in Ref. 15

�c ¼ �3=5
g

D02

C2k3LB

� �2=5

f
�4=5
6

a2b

�
1=2
g �

1=2
c kLB

 !
: (40)

Here, C ¼ 2pCð3=4Þ=Cð1=4Þ and the numerically calculated

function f6 (Ref. 15) is plotted in Fig. 2. This function is well

approximated by the analytic fit

f6ðuÞ ’
1� u=4þ pu2=20

1þ Cu5=2=20
; (41)

which is also shown in Fig. 2. Profiles of the real components

nR and QR are plotted in Fig. 4 of Ref. 15 for

�r=M ! r=s1=2 ¼ 0:2, 1, and 5. For �r=M ¼ const, the imagi-

nary components nI and QI, Eq. (38), tend to zero for �r � 1

in the subsonic regime15 and satisfy nR � �QI ¼ ��nI � QR

for �r 	 1 in the hypersonic regime.

In conclusion, as we pass through finite values of the

Mach number and enter the supersonic regime, the tearing

mode eigenfunctions develop imaginary parts, but the

growth rate remains purely real and the form of its dispersion

relation remains unchanged. The form of this general disper-

sion relation (40) is the same as in the low-b subsonic regime

and depends on the parameters a and b through the combina-

tion ab1=2 ¼ kds, where ds ¼ dib
1=2 is the ion sound gyrora-

dius. For ab1=2 ¼ kds � �2=5
g , the argument of f6 is small and

the dispersion relation (40) reduces to the single-fluid one1

of PR1, independent of kds

�c ¼ �3=5
g

D02

C2k3LB

� �2=5

: (42)

For ab1=2 ¼ kds 	 �2=5
g , the argument of f6 is large and the

dispersion relation (40) reduces to the so-called semicolli-

sional one3 of PR5 that scales like ðkdsÞ2=3

�c ¼ �1=3
g a2=3b1=3 D0

pk2LB

� �2=3

: (43)

In this kds 	 �2=5
g region, the tearing eigenfunctions vary on

two separate spatial scales forming two sublayers: a broader,

non-diffusive one of width d2 � ds 	 d0, and the innermost

diffusive layer of width d1 � d2
0=ds. The validity of the pres-

ent multiple-scale singular perturbation analysis requires the

broader sublayer width to be much smaller than the macro-

scopic lengths, that is, kds � 1. Staying within this limit, we

verify that the corresponding eigenfunctions and growth rate

are such that the d2 terms that were neglected to derive the

considered supersonic systems (36) and (37) from the gen-

eral Eqs. (31) and (32) are indeed subdominant. So, our gen-

eral result (40) is valid throughout the supersonic regime,

limited only by the kds � 1 or a� b�1=2 condition for

FIG. 2. Function f6ðuÞ (solid line). The dashed line is the approximate fit of

f6 in Eq. (41).
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M 
 1, which is a very high upper bound on the Hall param-

eter, unlikely to be reached in situations of interest.

Finally, as a consistency check, we can verify that the

last term of Eq. (14), which was omitted in the subsonic

analysis of Ref. 15, was negligible then but becomes relevant

in the supersonic regime. A comparison under the parametric

orderings of PR6 between that last term and the first, which

is the leading one for M � Oð1Þ, yields

cl0B00yB0yn
gB0zr2B1z

� a�3=4
c

�
1=4
g ðkLBÞ1=2

� M:

IV. CONCLUDING DISCUSSION

The overall diagram that summarizes the Hall-MHD

resistive tearing results, including both the subsonic and su-

personic regimes is shown in Fig. 3. The dispersion relations

(42), (40), and (43) apply, respectively, in the regions PR1,

PR6, and PR5, for any value of the Mach number M. For the

sake of completeness, it is worth recalling the dispersion

relations that apply in the strictly subsonic regions (M� 1),

namely, the electron-MHD region PR3 where6

�c ¼ �1=2
g a1=2 D02

C2k3LB

� �1=2

; (44)

the high-b intermediate region PR2 where15

�c ¼ �3=5
g

D02

C2k3LB

� �2=5

f
�4=5
2

�
1=2
c a

�
1=2
g

 !
; (45)

with f2 the analytic function given in Ref. 15, and the inter-

mediate region PR4 between the di and ds two-fluid regimes

where14

�c ¼ �1=2
g a1=2 D02

C2k3LB

� �1=2

f�1
4

�ckLB

ab

� �
; (46)

with f4 the analytic function given in Refs. 14 and 15.

The diagram of Fig. 3 indicates also the general validity

limit of our analysis, set by the condition that, when there

is an ion inertial sublayer broader than the diffusive

sublayer, its width d2 must remain much smaller than the

macroscopic equilibrium width L. This excludes the regions

kdi 
 Oð��1=3
g Þ in the subsonic electron-MHD PR3 and

kds ¼ kdib
1=2 
 Oð1Þ in the supersonic PR5, which are not

likely to be reached in situations of interest. Consideration of

these excluded regions would necessitate an “outer” treat-

ment of the ion inertial terms together with the ideal ones

and a modification of the D0 definition. The extension of the

present analysis to include the finite electron inertia effect is

immediate, as shown in Ref. 15.

As discussed above, the validity of our result extends all

the way to the hypersonic regime M!1 or b! 0. In par-

ticular, for strictly b ¼ 0 and any finite a, we are always in

the domain of the single-fluid dispersion relation (42) as

shown in Fig. 3, reflecting the fact that the argument of the

function f6 of the general dispersion relation (40) vanishes in

this case. This hypersonic or zero-b behavior of our result

disagrees with the discussion and the corresponding part of

the diagram shown in Ref. 17, purporting a transition from

single-fluid to electron-MHD through some intermediate

regimes for b < S�2. It disagrees also with Ref. 8, which

finds a similar transition from single-fluid to electron-MHD

at b ¼ 0, working with a strictly cold plasma model where

the coupling between magnetic pressure and density pertur-

bations is ignored without justification. Our finding is con-

sistent with the observation in Ref. 14 that, before the zero-b
tearing layer equations could transition from the single-fluid

to the electron-MHD regime, the mode ion inertial width

would become comparable to the macroscopic length scale.
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