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Abstract: We propose a pulse shaping and shortening technique for pulses 
generated from gain switched single mode semiconductor lasers, based on a 
Mach Zehnder interferometer with variable delay. The spectral and 
temporal characteristics of the pulses obtained with the proposed technique 
are investigated with numerical simulations. Experiments are performed 
with a Distributed Feedback laser and a Vertical Cavity Surface Emitting 
Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. 
The main asset of the proposed technique is that it can be applied to 
different devices and pulses, taking advantage of the flexibility of the gain 
switching technique. 
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1. Introduction 

Short optical pulses with duration of tens of picoseconds can be easily generated from Gain 
Switched (GS) semiconductor lasers [1] and find application in a rich variety of fields [2]. 
Pulses from GS lasers are intrinsically characterized with a relevant amount of negative 
frequency chirp, due to the current induced index modulation around the threshold carrier 
density value. The limit of the minimum pulse duration that can be obtained is set by the 
device and the choice of the gain switching parameters [3, 4]. 

Several techniques for pulse compression and pulse shaping have been developed in order 
to circumvent this limit and obtain shorter and better shaped pulses. Highly chirped pulses 
from GS semiconductor lasers can be compressed by the use of a negatively dispersive 
medium, e.g. an optical fiber [5, 6], or with the design of an optimized Fiber Bragg Grating 
(FBG), which spectral magnitude and phase profiles are designed to obtain transform limited 
pulses [7]. Spectral windowing with a Fabry-Perot etalon [8], interferometric spectral filtering 
[9] and non linear optical loops mirrors [10] have also been successfully employed for pulse 
shortening of GS lasers. 

In general, all the mentioned techniques are ad hoc solutions, i. e. given the pulse 
temporal and spectral characteristics the compression stage works optimally only on the 
specific pulse it is designed for. As an example, the fiber length or the FBG Transfer Function 
(TF) must be chosen carefully after a precise time and frequency characterization of the pulse 
for transform limited compression. This is actually a limitation to the flexibility of the gain 
switching technique, as a change in the modulation parameters, such as the repetition rate or 
the modulation amplitude, modifies the spectral and temporal profiles of the pulse. A spectral 
filter with TF that can be varied according to the pulse characteristics would be a great 
advantage with respect to the existing pulse shaping techniques from GS lasers. 

In this work we present a pulse shortening technique based on a birefringent, Mach 
Zehnder (MZ) interferometer with variable delay and apply it to the pulses generated from a 
GS Distributed Feedback (DFB) laser and a Vertical Cavity Surface Emitting Laser 
(VCSEL), both emitting in the 1.5 µm region. Pulses with different durations are obtained, 
varying the modulation amplitude in gain switching regime. The interferometer TF is 
modified accordingly to reduce the pulse duration by varying the difference between the two 
interferometer arms. 

This work is organized as follows: in Section 2, the results obtained after numerical 
simulation of the proposed technique are presented, in Section 3, the experimental results are 
described and in Section 4, the main conclusions are drawn, discussing advantages and 
drawbacks of the technique. 

2. Simulation results 

In this section, we present the numerical simulations performed in order to test the viability of 
the proposed technique. We introduce the density rate equations for a single mode 
semiconductor laser and present the temporal and spectral characteristics of pulses generated 
in gain switching regime. The pulses obtained are spectrally filtered with a MZ interferometer 
and simulation results are shown for the case in which the interferometer free spectral range 
matches the pulse spectrum. The observed reduction of the pulse tail and duration is presented 
and discussed. 

Simulations are performed with the following set of density rate equations: 
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where N(t), S(t) and ϕ(t) are the carrier and photon density and the optical phase, respectively. 
The symbol definition of the laser parameters and their values are given in Tab. 1. Values 

have been optimized in order to have good agreement with the experimental results obtained 
with the 1550 nm VCSEL. 

The current I(t) in Eq. (1) is given by the sum of a direct coupled (DC) term, IBIAS, and a 
sinusoid with peak to peak amplitude IAMP and oscillation frequency fGS, I = IBIAS + 
IAMP·sin(2πfGSt). IBIAS and IAMP are chosen in order to generate single peaked pulses at a 
repetition rate of 1 GHz, with similar temporal and spectral characteristics to the pulses 
obtained in experiments with the VCSEL. 

The pulse complex envelope is obtained from S(t) and ϕ(t) taken over one period, as 

( ) ( ) exp( ( ))E t S t j tφ= , where t is the time variable and j is the imaginary unit. The pulse 

instantaneous frequency, i. e. the chirp ν(t), is obtained from the time derivative of the phase 
as ν(t) = (2π)−1d(ϕ(t))/dt. The pulse complex spectrum is calculated as ( ) [ ( )]E f FT E t= , 

where FT is the Fourier Transform operator and f the frequency domain variable. 

Table 1. 1550 nm VCSEL Parameters 

Symbol Definition Value Units 

q Electron charge 1.602·10−19 C 

Vact Active volume 3.12·10−12 cm3 

Γ Confinement factor 0.02 - 

dG/dN Differential gain 1.6·10−16 cm2 

vG Group velocity 9.4·109 cm/s 

N0 Transparency carrier density 1.61·1018 cm−3 

τN Carrier lifetime 1 ns 

τP Photon lifetime 5.5 ps 

ε 
Nonlinear gain compression 

factor 1·10−17 cm3 

β 
Spontaneous emission 

coefficient 1e−5 - 

α Linewidth enhancement factor 5.9 - 
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Fig. 1. Simulations results obtained with fGS = 1 GHz, IBIAS = 1.5 ITH and IAMP = 4 ITH: carrier 
density and chirp temporal profiles, (a), pulse intensity and phase versus time, (b), group delay, 
(c) and pulse spectral intensity and phase, (d). 

Simulations have been performed with fGS = 1 GHz, IBIAS = 1.5 ITH and IAMP = 4 ITH, 
where ITH is the laser threshold current (2 mA in the VCSEL under study). Figure 1 shows the 
simulation results in time, Figs. 1(a) and 1(b), and frequency, Figs. 1(c) and 1(d). The 
expected carrier induced frequency chirp is clearly shown in Fig. 1(a), where the carrier 
density and chirp temporal profiles are plotted. Instantaneous frequency decreases rapidly and 
almost linearly in coincidence of the pulse peak, leading to quasi quadratic temporal and 
spectral phase profiles, shown in Figs. 1(b) and 1(d), respectively. The spectral intensity is 
asymmetric with a peak on the lower frequencies side and a broadened weaker spectrum on 
the higher frequency side, see Fig. 1(d). The spectrum is characterized with a quasi-periodic 
structure which has been reported in previous works on GS lasers both theoretically [11, 12] 
and experimentally [5]. This is understood as the spectral signature of the relaxation 
oscillations at these gain switching conditions. In Fig. 1(c) the group delay, td, calculated as 
the time derivative of the spectral phase, is plotted. 

As shown in Fig. 1(d), the spectrum has an asymmetric intensity profile characterized by a 
peak on the lower frequencies side and a broadened “shoulder” profile on the higher 
frequencies side. These correspond to the falling and rising edges of the pulse, respectively, 
as predicted by theory [11, 12] and confirmed with experiments [13, 14]. According to this, 
spectral filtering can be used for shaping the pulse edges in the temporal domain. 

The interferometer TF is calculated in order to contain the pulse spectrum between two 
adjacent zeros: a maximum of transmission centers the blue side “shoulder” of the pulse 
spectrum and a minimum is placed close to the red frequencies peak. In this way, the pulse 
tail is shortened, the rising edge results stepper and the total Full Width Half Maximum 
(FWHM) duration is reduced. The spectral TF, H(f), of a 50:50 MZ interferometer is 
numerically implemented with H(f) = 0.5(1 + exp(j2πfτ)), where τ is the temporal delay 
difference between the two interferometer arms. In simulations, the pulse spectrum at the 
output of the interferometer is calculated as ( ) ( ) ( )OUTE f E f H f=   and its temporal 

complex envelope, EOUT(t), is obtained after Inverse Fourier Transforming (IFT), as 

( ) ( )[ ]OUT OUTE t IFT E f=  . 
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Fig. 2. Simulation results with fGS = 1 GHz, IBIAS = 1.5 ITH and IAMP = 4 ITH and τ = 12.317 ps. 
(a): normalized pulse spectra at the input (black line) and at the output (red line) of the 
interferometer and interferometer TF (dashed line). (b): normalized intensity and chirp 
temporal profiles of the pulse at the input (black line and dots) and at the output (red line and 
dots) of the interferometer. 

Figures 2(a) and 2(b) show the simulation results obtained with τ = 12.317 ps, which 
corresponds to two zeros of transmission at 1549.6 nm and 1550.25 nm, for the same pulse 
shown in Fig. 1. The pulse spectral profile at the output of the interferometer is symmetrical 
with respect to its center, with a FWHM bandwidth of 0.36 nm and a 1/e2 bandwidth of 0.42 
nm. The spectral power has been calculated as the integral of the spectrum over the entire 
frequency range before and after the interferometer, resulting in a spectral energy reduction of 
about 66%. The temporal intensity profile is modified accordingly to spectral filtering, as 
shown in Fig. 2(b), resulting in a decrease of the pulse FWHM duration from 62 ps to 41 ps. 
This is due to the attenuation of lower frequencies peak in the spectrum, which corresponds to 
a reduction of the pulse tail and the total pulse duration. In Fig. 2(b), the chirp profile of the 
pulse before and after the interferometer is also shown. The total amount of chirp is almost 
the same before and after the interferometer and the temporal distribution of instantaneous 
frequency is changed accordingly to spectral filtering. 

With the aim of investigating the effect of the delay τ on the output pulse shape, 
simulations have been performed with different values of τ, showing that shorter pulses can 
be obtained at expenses of transmitted power. As an example, if the two adjacent zeros of the 
interferometer TF are placed inside the pulse spectrum, thus performing spectral windowing 
of the pulse, the output pulse duration is shortened, the peak intensity is reduced and satellite 
pulses appear before and after the main peak. A detailed study of the pulse shape that can be 
obtained with different delays is out of the intention of this work. Here we focused our 
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attention on the flexibility of the proposed method to be applied to different pulses and 
devices as described in detail in the next section. 

3. Experimental results 

The proposed pulse shaping technique is applied to a VCSEL and a DFB laser, both emitting 
in the 1.5 µm region. The set-up is shown in Fig. 3. 

Pulses generated from the GS laser diode (GS LD) enter a 50:50 2x2 coupler and travel 
two different paths: one is directly connected to a 20 GHz photodiode (PD) and channel 1 
(CH1) of the oscilloscope (Tektronix DSA8200) and the other enters the interferometer 
before being detected with a 45 GHz photodiode (New Focus 1014) at channel 2 (CH 2) of 
the oscilloscope (OSC). In this way, the original and the filtered pulse temporal profiles can 
be measured at the same time. An Optical Spectrum Analyzer (OSA, Ando AQ6315B) with 
6.25 GHz resolution, not shown in figure, has been also used. 

On the interferometer path, light from the GS laser is amplified and its polarization state is 
modified in order to enter the birefringent interferometer with the required linear polarization 
orientation. Light passes through a Polarization Controller (PC), an Erbium Doped Fiber 
Amplifier (EDFA), a linear polarizer (P1) and a half wave plate (HWP) before entering the 
interferometer. 

The PC is adjusted accordingly to the laser in use, as the DFB and the VCSEL have 
different polarization states. In particular, the VCSEL has two orthogonal polarization modes, 
and the suppressed polarization is enhanced by gain switching operation [15]. Thus, the linear 
polarizer P1 is used to select only the dominant polarization of the VCSEL. 

The EDFA plays a double role in our experiments: it improves the signal to noise ratio 
and allows the measurement of the interferometer TF over a 40 nm wavelength range, by 
using its Amplified Spontaneous Emission (ASE) as input signal. 

 

Fig. 3. Experimental set-up. Detailed description is given in the text. 

The birefringent interferometer is composed of a first Polarization Beam Splitter (PBS), a 
motorized translation stage, a second PBS and a linear polarizer (P2). The two PBSs and the 
translation stage are mounted and sealed in a commercially available device (Differential 
Polarization Delay Line, OZ Optics). Linearly polarized light enters into the first PBS with a 
polarization direction oriented at 45° with respect to the PBS axes, which is adjusted by 
rotating the HWP. The parallel and orthogonal components exit the PBS and travel two 
different optical paths (the two interferometer arms) before entering the second PBS. One of 
the two arms is composed of two mirrors (M) mounted on a translation stage which can be 
moved by a computer controlled step motor. This allows varying the delay between the two 
arms with a resolution of 3 fs. The parallel and orthogonal components exit the second PBS 
and interfere at the linear polarizer (P2) oriented at 45° with respect to the PBS axes. 

In order to demonstrate that the proposed technique can be applied to different devices 
and pulses, the same set-up is used to shorten the pulses generated from a GS VCSEL and a 
GS DFB laser emitting around 1550 nm and 1540 nm, respectively. The heat sink temperature 
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of the lasers is controlled with a Thermo Electric Cooler (TEC) at a constant temperature of 
25°C for all the experiments. 

The VCSEL (Raycan) is GS with a DC current IBIAS = 1.6 ITH and a Radio Frequency (RF) 
sinusoidal current with amplitude, PRF, of 14 dBm at 1 GHz repetition rate and pulses with 
FWHM duration of 62 ps are obtained. The central wavelength of the spectrum is 1550.9 nm 
and the spectral bandwidth measured at 1/e2 of the maximum is 0.44 nm, showing good 
agreement with the simulation results presented in Fig. 1. The quasi periodic structure of the 
spectrum in Fig. 1(d) is lost in measurements, due to the limited resolution bandwidth of the 
OSA (6.25 GHz). The delay τ is set to τ = 13.14 ps in order to place two adjacent minima in 
the interferometer TF at 1550.48 nm and 1551.09 nm. The measured interferometer TF, the 
input and output intensity spectra of the pulses are shown in Fig. 4(a). 

 

Fig. 4. Experimental results obtained with the VCSEL, for IBIAS = 1.6 ITH, PRF = 14 dBm at 1 
GHz. (a): pulse spectra at the input (black line) and output (red line) of the interferometer and 
interferometer TF (dashed line). (b): pulse temporal profile at the input (black line) and output 
(red line) of the interferometer. 

The original and filtered pulse intensity temporal profiles are shown in Fig. 4(b), the pulse 
FWHM duration of 63 ps is reduced to 42 ps, thus reaching a 33.3% shorter pulse at the 
interferometer output. To the best of our knowledge, these are the shortest pulse obtained in 
GS 1550 nm VCSEL. The intensity loss due to the spectral filtering of the interferometer are 
obtained by measuring the pulse peak amplitude after polarizer P1 (input pulse) and after P2 
(output pulse) and by removing the EDFA from the set-up (see Fig. 3). The original pulse 
peak amplitude of 1.3 mW is reduced to 0.52 mW at the interferometer output. 

The DFB laser (JDS Uniphase) is GS with IBIAS = 1.1 ITH and PRF = 17 dBm at 1 GHz 
repetition rate, producing pulses with duration of 40 ps. The delay is set to τ = 13.163 ps in 
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order to have two adjacent minima in the interferometer TF at 1539.25 nm and 1539.85 nm. 
Figure 5(a) shows the measured spectral profiles and the interferometer TF and Fig. 5(b) 
shows the input and output pulse spectra. The original pulse FWHM duration of 40 ps is 
shortened to 29 ps, thus reducing the pulse duration of 27.5%. The original pulse peak 
intensity of 3.5 mW is reduced to 1.4 mW at the interferometer output. Due to the shorter 
pulse duration obtained from the GS DFB laser in comparison with the VCSEL, the 45 GHz 
bandwidth photodetector has been used in the experiments performed with the DFB laser, for 
measuring both the pulses at the input and output of the interferometer. 

 

Fig. 5. Experimental results obtained with the DFB laser, for IBIAS = 1.1 ITH, PRF = 17 dBm at 1 
GHz. (a): pulse spectra at the input (black line) and output (red line) of the interferometer and 
interferometer TF (dashed line). (b): pulse temporal profile at the input (black line) and output 
(red line) of the interferometer. 

In order to demonstrate that the proposed technique can be applied to pulses with different 
temporal and spectral characteristics, experiments were performed with different gain 
switching parameters. The bias current and repetition frequency were kept fixed and the 
modulation amplitude PRF was increased, reducing the pulse duration and increasing the chirp 
variation. 

In the experiments performed with the DFB laser, IBIAS = 1.1 ITH (ITH = 13 mA), fGS = 1 
GHz and PRF is varied between 7 dBm and 17 dBm. The results are shown in Fig. 6(a). In Fig. 
6(b), the pulse durations obtained with the GS VCSEL with IBIAS = 1.6 ITH, fGS = 1 GHz and 
varying PRF between 3 dBm and 14 dBm are shown. An increase of PRF results in a wider 
spectral bandwidth, due to the increased instantaneous frequency excursion, and in a red shift 
of the central wavelength of the spectrum, because of the current induced thermal heating of 
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the device. The delay τ is calculated as previously described in Section 2, for each value of 
PRF, and the original pulse duration is reduced in the DFB laser and the VCSEL, see Figs. 6(a) 
and 6(b), respectively. As expected, the shortest pulses are obtained at the highest value of 
PRF. Their temporal and spectral profiles are shown in Fig. 4 and Fig. 5, for the VCSEL and 
the DFB laser, respectively. 

Shorter durations can be obtained by spectral windowing of the pulse spectrum: if two 
adjacent zeros are placed close inside the pulse spectrum, shorter pulses are obtained, at 
expenses of the pulse shape, as satellite pulses appear before and after the main peak. 

 

Fig. 6. Pulse durations obtained with the GS DFB laser (a) and the GS VCSEL (b) as a 
function of PRF, measured at the input (solid dots) and output (hollow circles) of the 
interferometer. For both lasers, fGS = 1GHz and IBIAS = 1.1 ITH and IBIAS = 1.6 ITH, for the DFB 
laser and the VCSEL, respectively. 

4. Conclusions 

We have confirmed, with simulations and experiments, that a Mach Zehnder interferometer 
with variable delay can be used for reducing the duration of pulses obtained with GS single 
mode semiconductor lasers. The variable delay is opportunely set in order to reshape the 
pulse spectrum, shortening the pulse FWHM duration and tail. An advantage of the proposed 
technique is that it can be applied to different devices and pulses, by simply varying the delay 
between the two interferometer arms. 

Experiments have been performed with a GS VCSEL and a GS DFB laser, both emitting 
in the 1.5µm region. The modulation amplitude in gain switching regime has been changed, 
resulting in pulses with different temporal duration, spectral bandwidth and central 
wavelength. For all the generated pulses, a reduction of about the 25-30% of the original 
duration has been obtained, from the DFB laser and the VCSEL, by properly setting the 
variable delay of the interferometer. An intrinsic limitation of the proposed technique is the 
intensity loss due to amplitude spectral filtering, in contrast to only phase filtering 
compression methods, such as pulse compression based on FBG or fiber dispersion. In the 
performed experiments the pulse attenuation at the output of the interferometer has been 
measured, giving a relatively small factor of about 0.4. 
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