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The linear stability analysis of accelerated double ablation fronts is carried out numerically with a

self-consistent approach. Accurate hydrodynamic profiles are taken into account in the theoretical

model by means of a fitting parameters method using 1D simulation results. Numerical dispersion

relation is compared to an analytical sharp boundary model [Yañez et al., Phys. Plasmas 18,

052701 (2011)] showing an excellent agreement for the radiation dominated regime of very steep

ablation fronts, and the stabilization due to smooth profiles. 2D simulations are presented to

validate the numerical self-consistent theory. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4729725]

I. INTRODUCTION

The Rayleigh-Taylor (RT) instability is a major issue in

inertial confinement fusion (ICF) capable to prevent appro-

priate pellet implosions.1 In the direct-drive approach, the

energy deposited by directed laser irradiation ablates off the

external shell of the capsule (ablator) into low-density

expanding plasma. This induces a high pressure around the

ablating target surface (ablation region) that accelerates the

pellet radially inwards. This situation, a low density fluid

pushing and accelerating a higher density one, is the standard

situation for the development of RT instability, and therefore

a potential source of target compression degradation.

The choice of the ablator material that provides the best

performances to achieve successful implosions has been the

object of intense research in recent years. First experiences

were performed using hydrogenic ablators, i.e., cryogenic

deuterium and tritium (DT) with a thin plastic (CH) over-

coat. The use of hydrogenic ablators is motivated by their

relatively low density that permits them to achieve high abla-

tion velocities with low in-flight aspect ratio and, therefore,

exhibit good hydrodynamic stability.2 However, direct-drive

cryogenic implosion experiments on the OMEGA laser facil-

ity have shown that this type of ablators presents a low

threshold for the two-plasmon decay (TPD) instability lead-

ing to elevated levels of hot electron preheat for ignition-

relevant laser intensities of 1015 W/cm2 and 351 nm wave-

length.3 This excessive preheat is another source of compres-

sion degradation and implies not achieving the onset of

ignition requirements on high total area densities and high

hot spot temperatures. If hydrogenic ablators (low-Z mate-

rial) are excluded as viable ablators, other concepts of target

design need to be explored. One of these alternative target

designs involves the use of moderate-Z ablators such as SiO2

or doped plastic. Recently, the performance of this concept

was tested on direct-drive implosion experiments on

OMEGA.4 In that study, the use glass ablators (SiO2) sug-

gested a mitigation of target preheat for ignition-relevant

laser intensities. Thus, moderate-Z materials are less affected

by the TPD instability, and hence they are a potential candi-

date for ICF target ablators. Furthermore, experiments car-

ried out in GEKKO XII laser facility indicated that the use

of brominated plastic foils significantly reduces the growth

of the RT instability compared to undoped plastic targets.5

This improvement in the hydrodynamic stability properties

seems to be explained by the increasing importance of

radiative energy transport in the ablated moderate-Z

material.

For moderate-Z materials, the hydrodynamic structure

of the ablation region formed by the irradiation of high inten-

sity laser beams differs from that of low-Z materials (hydro-

genic ablators). In particular, the role played by the radiative

energy flux ðSrÞ becomes non-negligible for increasing

atomic number material and ended up forming a second abla-

tion front. This structure of two separated ablation fronts,

called double ablation (DA) front, was confirmed in the sim-

ulations carried out in Ref. 5. A qualitative measure of the

relative importance of radiative and material energy trans-

port is given by the dimensionless Boltzmann number

Bo ¼ 5
2

Pv=rT4, where r is the Stefan–Boltzmann constant.

A 1D hydrodynamic radiation theory,6 in agreement with

simulations,7 showed that below a critical value, Bo�, of the

Boltzmann number evaluated at the peak density (y ¼ ya), a

second minimum of the density ðqÞ gradient scale length

ðjdlogq=dyj�1Þappears in the ablation region. This indicates

the formation of a second ablation front at y ¼ ye, around the

same place where radiation and matter temperatures are

equal. Moreover, as the Boltzmann number decreases below

Bo�, a plateau in density/temperature develops between the

two fronts. In this configuration, the energy flux in the region

ya < y < ye is practically radiation dominated. Thus, the

first/inner ablation front is also called, hereafter, radiation

ablation (RA) front. Around the second ablation front, a tran-

sition layer (TL) develops where radiative energy flux

changes its sign. This ablation front is always driven by the

electronic heat flux ðqeÞ. However, the developed TL is as
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well a very strong emitter of radiation. Thus, in this paper,

second/outer ablation front is also called electronic-radiative

ablation (ERA) front. Beyond the ERA front, almost all the

incoming electron heat flux is outwardly radiated

ðqe þ Sr � 0Þ.6
Recently, a first approach to a DA front linear theory of

ablative RT instability has been reported.8 It deals with very

steep ablation fronts that enable the use of the surface dis-

continuity approximation for representing both ablation

fronts. It is already known from the single-ablation front lin-

ear stability theory that a sharp boundary model (SBM)

requires some additional information about the flow structure

behind the ablation front that cannot be introduced self-

consistently. This closure assumption has been usually con-

sidered to be the reason for its failure in reproducing numeri-

cal results. A breakthrough for SBM was given by two major

considerations.9 First, the recognition of the ablation front to

be an isotherm, which is actually a correct boundary condi-

tion of the problem; and second, an adequate introduction of

the characteristic length of the energy deposition mechanism

driving the ablation, which allows to estimate the density

jump by using a simple coronal model (both implicitly con-

tained in the analytical self-consistent models of Refs. 10

and 11). In the case of the DA front sharp boundary model,

the two ablation fronts are assumed to be an isotherm, and

the main properties of the ablative corona are supplied self-

consistently. Indeed, a preceding self-consistent analysis of

an isolated ERA front provides the necessary information of

the near-corona region structure. In particular, expressions of

the perturbed mass and momentum fluxes behind the ERA

front allow the fulfillment of conservation laws. Nonetheless,

any stability analysis with the sharp boundary model lies on

the assumption of a zero-thickness ablation front that sepa-

rates two incompressible fluids at both sides of it. For single

ablation fronts, this implies the study of very steep fronts,

that is to say, the condition kL0 � 1, where L0 is the charac-

teristic length of the ablation front and k the wavenumber of

the perturbation, shall be fulfilled. However, for double abla-

tion fronts, the picture gets complicated and it becomes also

necessary to pay attention to the plateau length, dp, the dis-

tance between the minimum density gradient scale length of

the inner ablation front and the point of transition tempera-

ture. This length represents approximately the separation

between fronts, i.e., the width of the DA front structure.

Actually, in order to analyze the stability of DA fronts with

the sharp boundary model,8 one needs to guarantee that the

assumption of homogeneous fluid in the plateau region is a

proper representation of the physical problem. This results in

a second condition dp=L0 � 1, which applies for both fronts.

Targets with moderate-Z ablators such as glass ones (SiO2)

generally meet both conditions. On the contrary, for materi-

als that radiate less, like doped plastics (CHBr, CHSi, …),

we find plateau lengths of the order of the characteristic

length of the inner ablation front (the outer one is usually

steeper). In these cases, we should turn to self-consistent

models to incorporate more accurate equilibrium profiles in

the stability analysis. Self-consistent stability models start

from studying the temperature and density profiles in the

ablation front region, for next imposing over those profiles

linear perturbations, which are analyzed, numerically12 or

analytically,10,11 in order to complete the stability analysis.

An analytic solution of these models is only tractable for

simple situations, and, in general, we will solve them

numerically. They provide better agreement with simula-

tions, despite the difficulty for extracting physical

interpretations.

The aim of this paper is to extend the DA front linear

theory of ablative RT instability to those cases not consid-

ered in the sharp boundary model. We present hereafter a nu-

merical self-consistent model to compute the growth rate of

perturbations with accurate equilibrium profiles adjusted to

the numerical simulations output. A similar procedure was

carried out by Betti et al. but for single-ablation fronts.13

Thus, this paper is organized as follows. In Sec. II, we

review the 1D hydrodynamic radiation theory and present a

method to match analytical equilibrium profiles to 1D simu-

lations ones by parameters adjustment. We study in Sec. III,

the associated perturbed flow and describe the self-consistent

procedure for the dispersion relation calculation. Moreover,

results are compared with the existing sharp boundary model

and also with new 2D numerical simulations performed with

the CHIC code.14 Finally, Sec. IV is devoted to conclusions

and perspectives of further work.

II. BASE FLOW

In the present model, we use a simplification of an exist-

ing 1D hydrodynamic radiation theory6 as the background

flow. This model is suitable to describe a thin layer encom-

passing the ablation region, where the flow is subsonic.

Thus, within this layer, the variations of the mean pressure

respect to the spatial coordinate are negligible, leading to a

uniform pressure that will be called hereafter P0, the ablation

pressure. Besides, it let us neglect the kinetic energy com-

pared to the enthalpy term in the energy balance. We have

then a subsonic and steady ablation region resulting from an

incoming heat flow, an ablated mass flow, and an uniform

pressure P0. Two energy transport mechanisms are taken

into account: the electronic heat flux and radiation. In order

to perform the simplification in the base flow model that

allows us to deal with the stability analysis, two asymptotic

limits in the order of magnitude of the photon mean free path

(lmf p) are assumed leading to two different radiative regimes

of the matter:

• Optically thin regime. This regime covers the outer abla-

tion front and the close corona region. It is considered that

the mean opacity of the plasma (K � l�1
mf p) is very small.

This implies a gradient of the radiation energy density

practically null, and therefore the radiation temperature is

constant and equal to a transition temperature Tt. Thus, the

radiation term in the energy conservation equation corre-

sponds to a radiative cooling law.
• Optically thick regime. This regime covers the inner abla-

tion front and the plateau region and it is characterized by

a very large mean opacity of the plasma. In this case, a fi-

nite divergence of the radiation energy flux implies that

radiation and matter are almost in equilibrium, and there-

fore electron temperature equals the radiation temperature,
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Te ¼ Trad ¼ T. This results in a radiation energy flux

behaving as a thermal conduction heat flow (~Sr � rT).

This simplification lays on the existence of some charac-

teristic transition temperature of the material, Tt, where the

dependence of the isobaric mean opacity with the tempera-

ture changes abruptly.6

General hydrodynamic equations in the isobaric approx-

imation are

@tqþr � ðq~vÞ ¼ 0; q@t~v þ qð~v � rÞ~v ¼ �rpþ q~g;

r � 5

2
P0~v � jrT þ ~Sr

� �
¼ 0;

(
~Sr ¼ �jRrT for T < Tt;

r � ~Sr ¼ 4rKPðT4 � T4
t Þ for T 	 Tt;

(1)

where jR ¼ �jRT� and j ¼ �jT5=2are the Rosseland and Spit-

zer conductivities. Equations (1) involve two different-

spectral average absorption coefficients, the Planck mean

opacity KP � l�1
P and the Rosseland mean opacity

KR ¼ 16rT3=3jR � l�1
R . In the isobaric assumption, both

opacities will only depend on the matter temperature. More-

over, the Planck mean opacity can be described as KP ¼
�KPT�11=2 for a fully ionized plasma15 and, it is convenient to

note that the frame of reference is fixed to the ablation region

(to both ablation fronts since the plateau length is considered

a constant). Therefore, the unperturbed velocity~v ¼ v0~ey cor-

responds to the ablation velocity of the expanding plasma.

Stationary one-dimensional profiles come from the inte-

gration of the equations

v0=vt ¼ qt=q0 ¼ h0;�
h0 � ðh5=2

0 þ Dh�0Þh
0
0

�0
¼ 0 for h0 < 1;

ðh0 � h5=2
0 h

0
0Þ
0
¼ �bth

�11=2
0 ðh4

0 � 1Þ for h0 	 1;

(2)

with the boundary condition

h
0
0 ¼

h0 � rD

r
5=2
D þ Dr�D

when h0 ! rD; (3)

where h0 ¼ T0=Tt is the dimensionless temperature, rD is the

ratio between density at the transition temperature and the

peak density (rD 
 qt=qa < 1), � is the power index of

the Rosseland-like radiative conductivity, D ¼ �jRt=�jt, bt ¼
16ðrT4

t KPtÞðjtTtÞ=ð5P0vtÞ2 and the prime denotes derivative

respect to the spatial coordinate g ¼ y=LSt normalized with

the Spitzer length at the transition temperature,

LSt 
 2jtTt=ð5PtvtÞ.
The system of Eqs. (2) provides a wide range of solu-

tions. This variety of flow types can be explained by the

presence of three different characteristic lengths in the prob-

lem.6 These characteristic lengths are associated with the dif-

ferent energy mechanisms that are considered. In particular,

two of them related to the radiation, these are the Rosseland

and Planck photon mean free paths, and the last one, the

Spitzer length LS, related to the electron thermal diffusion. In

the dimensionless system of Eqs. (2), the characterization of

the flow is reduced to four parameters: rD, �, D, and bt. It is

then useful to see the parameters D and bt as the local values,

at the transition temperature, of the ratios between the char-

acteristic lengths. That is,

D ¼ 1

Bo

lR
LS

���
t
; bt ¼

1

Bo

LS

lP

���
t
: (4)

A. Matching theoretical base flow profiles to
numerical simulation ones

Hydrodynamic stability analysis is rather sensitive to the

shape of the density/temperature profiles. Actually, it is nec-

essary to ensure that the linearization is performed around

the right equilibrium profiles, that is to say, perturbed quanti-

ties shall be imposed over a base flow that can be found in

the nature. In the model described above, there are four free

parameters (rD, �, D, and bt) but not every combination of

them is allowed. We will adjust these parameters in order to

get a trustworthy background flow. These realistic equilib-

rium profiles are assumed to come from one-dimensional

simulations. For this purpose, we use a Lagrangian hydrody-

namic code, CHIC,14 developed at CELIA. This code

includes the ion and electron heat conduction, the thermal

coupling of electrons and ions and a multi-group diffusion

model for the radiation transport with LTE opacities. Among

different options, the following ones were retained to per-

form the simulations: (i) flux-limited Spitzer electron heat

conduction; (ii) SESAME and QEOS equation of state; and

(iii) the Thomas-Fermi ionization model.

Parameters that describe the inner ablation front (� and

D) are not independent, but, instead, the plateau length (sim-

ulation output) imposes a constraint between them. In sharp

boundary models, the plateau length is unambiguously

defined as the distance between the two surface discontinu-

ities. However, we have several possibilities when ablation

fronts are accounted with a characteristic length. So, we

define the plateau length (dP) as the distance between the

minimum of the density gradient scale length at the RA front

and the transition temperature that is estimated as the point

where radiation and matter temperatures are equal. We can

relate this distance with the parameters � and D in the fol-

lowing way. Under the assumption of radiation-dominated

flow at the peak density (qa), we can integrate once the

energy equation of the inner front and arrive to

h0 � Dh�0h
0
0 ’ rD. It is possible to determine straightaway

the point of the profile, h�0, where the characteristic length

LRA
min takes place by setting ðh0=h

0
0Þ
0
¼ 0. This leads to

h�0 ¼ rDð� þ 1Þ=�. Then, integrating for a second time, the

energy equation between h0 ¼ h�0 and h0 ¼ 1, i.e., all along
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the plateau region, enables us to relate the plateau length to

the parameter D. This relation reads

Dð�; rDÞ ¼
dP

LSt
u�1; (5)

where u is the definite integral

ð1

h�0

h�0ðh0 � rDÞ�1dh0. Simple

expressions can be found depending on asymptotic values of

�. Actually, in the case where � � 1, we arrive to D ’
�ð1� rDÞdP=LSt and for � � 1, D ’ ln

�
�ð1� rDÞ=rD

�
dP

=LSt. In this way, fitting procedure is reduced to determining

one parameter for each ablation front (� and bt for the inner

and outer one, respectively). Two methods are described here-

after: an error minimization method and a gradient method.

In the error minimization method, similarly to the Betti

et al. procedure for single ablation fronts,13 we define an

integrated quadratic error function that, for the inner ablation

fronts, reads

errð�Þ ¼
ðgt

gmax

�
�qsðgÞ � �q0ðgÞ

�2

dg; (6)

where �qsðgÞ is the unperturbed density profile obtained with

the simulations (normalized with the maximum density) and

�q0ðgÞ ¼ 1=h0ðgÞ is dimensionless density profile given by

Eqs. (2). Note that the domain of integration is from the peak

density to the transition temperature. The minimization of

errð�Þ is obtained by setting to zero the derivative respect to �,

derrð�Þ
d�

¼ 0: (7)

This procedure can be applied analogously to the outer abla-

tion front for the determination of bt, apart from the fitting

region that goes from the transition temperature to an arbi-

trary minimum density point (e.g., �q0ðgminÞ ¼ 0:05).

The gradient method does not need the complete simu-

lated profiles, but two characteristic lengths computed from

the 1D simulations output. They are the minimum gradient

scale length (jdlogq=dyj�1
) of the ablation front, LRA

min and

LERA
min for the inner and outer front, respectively. This method,

although less accurate than the first one, gives a good esti-

mate of the parameters for smooth ablation fronts. It pro-

vides simple algebraic expressions by relating the

parameters to the characteristic lengths. First expression is

given by introducing the value of h�0 in the definition of LRA
min.

It reads

LRA
min=LSt ¼ D

ð� þ 1Þ�þ1

��
r�D: (8)

For the second expression, we need to turn to a change of

variable. Re-writing the optically thin energy equation with

the temperature as the independent variable reads

zð1� 5h3=2
0 z=2� h5=2

0 dz=dh0Þ ’ �bth
�3=2
0 , where z 
 h

0
0 is a

h0-function. Searching the minimum of the density gradient

scale length (LERA 
 h0=z) implies z
0 ¼ z=h0 and, therefore,

the characteristic length can be written as

LERA
min =LSt ¼

7ðh��0 Þ
5=2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 14bt

p ’ 4:68b�1=2
t ; (9)

where h��0 is the temperature at the point of minimum density

gradient scale length in the outer ablation front

(h��0 � ð5=2Þ2=5
).

Equations (5)–(9) give us the set of parameters that pro-

vide realistic hydrodynamic profiles. Table I presents some

results of 1D CHIC simulations with the corresponding pa-

rameters calculated with the error minimization method. We

considered a 25 lm thick ablator in planar geometry that is

irradiated by a 3 ns constant laser pulse of 100 TW/cm2. Ini-

tial density for the doped plastic layers is obtained from the

formula qD ¼ qU

X
i
AiFi=ð

X
i
AiFiÞU, where qD and qU are

the density of the doped and undoped material, respectively,

Ai is the mass number and Fi is the atom fraction for each

element.16 In our case that expression gets reduced to

qD ¼ qCHðACHFCH þ AdopFdopÞ=ðACHFCHÞ ¼ qCH=ð1� xÞ,
where x is the mass fraction of the dopant. A practically con-

stant acceleration is observed from t � 1:5 ns, and values of

the analytical parameters are given for the hydro-profiles at

t � 1:8 ns.

A relevant feature of the density/temperature profiles is

given by the ratio LRA
min=dp (see Table II). We can classify the

different ablator materials, for which the DA front appear,

into two groups (Refs. 6 and 7): weakly radiant fronts where

the ratio is of the order of unity, and strongly radiant ones

where LRA
min=dp � 1. The glass ablators belong to the latter

case. In the acceleration stage, the hydrodynamic profiles

show two steep ablation fronts clearly separated by a plateau

region. Sharp boundary models are then suitable to analyze

the stability of the fluid structure. On the contrary, doped

plastic ablators present profiles where the plateau region is

not distinguished from the inner ablation front (their charac-

teristic length is of the same order). In this case, a density/

temperature profile composed of layers of homogeneous

flows separated by discontinuity surfaces is no longer a

proper representation of the problem, and sharp boundary

TABLE I. Parameters of the 1D analytical model that reproduces simulated

hydro-profiles at time t� 1.8 ns for different ablator materials. Parameters

are computed with the error minimization method.

CHSi9% CHSi5.5% CHBr4.2% CHBr3.3% CHBr2% SiO2

hrDi 0.25 0.24 0.27 0.25 0.24 0.13

h�i 1.33 1.29 1.12 1.08 1.02 4.3

hD=LSti 3.9 3.7 3.0 2.55 2.23 37.1

hbti 4.5 3.2 12.2 9.7 6.3 18.0

TABLE II. Initial density, mean minimum density gradient scale length of

the radiative, and the electron-radiative ablation fronts in the interval

1.5 ns< t< 2.5 ns for different ablator materials.

qi(g/cc) hrDi hLRA
min=LSti hLERA

min =LSti hdp=LSti

CHSi9% 1.50 0.27 4.83 1.94 5.24

CHBr4.2% 1.62 0.21 4.70 1.24 4.56

SiO2 2.2 0.12 3.50 1.04 13.23

062705-4 Yañez, Sanz, and Olazabal-Loumé Phys. Plasmas 19, 062705 (2012)



models are expected to fail in giving an accurate approxima-

tion of the Rayleigh-Taylor growth rate. This supports the

necessity of having a self-consistent model for stability stud-

ies. In Figs. 1 and 2, we show comparisons between profiles

computed from the theory and those of the simulations. In

both cases, we use doped plastic as the ablator material (one

with the bromine dopant and the other with the silicon one),

and a remarkable agreement is found.

We focus now our attention on the value of the parame-

ter �. The Rosseland thermal conductivity is defined as

jR ¼ 16rT3=3KR ¼ �jRT� . The dependence on the tempera-

ture comes from two factors: explicitly from the cubic factor

and implicitly from the Rosseland mean opacity. For an ion-

ized material, opacity is a decreasing function of the temper-

ature, that is to say, it becomes more transparent as the

temperature increases. A simple model describing the opac-

ity was proposed in Ref. 6 and consists of a piecewise con-

tinuous power law of temperature in the way

KR ¼
(

�KRðT=TaÞ�q1 ; T < Tt;

�KRðTt=TaÞ�q1ðT=TtÞ�q2 ; T 	 Tt;
(10)

where �KR is the Rosseland mean opacity at the peak density

qa and temperature Ta, and 0 < q1 < q2. Thus, we expect to

have � > 3, which is not the case. A possible explanation of

this divergence between the one-dimensional radiation

hydrodynamic model and results derived from the simula-

tions can be noticed in Fig. 3. We can see that immediately

beyond the transition temperature (approximately the point

where the matter and radiation temperatures are equal), the

matter becomes transparent as a consequence of the sharp

increase of the electron temperature. This yields to a radia-

tion temperature that remains constant, which is a main prop-

erty of the optically thin regime. On the contrary, the

assumption of an optically thick regime for T < Tt is not

fully satisfied, since radiation and electron temperatures do

not stay the same. Nevertheless, the adjustment of parame-

ters from simulations output let us partially recover some of

the missing physics regarding the radiative ablation front,

included in the low values of the power index �.

Another source of discrepancy between the one-

dimensional theory and the simulations comes from the

assumption of a diffusion grey model for the radiation

energy flux Sr.
17 That model assumes a Planck’s spectrum

Utð~r ; tÞ � UPtðTradð~r; tÞÞ for the radiation field, which ena-

bles to calculate the mean opacity as spectral averages of the

absorption coefficient j. In particular, the Planck mean opac-

ity reads

KPUPðTÞ 
 Kp4rT4=c ¼
ð1

0

jtUPtðTÞdt; (11)

and the Rosseland mean opacity

K�1
R dUP=dT 
 K�1

R 16rT3=c ¼
ð1

0

j�1
t ðdUPt=dTÞdt; (12)

where t is the frequency and jt the absorption coefficient

per frequency. However, it is known that whereas the spectral

radiant energy density follows approximately a Planckian dis-

tribution in a layer around the outer ablation front, it does not

close to the peak density.6 This causes an overestimate of the

radiation heating (/ r � ~Sr) in a layer around the inner abla-

tion front, and consequently the analytical model fails in an

accurate representation of the hydrodynamic profiles.

As commented above, a similar procedure for determin-

ing accurate hydro-profiles was already carried out in Ref. 13

FIG. 1. Dimensionless density profile taken from CHIC simulations (solid

line) with ablator material CHSi9% at time t ’ 1:8 ns, compared to the den-

sity profile computed from the model (dashed line) with the parameters

rD ¼ 0:25, bt ¼ 4:5, � ¼ 1:33, and D=LSt ¼ 3:9.

FIG. 2. Dimensionless density profile taken from CHIC simulations (solid

line) with ablator material CHBr4.2% at time t ’ 1:8 ns, compared to the den-

sity profile computed from the model (dashed model) with the parameters

rD ¼ 0:27, bt ¼ 12:2, � ¼ 1:12, and D=LSt ¼ 3.

FIG. 3. Dimensionless profiles of density, electron temperature, and radia-

tion temperature taken from CHIC simulations with ablator material

CHBr4.2% at time t¼ 2.0 ns.
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in the case of single ablation fronts. There, an error minimi-

zation method led to obtain the effective power index for

thermal conduction � and the ablation front thickness by fit-

ting the analytic density profile to the 1D simulation results.

Note that the power index � used in Ref. 13 refers to a gen-

eral thermal conduction (including electron and radiation

effects) and not to a specific Rosseland-like radiative con-

duction as treated in the DA front theory. In the case of solid

DT targets steep profiles were found with � � 2 (close to the

Spitzer value) that indicate a very low level of radiation

transport for this material. However, the use of a higher Z

target material like CH gave smoother density profiles and a

lower value of the power index (� � 0:7). This shows that

radiation transport becomes non-negligible in the case of

plastic ablators, although the single temperature model still

holds. However, this model breaks down for moderate-Z

ablators with the emergence of the second ablation front,

making necessary to turn to a DA front theory. The influence

of the material atomic number in the hydro-profiles is

intrinsically connected to the relative importance of radiation

transport in the ablation region, and schematically the evolu-

tion with Z of the density profiles passes from one steep abla-

tion front (with very low-Z ablators, e.g., DT) to a smooth

one (low-Z ablators, e.g., CH) with increasing importance of

radiation field. Next, this smooth front breaks into two (low/

moderate-Z ablators, e.g., doped CH) due to the absorption

of the radiation energy and electron heat fluxes at two differ-

ent locations (the two ablation fronts). Finally, both ablation

fronts get steeper and a plateau density region develops

between them (moderate-Z ablators, such as SiO2).

III. PERTURBED FLOW

In the frame of a self-consistent analysis, the perturbed

problem is governed by the same equations used in the study

of the background flow, that is to say, in our case, the mass,

momentum, and energy conservation around the ablation

region (1). The stability analysis is restricted to a two-

dimensional domain for simplification, so we only consider

flow perturbations along the x and y spatial coordinates. We

look then for solutions of perturbed quantities in the wave-

like form expðctþ ikxÞ. Any hydrodynamic quantity is

expanded to the first order perturbation, for instance

~vðx; y; tÞ ¼
�
v1xðyÞectþikx; v0ðyÞ þ v1yðyÞectþikx

	
, and the set

of Eqs. (1) is linearized around the zero order flow. This

leads to an eigenvalue problem that can be expressed in a

matrix form as

~V
0 ¼
(

ARA~V for rD < h0 < 1;
AERA~V for h0 	 1;

(13)

where ~V is the vector of the first order hydrodynamic quanti-

ties normalized by their base flow value at the transition tem-

perature (Tt, qt, vt,…), and the fifth order square matrix, ARA

and AERA (for the inner and outer ablation front regions,

respectively) depend on the base flow (h0, rD, bt, �, and D).

The prime denotes a derivative respect to the independent

variable h0. Here, the Froude number, Frt, is defined as

Frt ¼ v2
t =gLSt, and k̂ ¼ kLSt and ĉ ¼ cLStvt are the normal-

ized wavenumber and growth rate, respectively. Notice that

normalized perturbed velocities are denoted by u1x, u1y, the

temperature by h1 and the perturbed pressure by p1. Detailed

expressions can be found in Appendix A. There is one

change of variables8 that is convenient to make prior to the

computation in order to avoid the appearance of null eigen-

vectors in the modal analysis and also to increase our physi-

cal insight in the problem. Thus, perturbed quantities read

G1 ¼ h0F1 ¼ u1y � h1; W1 ¼ ik̂u1x;

Q1 ¼ 2u1y þ p1 � h1;

TRA
1 ¼

�
Dh�0 þ h5=2

0

	
h1; TERA

1 ¼ h5=2
0 h1;

HRA
1 ¼

��
Dh�0 þ h5=2

0

	
h1

�0
� u1y;

HERA
1 ¼ ðh5=2

0 h1Þ
0
� u1y;

(14)

which leaves the unknown vector as ~Y
¼ ðG1;W1;Q1; T1;H1Þ, and the matrices of the fifth order

system of differential equations are renamed to MRA and

MERA. Thus, the eigenvalue problem reads

~Y
0

¼
(

MRA~Y for rD < h0 < 1;
MERA~Y for h0 	 1;

(15)

MRA ¼

h
0
0

h0

�1 0
ĉ

h0Rðh0Þ
0

�2k̂
2 � ĉ

h0

k̂
2 � k̂

2

Rðh0Þ
0

� ĉ
h0

�1 0 � Fr�1
t

h2
0Rðh0Þ

0

1 0 0
1

Rðh0Þ
1

0 1 0 k̂
2

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; (16)

MERA ¼

h
0
0

h0

�1 0
ĉ

h7=2
0

0

�2k̂
2 � ĉ

h0

k̂
2 � k̂

2

h5=2
0

0

� ĉ
h0

�1 0 �Fr�1
t

h9=2
0

0

1 0 0
1

h5=2
0

1

0 1 0 k̂
2 � btð3h4

0 � 11Þ
2h9

0

0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

(17)

where Rðh0Þ ¼ Dh�0 þ h5=2
0 . It is worth noting the physical

meaning of F1, Q1, and H1 that represent the local flux of

mass, momentum, and energy, respectively. In the above

system of equations, for a given base flow and a given accel-

eration of the foil, the only remaining free parameters are the

perturbation wavenumber and its growth in time, i.e., the dis-

persion relation. The statement of the linear problem is com-

pleted with the boundary conditions that provide the

necessary information to close the perturbed problem, and

therefore to determine the dispersion relation.
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Boundary conditions impose constraints on the perturba-

tions; in particular, we can state that unstable disturbances in

the flow shall be localized within the double ablation front

region. In other words, perturbation shall vanish down- and

upstream. This is equivalent to set Yi ! 0 in both limits

h0 ! rD (or g! �1, peak density) and h0 !1 (g!1,

near-corona region). In that way, the boundary condition at

the peak density determines the starting point of the integra-

tion (a linearly stable mode), whereas the boundary condition

at near-corona region leads to the dispersion relation

ĉ ¼ ĉðk̂; base flow; accelerationÞ. Mathematically, we need

to carry out a modal analysis of the matrices MRA=ERA to be

able to discriminate stable and unstable eigenmodes to prop-

erly state the boundary conditions.

At the peak density (qa ¼ 1=rD), we perform a matrix

expansion around the singular point ðh0 � rDÞin order to

determine the five independent eigenmodes of MRA.8 Notice

that the asymptotic behavior of the temperature is

h0 ’ rD þ c0eag, where c0 is an arbitrary constant depending

on the origin of coordinates and a ¼ ðr5=2
D þ Dr�DÞ

�1 > 0.

Therefore, the leading order of the eigenmodes goes like

ðh0 � rDÞk � ekag, where k is the associated eigenvalue. In

order to fulfill the boundary condition, we are only interested

in having bounded modes developing at the peak density,

what, in this case, means a positive eigenvalue (since

g! �1). In particular, there are two of them

kleft
1 ¼ k̂=a; kleft

2 ¼
�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k̂

2
=a2 þ 4ĉ=ðarDÞ

q �
=2;

(18)

and we discard the three unbounded eigenmodes.

The linearity of the problem allows us to write the start-

ing point of the integration as a linear combination of the

two stable modes in the way

~Y
lef t ¼ a1ðh0 � rDÞk

lef t
1 ~Y

lef t

1 þ a2ðh0 � rDÞk
lef t
2 ~Y

lef t

2 (19)

where a1 and a2 are two undefined parameters and ~Y
lef t

1 and
~Y

lef t

2 are the eigenmodes vectors for kleft
1 and kleft

2 ,

respectively.

Analogously, at the near-corona region, the boundary

condition is composed of a linear combination of three

bounded eigenmodes (k < 0). However, in this case, the

computation procedure (described in Sec. III A) is only con-

cerned with the most unbounded eigenmode, so we focus on

this mode that, at leading order and for bt � 1, reads

YrightðxÞ / x2=5exp
�

k̂x� 2ð5=2Þ1=5b�2=5
t x1=5

�
; (20)

where x 
 2h5=2
0 =ð5b1=2

t Þ.
A more general expression of the modal analysis can be

found in Appendix B.

A. Growth rate calculation

The method used in the computation of the dispersion

relation is similar to the one used by Kull in electronic abla-

tion fronts.12 First, we need to define the base flow with the

set of parameters (rD, bt, �, and D), the acceleration at which

the foil is subjected to, and the wavelength of the perturba-

tion. Next, we integrate the matrix system (15) forwards

from the boundary condition ~Y
lef t

to a distance of several

perturbation wavelengths. The solution generally explodes,

since the unbounded modes at the near-corona region de-

velop; this means that the boundary condition is not satisfied

in that region. The way to impose vanishing perturbations

away from the ablation fronts is the following: we normalize

the vector solution by the most unbounded mode (20). Thus,

the solution will tend to a constant vector ~C when h0 � 1.

Actually, Yright~C represents the exploding mode that shall be

null to ensure a bounded solution. Linearity of the problem

enables us to express each component of the vector ~C as a

linear combination of a1 and a2 (the free parameters of the

boundary condition at the peak density (19)), let it be,
~C ¼ ~f ða1; a2Þ ¼ a1

~f ð1; 0Þ þ a2
~f ð0; 1Þ. In order to have a

non-trivial solution, we select any two components i, j of the

vector solution and force the following determinant to be

zero: ����� fið1; 0Þ fjð1; 0Þ
fið0; 1Þ fjð0; 1Þ

����� ¼ 0; (21)

which yields the growth rate of the perturbation.

B. Influence of the parameter m on the stability

In this paragraph, we review the influence of the param-

eter � on the stability of a single ablation front driven by

thermal conduction.13 As it was explained above, the adjust-

ment of the parameters in order to reproduce realistic flow

profiles relaxes the constraint of � > 3 that was imposed, in

the case of radiation-dominated ablation fronts, by the 1D

radiation-hydrodynamic theory. This allows us to have a

wider range of � values to consider. In the results presented

within this paper (Table I), we find � > 1 in all the ablator

materials and laser power explored. However, an analogous

study13 performed with plastic (CH) and beryllium (Be) tar-

gets revealed values of the power index less than the unity.

We use the mathematical procedure described in the

previous paragraph with the boundary conditions and equa-

tions detailed in Appendix C. Stability analysis results for a

single ablation front are summarized in Fig. 4 with the repre-

sentation of the neutral curve, i.e., the cut-off wavenumber

FIG. 4. Neutral curve of a single ablation front depending on the Froude

number and the conductivity power index �.
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in function of the governing parameters � and Fr. The neutral

curve illustrates the border between an unstable problem (the

region contained within the curve) and a stable one. Depend-

ing on the order of magnitude of the Froude number, two as-

ymptotic behaviors are found:

• For Fr� 1, the role of an increasing value of � is weakly

stabilizing (the cutoff wavenumber gets reduced). Numeri-

cal results in this limit fit pretty well with the analytic

expression given by Piriz et al.9

jc ¼ hð�ÞFr2=3; hð�Þ � 1:5
ð2� þ 2Þð2�þ2Þ=3

ð2� þ 3Þð2�þ3Þ=3
; (22)

where jc ¼ k̂cFr and the variables are normalized with the

characteristic length and the velocity evaluated at the peak

density.
• For Fr� 1, the tendency is just the opposite and the cut-

off wavenumber increases for higher values of �. In this

case, the range of unstable perturbation wavelengths

widens for higher �. A good agreement is found with the

analytic theory of Betti et al. that predicts a cut-off

wavenumber.13

jc¼lð�ÞFr�1=ð��1Þ; lð�Þ� ð2=�Þ1=�

Cð1þ1=�Þþ
0:12

�2

 !�=ð��1Þ

;

(23)

where CðxÞ is the gamma function. Note that in this limit,

the asymptotic behavior of k̂c is a power law with an expo-

nent dependent of �, which strongly destabilizes steep

hydrodynamic profiles. This exponent dependence breaks

up for � ¼ 1 (the analytic theory was built up with the

constraint of values � > 1). Nevertheless, numerically it is

observed in this case a vertical asymptote in the neutral

curve at Fr � 2. This means that smooth hydrodynamic

profiles with � ’ 1 subjected to large Froude number

(Fr > 2) are stabilized for all wavelengths.13

In the region where Fr � Oð1Þ, it is not possible to es-

tablish a general behavior, since neutral curves get crossed

(see Fig. 4).

It is also worthy to notice a peculiar feature observed in

neutral curves for � < 1. In this case, there exists a cut-off
Froude number from which the ablation front is stable, in

other words, a sufficiently small acceleration will not lead to

perturbation growth. From this point of the plot, two differ-

ent branches of the neutral curve develop as the Froude num-

ber decreases. This yields the appearance of two different

cut-off wavenumbers, staying away from the classical pic-

ture of the ablative RT instability. Actually, instead of fol-

lowing the trend of unstable growth rate c ¼
ffiffiffiffiffi
kg
p

for very

small wavenumbers, there is a stable region. Thus, dispersion

relation is composed of three regions: two stable regions (for

both small and large wavenumbers) and an intermediate

unstable region which is delimited by two cut-off wavenum-

bers. An example of this behavior can be seen in Fig. 5,

where we show the case Fr ¼ 0:55 for two different values

of thermal conductivity power index. The existence of the

cut-off for long-wavelength modes is explained by an

enhanced restoring force due to the hydrodynamic pressure

(rocket effect) for those modes. In a very schematic approach

with kL0 � 1 (L0 ¼characteristic length of the ablation

front) and following Ref. 9, the leading terms of the relation

dispersion for single ablation front are

c ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
�

g� ð�=2Þ1=�ðkL0Þ1�1=�
v2

a=L0

�r
� 2kva ; (24)

where va is the ablation velocity. We observe two kind of

stabilizing mechanisms. The term inside the square root and

proportional to v2
a (rocket effect) is some kind of overpres-

sure or enhancement of the dynamic pressure occurring in

the crests of the corrugated ablation front (an under pressure

is occurring in the valleys). This self-regulation of the abla-

tion pressure when the front is perturbed is related to the var-

iation of the local temperature gradient. The second

stabilization mechanism (so-called convective stabilization),

the term proportional to kva, has origin in the effects of fire

polishing, mass convection, and vorticity (see Ref. 9).

The dependence of the rocket effect term on the wave-

number depends on the nature of the thermal conduction

mechanism. For a general thermal conductivity (j � T�), the

rocket effect term is proportional to k1�1=� .10,11,13 If � > 1,

the rocket effect can lead to complete stability for suffi-

ciently large perturbation wave numbers. But if � < 1, the

rocket effect affects the small perturbation wavenumbers and

can completely suppress the associated unstable modes,

which explains the smallest cut-off wavenumber that we

found in Figs. 4 and 5.

C. Comparisons with the sharp boundary model and
2D CHIC simulations

As a first test of the numerical self-consistent theory, we

compare the numerical dispersion relation with the analytic

formula for DA fronts.8 The latter has been developed from

the surface discontinuity assumption, so we expect an agree-

ment of the results as the characteristic scale lengths of both

fronts get shorter. We also use in the comparison a simplified

and much more compact dispersion relation formula derived

from the analytic theory. Derivation of this easy-to-use for-

mula is explained in Appendix D, and the basis of the

FIG. 5. Dispersion relation for two different values of the conductivity

power index � and Fr ¼ 0:55. Dashed line represents the classical RT

growth rate c ¼
ffiffiffiffiffi
kg
p

.
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simplification lies in a matching formula between two as-

ymptotic wavelength limits: much shorter and larger than the

plateau length.

Fig. 6 shows such a comparison, where we apply the nu-

merical method to four cases varying the characteristic scale

length of the RA front. In order to make comparable the dif-

ferent background flows, we keep constant the plateau length

(in this case dP � 12) and the density ratio, rD ¼ 0:25. Thus,

LRA
min is controlled by the pair of parameters � and D, and we

pass from a case (a) where the RA front can be assimilated

to a surface discontinuity (LRA
min=LSt ’ 2 � 10�3 and

LRA
min=dP ’ 2 � 10�4) to a case (d) where the RA front is

smooth and completely covers the plateau region

(LRA
min=LSt ’ 13 and LRA

min=dP ’ 1). Intermediate cases are (b)

and (c) with LRA
min=LSt ’ 0:6 and LRA

min=LSt ’ 5, respectively.

The finite characteristic length of the ablation fronts shall not

influence perturbation modes of very large wavelength

(kLRA
min � 1), since these modes cannot distinguish the details

of the hydro-profiles. Thus, as it is expected, sharp boundary

model results are closer to those of case (a). In particular, im-

portant target design parameters such as maximum growth

rate and the associated wavelength are in excellent agree-

ment, and the sharp boundary model can be used as an accu-

rate estimate. Moreover, the simplified dispersion formula

also provides a remarkable agreement. The situation changes

when the density is smoothly varying in the RA front and the

perturbation wavelength is of the order of the minimum gra-

dient scale length (kLRA
min � Oð1Þ). In this case, perturbed

modes are affected by the profile gradient that yields to the

mitigation of the unstable term for short wavelengths. In the

classical theory, this is captured by the asymptotic formula

ccl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ATkg

1þ ATkLmin

r
; (25)

where AT ¼ ðqh � qlÞ=ðqh þ qlÞ is the Atwood number, and

qh and ql are the density of the heavy and the light fluid,

respectively. An analogous mitigation for short wavelength

modes is observed in the ablation region stability of Fig. 6,

where the cut-off wavenumber decreases as the characteristic

length of the RA front increases. Furthermore, maximum

growth rate is reduced by a factor of 2 from the configuration

of case (a) to the one of case (d).

A peculiar feature of the dispersion relation given by the

SBM is the appearance of a double-hump shape for short pla-

teau configurations.8 In Fig. 7, we show that such a disper-

sion relation shape is also found in the self-consistent

analysis. Before stating the physical mechanism that leads to

this double-hump shape, we summarize the results obtained

from the analysis of a single electronic-radiative ablation

front when it is radiative enough (bt well above unity). The

expression at the leading order of the growth rate for a single

ERA front reads8

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
�

g� q0 ðkLstÞ3=5b7=10
t v2

t =LSt

�r
� f0

ffiffiffiffi
bt

p
kvt; (26)

where f0 ’ 1:7 and q0 ’ 3:65. As in a single ablation front

driven by thermal conduction (see Sec. III B), the ablative

Rayleigh-Taylor instability in ERA fronts is mitigated by the

rocket effect and the so-called convective stabilization. The

rocket effect, which is usually the dominant one, is propor-

tional to k3=5, since a pure electron thermal conduction is

assumed (� ¼ 5=2). Regarding the convective stabilization

term, it is proportional to the wavenumber, affecting, then, to

the large perturbation wavenumbers. It is worth noting the

stabilizing effect of radiation, which is consistent with the

increased perturbed mass rate (/
ffiffiffiffi
bt

p
qtvt) and dynamic

pressure (/ b7=10
t qtv

2
t ) at the ERA front. Thus, the double-

hump shape, which was related to the enhancement of the

coupled modes in Ref. 8, can be explained as follows: let

kERA
c be the cutoff wavenumber of the ERA front, then, any

disturbance of wavelength d ¼ 2p=kERA
c or shorter is com-

pletely stabilized in the vicinity of the ERA front by the

rocket effect mechanism. Perturbed modes (including those

associated to the dynamic pressure that leads to the stabiliza-

tion) are assumed to involve a region within a distance of

y� � d. Thus, the stabilizing rocket effect, which is self-

generated by the ERA front, is felt up to a distance of d and,

if the condition dp=d < 1 is fulfilled, the perturbed dynamic

pressure that stabilizes the ERA front will not be completely

damped within the plateau region. This relaxation process

will affect the RA front in the form of an additional stabiliza-

tion. Since the cut-off wavelength goes like d � b7=5
t Fr

5=3
t ,

this additional stabilization due to coupled modes is

enhanced with a higher Froude number, a higher bt (optically

FIG. 6. Dispersion relation obtained from the numerical method (solid line)

for the parameters rD ¼ 0:25, bt ¼ 20, Frt ¼ 2 and (a) � ¼ 10 and D ¼ 87,

(b) � ¼ 5 and D ¼ 41, (c) � ¼ 5=2 and D ¼ 20, and (d) � ¼ 6=5 and D ¼ 15.

Dashed line corresponds to the analytic formula with dP ¼ 12 and dotted line

plots the asymptotic limit of the analytic formula (see Appendix D).

FIG. 7. Dispersion relation obtained from the numerical method (solid line)

for the parameters rD ¼ 0:35, bt ¼ 20, Frt ¼ 1, � ¼ 10, and D ¼ 20. Dashed

line corresponds to the analytic formula with dP � 3.
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thicker plateau region) or a shorter plateau length, which is

consistent with the results in Ref. 8.

Figs. 8 and 9 show three comparisons of the growth rates

obtained with 2D planar simulations and with the linear theory

for different ablator materials and laser intensities. Single-

mode 2D simulations were carried out with the radiative-

hydrodynamic code CHIC, considering a 25 lm layer of

ablator irradiated by a laser pulse with a maximum intensity

of 100 TW/cm2 for the cases of doped plastics (CHBr and

CHSi), and a 20 lm layer of SiO2 subjected to a directed laser

pulse with a maximum intensity of 200 TW/cm2. Simulation

results are averaged over a 1 ns time duration (1:5 � t � 2:5),

when the target is already accelerated. Characteristic values

for normalization are taken around the outer ablation front, in

the point where radiative and electron temperatures are

equal. An exponential regression in time is performed on the

peak-to-valley perturbation depth in order to obtain an

estimate of the linear growth rate (circles in the figures). Per-

turbation wavelengths explored cover almost a decade from

kmin ¼ 20 lm to kmax ¼ 150 lm. Good agreement is found

between the numerical self-consistent model and the 2D

planar simulations. In the glass ablator case (Fig. 8), both

sharp-boundary and self-consistent models give a reasonable

approximation. However, it is worth noting the cases of doped

plastic (Fig. 9), where growth rates from simulations are in

better agreement with the self-consistent model. This fact

points out that there are some physics missing in the sharp

boundary model, especially when the plateau length is of

the order of the characteristic length of the RA front, L0.

Obviously, the effect of the Atwood number with a finite L0

(that can be of the order of the plateau length) is not consid-

ered, since it is assumed a discontinuity front (kL0 � 1).

Another physical aspect concerns the effect of the transverse

diffusion in the ablation process (Ref. 18). In the sharp-

boundary model for DA fronts, the transverse diffusion is

taken into account in the plateau region, namely, by the ther-

mal modes.8 However, the jump condition at the RA front

related to the energy conservation law neglects it. We have

taken into account the lateral thermal conduction in the energy

jump condition at the RA in a similar way that in Ref. 9. The

resulting dispersion relation including the effect of transverse

diffusion in the RA front provides a better agreement with the

numerical self-consistent method in terms of the cut-off wave-

number and the maximum growth rate as it is shown in Fig. 9.

IV. CONCLUSIONS

We have developed a self-consistent numerical method

to calculate the linear growth of perturbations in double abla-

tion front structures due to the ablative Rayleigh-Taylor

instability. Differently from the previous version of the

model,8 we have considered ablation fronts with a finite

characteristic length. This allows us to analyze the stability

of smooth hydrodynamic profiles (like those developed with

doped plastics), which cannot be achieved by means of a

sharp boundary model.

A radiation hydrodynamic theory is used to obtain the

hydro-profiles. There, different energy transfer processes are

considered: convection, electron thermal conduction, and

radiation. A simplification in the 1D theory is possible by

assuming the inner ablation front to be opaque and the outer

ablation front to be transparent. This assumption leads the

radiation transport to behave as a radiative thermal conduc-

tion and a cooling process, respectively. A fitting method is

introduced to match theoretical hydro-profiles to those com-

ing from one-dimensional simulations. This method uses ei-

ther an error minimization procedure or takes into account

the minimum density gradient scale length of both ablation

FIG. 8. Normalized growth rate for SiO2 ablator foil obtained with 2D

single-mode simulations (circles) and applying linear theory, both, analytical

sharp boundary model (dashed line) and numerical self-consistent model

(solid line). Dotted line corresponds to the simplified formula derived from

the SBM dispersion curve (see Appendix D). Parameters used are

rD ¼ 0:22, � ¼ 4:7, D=LSt ¼ 45, dP=LSt ¼ 14, bt ¼ 21, and Frt ¼ 0:7.

FIG. 9. Normalized growth rate obtained with 2D single-mode simulations

(circles) and applying linear theory, both, analytical sharp boundary model

(dashed line) and numerical self-consistent model (solid line). Dotted line

corresponds to the sharp boundary model including the effects of transverse

diffusion. (a) CHBr4% ablator foil, parameters used are rD ¼ 0:26, � ¼ 1:12,

D=LSt ¼ 5:2, dP=LSt ¼ 4:0, bt ¼ 12:2, and Frt ¼ 0:99. (b) CHSi9% ablator

foil, parameters used are rD ¼ 0:27, � ¼ 1:33, D=LSt ¼ 6:74, dP=LSt ¼ 5:24,

bt ¼ 4:5, and Frt ¼ 1:58.
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fronts and the plateau length (outputs of the 1D simulations)

in order to estimate the analytic parameters of the profiles.

Comparison between the 1D theory and simulations is given

showing good agreement in reproducing the profiles.

Dispersion relation is obtained numerically in the stabil-

ity analysis by imposing that the perturbations are localized

within the ablation region. Comparisons between the self-

consistent model and the sharp boundary one are given. It is

shown that the SBM is in agreement with the self-consistent

results when the characteristic lengths of both ablation fronts

are sufficiently short compared to the Spitzer and the plateau

length. On the contrary, if the ablation fronts are smooth,

results from the two models differ, and the self-consistent

dispersion relation shows an additional stabilization for short

wavelengths, as it was expected. In line with SBM results, it

is also observed a double-hump shape in the dispersion

curves for some hydro-profiles characterized by a short pla-

teau length. This stabilization for intermediate perturbation

wavelengths is due to coupled modes; in particular, it is pre-

sumed that for a sufficiently small plateau length, the relaxa-

tion process due to the perturbed dynamic pressure generated

at the outer ablation front affects the inner one for perturba-

tion wavelengths covering the plateau region and leads to the

mitigation and even to the stabilization of these modes.

Some comparisons of the dispersion curve given by the self-

consistent model with growth rates obtained in 2D single-

mode simulations were presented showing good agreement.

Self-consistent analysis improves the accuracy of the

dispersion relation for short wavelength modes by consider-

ing ablation fronts with a finite thickness. However, the pres-

ent work is based on a simple corona model where the

critical density stays at the infinity, that is to say, the problem

is focused within a thin layer encompassing the ablation

region. Thus, physical processes occurring at distances of the

order of the target radius, like inverse bremsstrahlung

absorption in the low- density corona plasma, are neglected.

Therefore, extensions from our work might include, besides

bremsstrahlung, non-isobaric flow, spherical and unsteady

effects, and multilayer shell targets, among others. These

improvements may lead to more accurate linear growth rates

for large wavenumbers.
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APPENDIX A: MATRIX OF THE LINEARIZED SYSTEM
OF EQUATIONS

For the vector of perturbed quantities defined as
~V ¼ ðu1y; ik̂u1x; p1; h1; h

0
1Þ, the matrix of the eigenvalue

problem reads

ARA ¼

h
0
0

h0

�1 0
ĉ � h

0
0

h0

1

0 � ĉ
h0

k̂
2

0 0

� ĉ þ 2h
0
0

h0

1 0 �Fr�1
t þ h0ðĉ � 2h

0
0Þ

h2
0

�1

0 0 0 0 1

h
0
0

h0Rðh0Þ
0 0 k̂

2 þ ĉ � h
0
0

h0Rðh0Þ
� R

00 ðh0Þ
Rðh0Þ

1� 2R
0 ðh0Þ

Rðh0Þ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

; (A1)

where Rðh0Þ ¼ Dh�0 þ h5=2
0 , and

AERA ¼

h
0
0

h0

�1 0
ĉ � h

0
0

h0

1

0 � ĉ
h0

k̂
2

0 0

� ĉ þ 2h
0
0

h0

1 0 �Fr�1
t þ h0ðĉ � 2h

0
0Þ

h2
0

�1

0 0 0 0 1

h
0
0

h7=2
0

0 0 k̂
2 þ ĉ � h

0
0

h7=2
0

� ðh
5=2
0 Þ

00

h5=2
0

� bt

3h4
0 � 11

2h9
0

1� 2ðh5=2
0 Þ

0

h5=2
0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: (A2)
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APPENDIX B: EXPRESSIONS OF THE MODAL
ANALYSIS

A rigorous procedure to determine the eigenmodes and

their associated eigenvalues of the matrices MRA and MERA

is described in Ref. 8.

Regarding the eigenmodes at the peak density, they can

be computed with an algebraically recursive formula, that

gives, for instance, ~Y
left

1 ¼
�
� 1; k̂; ðĉ � k̂rDÞ=ðk̂rDÞ; 0; 1

�
for the eigenvalue kleft

1 ¼ k̂=a:
At the near-corona region, the vector formal solution of the

eigenmodes for an arbitrary value of bt reads, at leading order,

~Y
rightðxÞ ¼ xkright

p expðkright
0 xþ kright

1 x3=5 þ kright
2 x1�aÞ~Yright

0 ;

(B1)

where w0 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4bt

p
Þ=2 and a ¼ 2ð1þ bt=w

2
0Þ=5. The

most unbounded eigenmode corresponds to the main eigen-

value kright
0 ¼ k̂. The corresponding secondary eigenvalues are

kright
1 ¼ 0;

kright
2 ¼ ð2=5Þac1=

�
ð1� aÞw1þa

0

�
and

kright
p ¼

�
1þ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4w2

0

q
Þ=ð2w0Þ

�
=5;

where c1 is numerically computed through the expression

c1 ¼ ðh3=2
0 h

0
0 � w0Þh

5a=2
0 jg!1.

APPENDIX C: SINGLE ABLATION FRONT WITH
A GENERAL SPITZER-LIKE CONDUCTIVITY
(POWER LAW INDEX m)

The base flow profile is given by the equation

h0 � h�0h
0
0 ¼ 1, which can be integrated by defining the ori-

gin of the frame of reference, for instance, in the point where

the minimum density gradient scale length takes place.

Perturbed variables are obtained by linearizing the mass

and momentum conservation equation of (1) and the follow-

ing energy equation:

r � 5

2
P0~v � �j�T�rT

� �
¼ 0;

where �j� is a general conductivity coefficient. By choosing

the variable vector as ~Y ¼ ðG1;W1;Q1; T
�
1 ;H

�
1Þ, where the

first three components are defined in Eq. (14) and the last

two ones correspond to T�1 ¼ h�0h1 and H�1 ¼ ðh�0h1Þ
0
� u1y,

the matrix of the perturbed problem Y
0 ¼ MY becomes

M ¼

h
0
0

h0

�1 0
ĉ

h�þ1
0

0

�2k̂
2 � ĉ

h0

k̂
2 � k̂

2

h�0
0

� ĉ
h0

�1 0 �Fr�1
t

h�þ2
0

0

1 0 0
1

h�0
1

0 1 0 k̂
2

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (C1)

The most unstable mode that develops goes like

� yð3þ
ffiffi
5
p
Þ=4�expðkyÞ.11

The numerical procedure to compute the growth rate is the

same as described in Sec. A. Note that in this case, initial

condition for the integration of the eigenvalue problem takes the

form

~Y
left ¼ a1ðh0 � 1Þk̂~Yleft

1 þ a2ðh0 � 1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ĉþ4k̂
2þ1

p
þ1
	
=2~Y

left

2 :

(C2)

APPENDIX D: SIMPLIFIED ANALYTIC DISPERSION
RELATION FORMULA FOR THE DOUBLE ABLATION
FRONT

Simplification of the DA front analytic dispersion rela-

tion formula of the sharp boundary model presented in Ref.

8 is performed under the following assumptions:

D� 1

rD � 1 (in practice rD < 0:2).

The dispersion relation will be built up as a matching

between two asymptotic limits, small and large wavelengths

compared to the plateau length (k̂dp � 1 and k̂dp � 1,

respectively). The simplified expression reads

ĉDA ¼ ĉP

�
1� expð�2k̂dpÞ

�
þ ĉSexpð�2k̂dpÞ; (D1)

where ĉDA is the growth rate of the DA structure and ĉP and

ĉS correspond to the growth rate given by each limit. Nor-

malization is made with the values at the transition tempera-

ture of the velocity and the Spitzer length, vt and

LSt 
 2jtTt=ð5PtvtÞ, respectively.

In the first limit, the general formula is reduced to

RD1 � RD2 ¼ 0, where each factor is the dispersion relation of

an isolated ablation front (both the inner and outer one). As

the RA is much more unstable, the dispersion relation that

dominates is the one associated to the first front (so,

RD1 ¼ 0). This is equivalent to the growth rate proposed by

Piriz9 (here named as ĉP),

ĉ2 þ 4

1þ rD
k̂rDĉ � 1� rD

1þ rD
k̂ Fr�1

t þ k̂
2
rD ¼ 0: (D2)

In the second limit, the general formula is decomposed in a

series of powers of dP. We keep zero and first order terms.

The growth rate ĉS is obtained by solving the cubic equation

ĉ2 þ �f
þ
10k̂rDĉ � k̂�Fr�1

t þ

þ C0k̂dp

�
ĉ2 þ C1k̂rDĉ � k̂ðC21

�Fr�1
t þ C22Fr�1

t Þ
�

þ 4

3
ĉdp ĉ2 þ

�f
þ
10

4
k̂rDĉ � k̂�Fr�1

t

 !
¼ 0; ðD3Þ

where C0 ¼ 2þ �f 10 þ rD
�q010, C1 ¼

�
2�f
þ
10 þ rDð�q010 � 1Þ

�
=C0, C21 ¼ ð2þ rDÞ=C0, C22 ¼ �f 10ð1� rDÞ=C0, �Fr�1

t

¼ ðFr�1
t � �q10Þ, �f

þ
10 ¼ �f 10 þ �q010 � 1, �f 10 ¼ 1:605

ffiffiffiffi
bt

p
,

�q10 ¼ 3:652 k3=5rDb7=10
t and �q010 ¼ 1:802

ffiffiffiffi
bt

p
:
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It is worth noting the presence of the factor �Fr�1
t ¼

ðFr�1
t � �q10Þ in the last expression. This reduced Froude

number shows the stabilizing influence of the perturbed mo-

mentum flux. This overpressure generated on the ripply abla-

tion surface inhibits or even completely suppresses the

growth. Another important factor that we highlight is
�f
þ
10 ¼ �f 10 þ �q010 � 1, which correspond to the so-called abla-

tive stabilization. It takes an approximate value of �f
þ
10 ’

3:4
ffiffiffiffi
bt

p
for large bt.
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Tikhonchuk, X. Ribeyre, and J. Feugeas, Phys. Plasmas 16, 082704

(2009).
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