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Global linear instability theory is concerned with the temporal or spatial development of small-amplitude 
perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous 
in two (and periodic in one) or all three spatial directions. After a brief exposition of the theory, some recent advances 
are reported. First, results are presented on the implementation of a Jacobian-free Newton-Krylov time-stepping 
method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of 
industrial interest Second, connections are sought between established and more-modern approaches for structure 
identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode 
decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or 
time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal 
decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as 
open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the 
spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability 
equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse 
matrix treatment, all these problems may now be solved on standard desktop computers. 

Nomenclature 
q = instantaneous flow vector 
q = basic flow vector 
q = vector of amplitude functions 
y, 8 = Floquet multiplier, Floquet exponent 
© = phase function 
X, fM, a , oo = eigenvalues 
$ = propagator operator 
<p = empirical eigenfunction 

Superscripts 

q = basic flow component 
q = perturbation component 
* = adjoint operator 

I. Introduction 

T HERE is good reason for optimism regarding the future 
of global linear instability and a certain degree of euphoria 

surrounding its recent success [1,2], three decades after the first 
solutions of multidimensional eigenvalue problems appeared in the 
literature [3,4]. In either its modal or nonmodal flavor, biglobal linear 
instability analysis, pertinent to flows developing in geometries with 
two inhomogeneous and one homogeneous spatial directions, are 
now routinely performed, while the first triglobal analyses, appro­
priate for fully three-dimensional flows, have also appeared in the 
literature [5-9]. Well-developed theoretical approaches for the 

description of linear systems, which in the context of classic linear 
stability theory (LST) had been endorsed with the infamous sim­
plifying assumption of a 'parallel flow' to arrive at theoretically/ 
numerically tractable problems, can now be applied to more-realistic 
flow situations in which multiple inhomogeneous spatial directions 
exist. In the vast majority of real-world applications, the assumptions 
of parallel or quasi-parallel flow are not applicable; the scope of 
global linear theory in such flows keeps widening, in tune with 
the maturing of solution algorithms and the wider availability of 
computational infrastructure, both of which have made accessible 
to the wider scientific community the solution of problems 
previously reserved only for those groups with access to large-scale 
supercomputing facilities. The role of global linear analysis as a 
natural extension of the classic LST [10,11] has always been clear, 
however, by contrast to the last two decades of the 20th century, 
during which activity in global instability analysis was rather scarce, 
the number of published work in this area is growing exponentially in 
the last decade. 

This paper is not intended as an overview of the current state of the 
art in global linear instability research, nor is it meant as an in-depth 
discussion of any particular facets. The main objective of this paper is 
an attempt to contain the euphoria surrounding the potential of global 
linear instability theory, differentiate between what is currently 
feasible and what would be desirable to obtain from the analysis, and 
point, from a very subjective point of view, to some promising future 
research directions. In writing this paper, the authors wish to 
contribute to avoiding repetition of the disappointment that followed 
much-advertised past breakthroughs in research methodologies in 
fluid mechanics, such as quantitative description of turbulence via 
coherent structures, large-eddy simulation, and even direct numerical 
simulation, all of which were supposed to "solve the turbulence 
problem within the next decade" (this phrase will intentionally not be 
attributed to any one researcher, although wishful thinking to this 
tune still echoes in the ears of those who attended scientific meetings 
in the 1980s and 1990s). 

The departure point of this paper is some thoughts exposed in 
Sec. II, where a list of open issues is presented that need to be 
addressed in the context of global linear instability analysis, thus 
providing a clear dichotomy between feasible and desirable infor­
mation expected from the analysis. Section III presents a summary of 
current theoretical concepts underlying global linear instability 
analysis, while in Sec. IV answers to some of the issues raised, as 



recently provided by the authors, are presented. Concluding remarks 
close this paper in Sec. V. 

II. Feasible Versus Desirable Information Delivered 
by Global Linear Instability Analysis 

This section presents some thoughts on information that may be 
delivered by global linear instability analysis. Owing to the rapid 
expansion of this area, especially in the last decade, the real danger 
(or temptation) exists to unintentionally (or intentionally) misinter­
pret the scope of the theory. The following discussion is a contri­
bution to ensuring elimination of confusion between the answers to 
two sets of questions, which differentiate between what is currently 
feasible against what is desirable to be obtained, although the authors 
are fully conscious (and hopeful) that progress toward obtaining the 
desirable information is continuous. In the first category, feasible 
information, one first identifies the following: 

1) What is the information that can be obtained, given the current 
state of the art of the theory? 

2) How does one presently obtain this information? 
3) What can one do with global linear instability results today? 
Then a list of desirable information is formulated: 
1) What is the information that one would like to have access to? 
2) How would one like to obtain it? 
3) What would one wish to do with the aid of global linear 

instability analysis results? 
Taking the first questions of the two lists together, on the one hand 

there exists the demonstrated ability to obtain biglobal eigenvalue 
problem (EVP) solutions and perform biglobal transient growth 
studies via either (direct/adjoint) initial value problem (IVP) or 
singular-value decomposition solutions, all of laminar steady or 
time-periodic two-dimensional flows, while a handful of triglobal 
EVP analyses also exist in the literature. On the other hand, it is clear 
that the instability of (laminar) flows with three inhomogeneous 
spatial directions is by and large unexplored from a global theory 
point of view. Order-of-magnitude improvements of the flexibility 
and the efficiency of the numerical methods used in this context is 
needed to achieve this target. 

Related to the second dichotomy between feasible and desirable 
means to obtain global linear instability analysis results, the exis­
tence of a wide arsenal of well-validated algorithms to perform such 
analysis is known, mainly of academic (high-order accurate, high 
theoretical sophistication) flavor, and in addition hardware to support 
the related basic research is also available (supplemental material 3 in 
[1] discusses this point extensively). What would be desirable in this 
context would be to integrate ideas of global linear analysis into 
everyday engineering practice, using tools available to industry, e.g., 
large-scale aerodynamic calculation codes, provided of course that 
the global instability analysis community is capable of convincing 
industry of the utility of the theory, on the basis of experimentally 
cross-verified global instability analysis (and control) results. A clear 
stumbling block at present is turbulence modeling (in the context of 
instability analysis), which is known to work on certain classes of 
separated flows analyzed via local instability theory [12] and has also 
been demonstrated in the recent global analyses of Crouch et al. 
[13,14]. Nevertheless, much more needs to be done, e.g., along the 
lines of the recent work of Kitsios et al. [15]. 

Finally, it is important to mention what is perceived to be one of the 
major utilities of global instability analysis, namely its contribution 
to reduced-order modeling and flow control. Although the role of the 
theory in controlling linear instability of low-Reynolds-number 

steady or time-periodic two-dimensional laminar flows is well-
documented in the literature [16], the desired target is control of 
three-dimensional (three inhomogeneous spatial directions) turbu­
lent flows; again, this is, in the authors' view, an area where advances 
are urgently needed. 

The following discussion goes into some depth in each of the 
previous points; the index built up in the previous section aids 
structuring the exposition. Representative examples of the current 
state of the art introduced in Sec. Ill serve as cases in the points made. 
It should also be stressed that, in the interest of space, the scope of the 
following discussion is kept within the realm of linear global 
instability analysis; the reader interested in the ongoing vigorous 
developments in the (related, in case of multiple inhomogeneous 
spatial directions) theoretical approaches for nonlinear flow analysis 
[17-19], reduced-order modeling for complex flows [ 16,20-22], and 
flow control [23,24] is referred to the original works and citations 
therein as well as to a recent monograph on a reduced-order model 
(ROM) [25]. Owing to the rapidly expanding nature of the global 
linear instability field, the list of works selected to be discussed is 
certainly partial and probably biased toward the authors' own 
research interests; apologies are offered to researchers whose 
interesting work is not discussed herein. 

III. Theoretical Considerations 
A short reminder of theoretical concepts underlying global linear 

instability analysis is necessary to set the scene for the discussion that 
follows. Our concern is with the development in time and space of 
small-amplitude perturbations superposed upon a given laminar 
flow. This can be described exactly by the linearized Navier-Stokes, 
continuity, and energy equations, without the need to invoke the 
parallel (or weakly nonparallel) flow assumption; the flow analyzed 
with respect to its global stability may be any laminar two- or three-
dimensional solution of the equations of motion, as well as flows with 
strong dependence on two inhomogeneous and weakly varying 
along the third spatial direction. The respective theoretical concepts 
are referred to as biglobal, triglobal, and parabolized stability 
equation three-dimensional (PSE-3D) analyses. Table 1 classifies 
and refines the different kinds of linear stability theory, demarcating 
the boundaries between local analysis based on variants of the 
Orr-Sommerfeld equation (OSE), nonlocal analysis based on 
the standard PSEs [26-28], which represent a generalization of the 
parallel-flow LST for flows with a mild variation on the streamwise 
direction, and the three aforementioned versions of global linear 
theory; symbols appearing will be defined shortly. 

Linearization of the equations of motion may be performed around 
steady or unsteady laminar basic flows, q = (p,u,v,w, T)T. This is 
to be contrasted against some of the current global instability 
literature, which concerns time-averaged turbulent flows, which will 
not be dealt with in the present paper, although some comments on 
the applicability of the theory, supported by the still-scarce evidence 
in the literature, will be made in what follows. 

Basic flows in complex geometries are typically provided by two-
or three-dimensional direct numerical simulations, potentially 
exploiting spatial invariance. Steady laminar flows exist only at low 
Reynolds numbers, but numerical procedures exist for the recovery 
of basic flows also at conditions where linear global instability 
would be expected, e.g., based on mirroring the solution computed 
under the imposition of symmetries, continuation [29], or selective 
frequency damping [30]. In using the term small-amplitude 
perturbations, the decomposition 

Table 1 Classification of global linear theory approaches 

Global 

Nonlocal 
Local 

Denomination 

Triglobal 
PSE-3D 
Biglobal 

PSE 
OSE 

Basic state 

dtq <<C d2q, d3q 
3 ^ = 0 

3i? < 32q; d3q = 0 
9i<? = d3q = 0 

Assumptions 

q(x1,x2,x3) 
q(x\,x2,x3) 

q(x2,x3) 
q(x\,x2) 

q(x2) 
/• 

Phase function & 

cot 
J a(x*)dx* — cot 

axx — cot 
a(x\) dx* + fix3 — cot 

axx + fix3 — cot 



q = q + eq, e «; 1 (1) 

is assumed, and solutions to the initial-value problem 

B (Re, Ma, q) — = A(Re, Ma, q)q (2) 
at 

are sought. Specific comments on the dependence of these quantities 
on the spatial coordinates x and time / will be made in what follows. 
The operators A and B are associated with the spatial discretization 
of the linearized equations of motion and comprise the basic state 
q(x, /) and its spatial derivatives. In case of steady basic flows, the 
separability between time and space coordinates in Eq. (2) permits 
introducing a Fourier decomposition in time: 

q = qe® (3) 

with © as a phase function, leading to the generalized matrix 
eigenvalue problem: 

A q = ooBq (4) 

Here, matrices A and B discretize the operators A and B, respec­
tively, incorporating the boundary conditions; q(x; /) = (p, u, v, w, 
T)T is the vector comprising the amplitude functions of linear 
density, velocity component, and temperature or pressure perturba­
tions. The eigenvalue problem adjoint to Eq. (4) may also be derived, 
after suitable definition of an inner product, typically associated with 
perturbation energy in incompressible [11] and compressible [31] 
flow, and enforcement of the bilinear concomitant to zero [32]. Both 
the direct EVP [Eq. (2)] and its associated adjoint describe a modal 
global linear instability scenario, applicable to the dynamic behavior 
of the linearized equations of motion at the asymptotic limit / -> oo. 

A. Linear Global Modes 
In what follows, solutions of Eq. (4) are referred to as global modes 

and are, by definition, linear. Physical interpretation of the quantities 
appearing in Eq. (4) depends on whether a (temporal or spatial) 
biglobal or triglobal context of analysis is followed; initialization of 
PSE-3D at the start of the marching location requires solution of the 
spatial biglobal EVP. 

The key assumption underlying both temporal and spatial biglobal 
instability analysis is that the basic state is spatially invariant along 
one spatial direction, say xv In temporal biglobal analysis the 
physical interpretation of quantities appearing in Eq. (4) is as follows: 
the wave number a, appearing in Table 1, is a real parameter and 
is related with a periodicity length Lx along the homogeneous 
direction xl through a = 2JI/LX . In a manner analogous with classic 
LST, the eigenvalue oo is complex, composed of a real part 9t{&>}, 
which is related with the global mode frequency, and an imaginary 
part S{&)}, which is the temporal amplification (3{ft)} < 0) or 
damping (3{ft)} > 0) rate of the global mode. In spatial biglobal 
analysis, oo is areal frequency parameter, and the linear EVP [Eq. (4)] 
is rewritten as an EVP for the determination of the eigenvalue a. 
The obtained result a = Dt{a} + !'3{a} may be used to identify a 
periodicity length Lx = 2jr/Dt{a} along the homogeneous spatial 
direction xy, while —3{a} is the spatial amplification rate. 

Both the spatial discretization and the numerical solution of the 
global EVP itself are well-documented in several sources (e.g., [1]) 
and will not be dwelled upon here. Attention will only be brought 
upon the fact that temporal biglobal theory leads to a linear EVP, 
while the spatial analog of this theory requires solution of a quadratic 
eigenvalue problem. Nonlinear EVPs may be converted to linear 
ones by the companion matrix approach [33,34], which, in the 
problem at hand, multiplies the memory requirements of a temporal 
biglobal analysis by a factor 4, if a dense storage scheme is used, 
while the CPU time necessary for its solution is larger by a factor 8 
compared with the temporal biglobal EVP, if a direct matrix inversion 
approach is employed. In this sense, not only is research into 
alternative direct solution methods urgently needed but also 
matrix-free formation methods, which contribute to reducing the 

computational resources required will be discussed in Sec. IV 
Finally, the situation regarding boundary conditions to close the 
PDE-based EVPs is clear as far as solid walls are concerned but not so 
for open flows. To provide insight to this issue, Rodriguez et al. [35] 
undertook an effort to quantify the effect of upstream and down­
stream boundary conditions in simple two-dimensional problems in 
which progress can also be made by analytical tools. 

Turning to the PSE-3D, oo is a real parameter and, in a manner 
analogous with classic LST and PSE applied to boundary-layer 
flows, initialization data may be provided by solution of the spatial 
biglobal EVP. The satisfaction of the normalization condition 
delivers the results for the wave number and amplification rate, 
respectively to be compared with Dt{a} and 3{a} delivered by the 
spatial biglobal analysis. A PSE-3D methodology for the instability 
analysis of realistic isolated vortices and systems of vortical flows is 
discussed in detail by Paredes et al. [36]. 

Triglobal modal linear instability analysis may also be performed 
by numerical solution of Eq. (4), whereby the amplitude functions 
are three-dimensional functions of three inhomogeneous spatial 
coordinates. The analysis is always temporal, the only parameter 
being the flow Reynolds number, while the physical interpretation of 
the real and imaginary parts of the eigenvalue oo is the same as in 
classic LST and temporal biglobal instability analysis; triglobal EVP 
solutions have appeared in the literature in the last decade [5-9]; a 
contribution in this direction may be found herein using an 
alternative matrix formation method. 

Independent of the numerical integrity of the global eigenvalue 
problem results, the ultimate criterion regarding their relevance to 
flow analysis is comparison with physical reality. If modal global 
linear instability results are coherent with those recovered from 
experiment and direct numerical simulation (DNS), under conditions 
of natural (not controlled) transition initialization, it may be con­
cluded that modal global linear theory is sufficient to describe 
amplification of small-amplitude disturbances; otherwise, nonmodal 
global theory must be used. 

B. Relation Between Numerical Residuals and Global Modes 
For the sake of completeness of the presentation that follows, 

which focuses in extraction of global mode results from transient 
simulation data or experiment, the residual algorithm (RA) will be 
summarized next. 

It is possible to extract information about the damping rate and 
amplitude functions of decaying linear global modes from the 
transient data of time-accurate integration of the equations of motion 
toward a steady state. In particular, if the time-accurate integration is 
close to convergence, then the decomposition [Eq. (1)] is valid, being 
straightforward to obtain 

Lq J / at 

where q' = |q(x, y, z, t) — q| is obtained from the DNS transient 
data, and a is identified as the damping ratio corresponding to the 
global modes. In addition, it is possible to extract amplitude func­
tions and frequency of the global modes or recover the converged 
solution from transient data following the same idea; further details 
may be found in [1,37]. 

C. Strobes (Snapshots), Chronoi (Times), and Topoi (Spaces) 
The 1980s and 1990s of last century witnessed exciting develop­

ments in the field of deterministic description of coherent structures 
of turbulent flows. Application of the Karhunen-Loeve (K-L) 
theory, also known in different fields of computational mechanics as 
proper orthogonal decomposition (POD) [38] and principal compo­
nent analysis, permits reduction of large space-time collections of 
numerical or experimental laminar or turbulent fiowfields by solution 
of an eigenvalue problem for the determination of a small number 
of eigenmodes known as K-L, POD, or empirical eigenmodes, the 
latter denomination alluding to the fact that knowledge of the 
underlying dynamical operator is not necessary for the construction 



of the empirical eigensystem. Concretely, given a sequence of 
instantaneous data U; = u(x,tt), one forms the cross-correlation 
tensor 

ft(x,x') = (u(x)v(x')> (6) 

or autocorrelation tensor, when u = v, with 1Z being a compact self-
adjoint operator [38], and solves the EVP 

f ft(x,x')0(x')dx' = X</>(x) (7) 

to determine the empirical eigenmodes 0(x). This description has 
(at least) two major attractive features. First, unlike the global 
eigenmodes, solutions of Eq. (4) or the Koopman modes, obtained 
through solution of Eq. (15), the empirical eigenfunctions are 
orthogonal, permitting expansion of (nominally) arbitrary fields onto 
the latter eigensystem. Second, most of the system energy is captured 
by a relatively small number of empirical eigenfunctions, which 
forms the basis for subsequent ROM efforts for the efficient 
description of the original system [25]. 

Sirovich [39] introduced the method of snapshots or method of 
strobes to simplify calculation of the correlation-tensor-based 
eigenvalue problem [Eq. (7)] in case of short time samples and highly 
resolved data. This is of particular interest to analyzing transitional 
data, because long time integration is unnecessary during the linear 
regime, and high spatial resolution is desirable. Of particular interest 
in the present context is that the simplifying assumptions of spatial 
homogeneity, invoked in the original works to make the problem of 
calculation of empirical eigenfunctions tractable from a numerical 
point of view, are not necessary if the snapshots method [39^-1] 
is used. 

Sirovich [39] proceeded to expand the empirical eigenfunctions as 
linear combinations of the instantaneous fiowfields, 

M 

<j> =J2aJn (8) 

and arrive at the eigenvalue problem 

C 0 = A.0 (9) 

This is equivalent to Eq. (7) in terms of obtaining identical 
eigenvalues, circumvents tedious and impractical for large 3D 
problems calculation of the kernel [Eq. (6)], and is thus substantially 
more efficient than the original eigenvalue problem because the size 
of matrix C depends on the number of realizations (snapshots or 
strobes) M, used in its construction via 

C}t = ^(uj,vd (10) 

and not on the original problem dimension. As noted in [41], the 
empirical eigenfunctions <f> are not themselves coherent structures 
but may rather be used as the appropriate basis for the decomposition 
of the coherent structures through decomposition of any fiowfield 
into the empirical eigenfunctions 

q(x) = £a,0y(x) (n) 

Although this discussion is equally applicable to biglobal and 
triglobal linear instability, in the former context it would be possible 
to seek empirical eigenfunctions by exploiting translational invari-
ance along the homogeneous direction and further decompose linear 
perturbations into harmonic functions along the homogeneous and 
an inhomogeneous two-dimensional part along the remaining two 
spatial directions. Rempfer and Fasel [42] argued against such a 
procedure, reasoning that it conceptually contradicts the idea of a 
compact coherent structure. Instead, they used the concept of spatio-
temporal interchangeability and the bi-orthogonal expansion intro­
duced by Aubry et al. [43] to decompose a given fiowfield as 

q (x, tj) = J^UtjWx) (12) 
i 

where each time-dependent expansion coefficient f; was termed 
'chronos' (time), while the space-dependent coefficient at was called 
'topos' (space). 

D. Koopman Modes and Dynamic Mode Decomposition 
The rather old concept of Koopman modes [44] has been recently 

introduced to the analysis of fluid flow structures by Rowley et al. 
[17] and Schmid [45], as a particular class of techniques for nonlinear 
systems analysis and reduction discussed in the influential work of 
Mezic [46]. The Koopman operator is a linear operator defined for 
any nonlinear dynamical system, thus allowing for the spectral 
analysis of nonlinear flows and flow coherent structures description. 
The Koopman modes reduce to linear global modes when the 
dynamical system is governed by the linearized Navier-Stokes 
operator, while in case of time-periodic flows the Koopman modes 
reduce to Fourier modes. For the sake of completeness in this section, 
the dynamic mode decomposition (DMD) algorithm presented by 
Schmid et al. [47] is briefly described. The existence of spatial and 
temporal decomposition concepts open different possibilities of 
structural analysis with the same tool; however, in this paper, 
attention is focused on temporal analysis. 

Given a sequence of N + 1 instantaneous data V; = v(x, /;), two 
different snapshots matrices can be constructed: Vf = {v(x, t{), 
v(x, t2),..., v(x, tN+i)} (from the first snapshot to the Mh snapshot) 
and V%+1 = {v(x, t2), v(x, t3),..., v(x, tN+i)} (from the second 
snapshot to the (N + l)th snapshot). It is worth noting that, in a 
manner analogous to data analyzed by POD, snapshot data may arise 
either from simulation or experiments; in what follows, DNS-
obtained results will be employed to apply the algorithm and 
compare its results with those of global mode analysis based on 
numerical solution of Eq. (4). 

Assuming a constant linear mapping A over the entire snapshot 
sequence, which in general represents a nonlinear system and 
connects the fiowfield vt with the subsequent fiowfield vi+l, i.e., 
vi+l = Avt, itis possible to formulate the sequenceof fiowfields asa 
Krylov sequence: 

Vf+1 = AVf (13) 

Selecting a companion matrix that can be thought of as a 
projection of A onto the snapshot basis Vf Eq. (13) can be 
approximated by 

yN +1 ^ yNS ( 1 4 ) 

The idea behind DMD is to first construct S from the snapshot data 
and then describe the dynamical process defined by A (and 
approximated by S) through numerical solution of the eigenvalue 
problem 

S i-i = kfi (15) 

where the dynamical modes $ are the projection of the eigenvectors 
fi on the snapshot basis Vf, 

* = £M,«), (16) 

and the eigenvalues follow the next transformation co = log(X)/At, 
where At is the time interval between snapshots. 

E. Relation Between Numerical and Empirical Eigenmodes 
The main idea behind comparisons of global, POD, and Koopman 

modes is to investigate the relation between numerical and experi­
mental results because, as opposed to global instability analysis, 
which requires a well-defined steady or time-periodic basic state, 
both POD and DMD analysis can be applied to either numerical 
or experimental (sparse) data. In addition, application of flow 



topological ideas to global instability analysis results has demon­
strated that long-known flow structures, such as the stall cells 
preceding wing stall [48] and U-separation associated with adverse-
pressure-gradient boundary layer flow on a flat-plate [49], can be 
uniquely and unequivocally defined as arising from linear amplifi­
cation of global modes of the respective flows. 

The principal motivation of the application of the K-L theory/ 
POD to fluid flow has been to provide a description of turbulence 
based on deterministic coherent structures, the latter reconstructed 
using the empirical eigensystem delivered by K-L/POD analysis 
[38]. By construction of the operator, this POD analysis identifies the 
most-energetic structures in the flow as POD modes. 

Rowley et al. [50,51 ] extended the combined POD/LST analysis to 
two inhomogeneous spatial dimensions, studying DNS-obtained 
compressible flows over open cavity configurations. They demon­
strated that a reduced-order model could be constructed, based on a 
relatively small (compared with that required for the DNS) number of 
POD modes satisfying Eq. (12). They also compared the spatial 
structure of the leading POD modes with that of the (then available) 
local, parallel LST and observed certain analogies in the two sets of 
data in the unstable shear-layer region at the open end of the cavity. 

In the same direction, recent research by Sengupta et al. [52] in the 
analysis of the flow past a circular cylinder has linked the POD modes 
and the instability modes of this flow by means of nonlinear 
interactions satisfying the Landau-Stuart-Eckhaus equation and 
also found qualitative analogies between LSTand POD mode results. 

Merzari et al. [53] applied POD analysis to turbulent flows in 
geometries using the snapshots method containing a narrow gap, thus 
extending their earlier global linear instability analysis of the same 
flows in the laminar regime [54]. These authors provided evidence by 
comparison of such POD eigenfunctions on the one hand, and results 
of their earlier biglobal instability analysis [54] that the leading POD 
eigenfunctions of turbulent flow exhibit strong spatial analogies with 
the amplitude functions of the leading biglobal eigenmodes. 

Finally, Oberleithner et al. [55] very recently presented direct 
comparison of empirical modes and linear stability eigenmodes of 
swirling-jet flow undergoing vortex breakdown. Besides the by now 
standard snapshot approach for the calculation of POD eigenmodes 
[39], these authors employed classic OSE- and PSE-based linear 
stability analysis and the triple-decomposition [56] concept to 
analyze the turbulent data extracted from their experiment. To the 
authors' knowledge and reservations from a theoretical point of view 
aside (regarding the reconstruction from nonlocal data of the global 
mode, as opposed to performing a PSE-3D or triglobal instability 
analysis), Fig. 18 of Oberleithner et al. [55] is the first attempt at 
comparison and the first conclusive demonstration of excellent 
agreement between the leading POD and the leading triglobal global 
flow eigenmode. 

The results of Rowley [50,51], Sengupta [52], Merzari et al. [53], 
and Oberleithner et al. [55] in comparing empirical and global flow 
eigenmodes in two and three inhomogeneous spatial directions, 
respectively, demonstrate that such analysis may be feasible. It is 
certainly also desirable, in the sense that it paves the way to descrip­
tion of the flow by simpler models and, ultimately, to its control. 
Although speculative at this time, the same successes may both be 
attributable to the predominance of a single Fourier harmonic in the 
flow dynamics. It is worth examining how the situation may be 
different in (complex) flows in which additional frequencies are 
present, what the dependence of analogous comparisons between 
leading global and leading POD eigenmodes on the relative 
significance of the additional frequencies in the overall spectrum is, 
and ultimately where the boundary may be defined between 
phenomena, which can be attributed to linear dynamics, as opposed 
to flows in which consideration of nonlinearity is essential. 

As far as DMD is concerned, this analysis was applied to a jet in 
crossfiow [45], and the results were compared to the POD analysis 
and global modes. In particular, they found that the Koopman modes 
eigenfunction are similar to the POD modes, which describes the 
most energetic structures. However, the POD modes contains several 
frequencies while the Koopman modes only have one frequency by 
construction; therefore, they can separate the dynamics of the system 

more effectively, although the physical interpretation of that decom­
position may not be clear. The most interesting results is that the 
Koopman frequency matches with the shedding frequencies obtained 
with the DNS. In addition, according to them, the global eigenmodes 
capture only the dynamics in a neighborhood of the unstable fixed 
point, while the Koopman modes correctly capture the behavior on 
the attractor. The present lack of sufficient information on all these 
0(1) issues, in either laminar or in the more interesting from an 
application point of view turbulent flows, is one of the key reasons to 
contain the euphoria [57]; future research should aim at resolving 
these issues. 

IV. Some Recent Developments 
This section is used to present some recent work developed by the 

authors on a number of the fronts identified in the earlier discussion. 
First, attention is paid to the somewhat artificial dilemma of whether 
to perform global linear instability in a matrix-forming or a time-
stepping framework, which has plagued the community of global 
instability practitioners since its formation. Supplemental appendix 3 
of [1] presents a rather comprehensive table showing that both 
approaches for the recovery of leading flow global eigenmodes have 
successfully been in use side by side, right from the early days of the 
analysis. Initially, this question could be paraphrased as "What type 
of computing infrastructure is available for the analysis?" with 
the broad answer being that authors with access to large-scale 
facilities could afford full-spectrum calculations, while all the rest 
had to conform with time-stepping methodologies. Subsequently, the 
question is addressed, regarding the degree to which the RA, DMD, 
and POD algorithms may be used to extract quantitative information 
from the same simulation data used in the time-stepping (TS) 
algorithm discussed in the next subsection; the square lid-driven 
cavity, the global linear instability of which is well-documented, is 
chosen as a test-flow for this exercise. Next, attention is turned to yet 
another controversial issue, that of whether to perform global linear 
instability analysis by forming the matrix or not. A new high-order 
accurate stable finite-differencing scheme [58] is employed to 
spatially discretize the linear operators pertinent to the PSE-3D [36] 
and the triglobal eigenvalue problem, and the efficiency gains offered 
compared with classical spectral collocation discretization are 
discussed. 

A. Time-Stepping with Low-Order Finite-Volume Methods 
Introduction of time-stepping ideas into standard aerodynamics 

codes, with the aim of broadening the scope of the analysis in 
transonic, supersonic, and hypersonic flow over or through complex 
geometries, is a nontrivial task, on account of the potentially distinct 
requirements of the robustness needed for aerodynamics codes to 
converge versus the accuracy needed for stability calculations. 
Although the majority of spatial discretization methods employed in 
computational fluid dynamics (CFD) have also been used for the 
solution of the global EVP in a matrix-formation context [1], the vast 
majority of time-stepping approaches to solve the same problem have 
been implemented in conjunction with incompressible flow and 
high-order (typically spectral-element) spatial discretization. In 
following the latter path, some of the most interesting flow phenom­
ena associated with compressible flow have remained out of the 
scope of global instability analysis. 

Although this situation is slowly changing in recent literature 
[13,31,59], global instability analysis is yet to penetrate into the 
world of classic CFD schemes, the latter typically being based on 
variants of low-order finite-volume methods. Gomez et al. [60] 
recently presented a Jacobian-free Newton-Krylov-based time-
stepping algorithm of the class introduced into global instability 
analysis by Eriksson and Rizzi [61] and successfully employed to 
analyze biglobal [62,63] and triglobal [5] EVP, combined with a 
standard finite-volume solver for compressible flow capable of 
addressing compressible flows over complex geometries. Validation 
results have been obtained by reference to the classic two-
dimensional square lid-driven cavity flow, one of which is shown in 
Fig. 1 at Re = 200, /3 = 0.01. SC is spectral collocation, FV is finite 
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Fig. 1 Leading (damped) eigenmode obtained using DNS and a Jacobian-Free Newton Krylov (JFNK) time-stepping method [63,64] at Re = 200. 

lines mean negatives values; 21 equidistant isolines from u = — 1 to 
u = 1 and from v = — 1 to v = 1; further details may be found 
in [60]. 

B. Structures Identification 

As a nontrivial example of structures identification, linear global 
modes of the two-dimensional lid-driven cavity flow have been 
obtained by solution of the biglobal (BG) eigenvalue problem 
[Eq. (4)] on 64 x 64 spectral collocation points at subcritical 
conditions (Re = 2000, /3 = 0.0001) as well as by performing 
DMD, TS, RA, and POD analyses of DNS-obtained solutions. This 
flow is known to be stable [65] and comprise both stationary and 
traveling decaying modes. The objective of this section is to compare 
the performance of the different approaches in describing these 
structures. For the DNS work, the flow is calculated with spectral 
collocation for the spatial discretization and the algorithm proposed 
by Spalart and Rogers in [66] for the temporal discretization. More 
details about the DNS can be found in [2]. The Chiba approach [62] 
has been followed in the TS analysis, with a random linear pertur­
bation superimposed upon the base flow used as initial condition, and 
a total integration time / = 40. In this case, a small Krylov subspace 
dimension (m = 6) is sufficient to accurately capture the first two 
flow eigenmodes. Regarding the frequency recovery, an aliasing-like 
problem occurs due to the relatively large integration time used in the 
DNS and the fact that the complex logarithm is a multivalued 
function. However, this problem is easily solved by analyzing the 

Fourier transform of the DNS. To compute DMD/Koopman modes 
and POD, a sequence of 400 snapshots is taken, starting at / = 200 
with At = 2, not sampling the transient time. 

Figure 2 (upper) presents the leading eigenmode of lid-driven 
cavity flow at Re = 2000 obtained by biglobal analysis and DMD, 
TS, RA, and POD analysis. In all cases, line-thickness agreement is 
seen in the respective results. The leading corresponding eigenvalue 
is compared in Table 2 for the first four methods. On the other hand, 
due to the existence of a strongly dominant linear instability (high 
kinetic energy level) over the fiowfield pattern, the first POD topo-
mode [see Eq. (12)] is able to capture its spatial structure. Biglobal 
analysis results are considered as converged reference. Relative error 
for the leading eigenvalue is 6.3 • 10~5 for the DMD analysis, 1.2 • 
10~3 for the TS analysis, and 3.4 • 10~4 for the RA algorithm. 

Figure 2 (lower) presents the second leading eigenmode of lid-
driven cavity flow at Re = 2000 obtained by the first four methods 
(upper). Line thickness agreement is again recovered in the results 
of the first four methods. The second leading eigenvalue is also 
presented in Table 2. The relative error of the real part of the 
eigenvalue is 3.1 • 10~3 for the DMD analysis, 3.9 • 10~3 for theTS 
analysis, and 7.6 • 10~3 for the RA algorithm, and the relative error 
for the imaginary partis 3.2 • 10~2 for the DMD analysis, 5.2 • 10~3 

for the TS analysis, and 1.0 • 10_ 1 for the RA algorithm. 
Eigenvectors are normalized with umla and 0max. Dashed lines mean 
negatives values; 21 equidistant isolines from u = — 1 to u = 1 and 
from v = — 1 to v = 1. Line-thickness agreement is obtained 
between the results of all algorithms employed. 
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Fig. 2 Eigenmodes of the regularized lid-driven cavity (LDC) obtained using BG instability analysis, TS, Koopman analysis (DMD), and RA and first 
POD topo mode at Re = 2000 a-b) first, c-d) second. 

Figure 3 presents the damping ratio a obtained with the RA 
method. The damping rate presents a exponential decay with time 
and is a linear combination of the first, second, and third leading 
modes. Two traveling modes with frequency cor = 0.958778 and 
cor = 1.879050 are superimposed upon the nonoscillatory steady 
mode (cor = 0) and are shown in Fig. 4, which presents the 
correspondence of the frequencies of the damped linear two-
dimensional eigenmodes of the converged steady-states, with those 
obtained from discrete Fourier transforms of the DNS. 

As it was mentioned before, the first POD topo-mode is able to 
capture the spatial structure of the leading linear global eigenmode, 
due to the existence of a strongly dominant linear instability. 
However, the first POD chrono-mode [see Eq. (12)] presents a single 
oscillatory frequency (a>r = 0.000976). Figure 5 presents the 

Table 2 Damping rate of the leading stationary eigenmode obtained by 
solution of the global instability eigenvalue problem and DMD analysis of 

transient DNS data 

Model 

3M 

EVP (4) 

0 
-0.031714 

DMD (15) 

0 
-0.031712 

TS(4) 

0 
-0.031754 

RA(5) 

0 
-0.031703 

Mode II 

3WI 

EVP (4) 

0.966158 
-0.066754 

DMD (15) 

0.963098 
-0.064574 

TS(4) 

0.961099 
-0.067017 

RA(5) 

0.958778 
-0.059983 

frequency diagram of this first POD chrono-mode, which contains 
more than 99.9% of the kinetic energy. As usual in POD analysis, 
POD modes travel in pairs. In this problem, energy level and 
magnitude of second and third topo- and chrono-modes are of the 
same order. Because of its small amount of energy, they can be 
considered as small variations of the dominant mode that compose 
the original flow, and they are not considered relevant case of this 
study. In summary, it is shown that, in this flow configuration, which 
is dominated by a few stationary and traveling linearly damped 
eigenmodes, the frequency and damping characteristics of the 
leading linear flow perturbations are captured correctly by any of 
DMD, TS, and RA analysis. Because of the fact that the leading POD 
eigenmode contains practically all the disturbance energy at the 
conditions examined, POD analysis can also capture exactly this 
dominant flow perturbation, such that any of the aforementioned 
methods may be used if analysis is to focus exclusively on that flow 
eigenmode. 

C. Instability Analysis Using Stable Very-High-Order 
Finite-Differences (FU-q) 

Turning to the issue of efficiency of present-day computations of 
global instability results, the rapid increase of computing hardware 
capabilities over the last decades may be perceived as having reduced 
the need to devise time-stepping techniques, because matrix forma­
tion and inversion became increasingly less expensive as hardware 
has improved. Nevertheless, matrix-forming global instability anal­
ysis algorithms involving direct dense matrix operations, which 
require 0(N2) memory for the matrix storage and 0(N3) CPU time 
for the matrix inversion associated with seeking interior eigenvalues, 



100 120 140 160 180 200 
time (s) 

Fig. 3 Dependence of damping ratio a with time showing the exponential decay of two travelling modes (o)r = 0.958778, a = 0.059983) and 
(<or = 1.879050, a = 0.065227), superimposed upon the steady mode (<or ~ 0, a = 0.031703) at Re = 2000. 

can quickly become very expensive for biglobal hydrodynamic 
instability problems at moderate Reynolds numbers and are 
impractical for degrees of freedom, N, typical of well-resolved 
hydrodynamic [7] and especially aeroacoustic [31] global eigen­
modes. Crouch et al., in their groundbreaking work on analysis of 
transonic turbulent flow over an airfoil [13,14], demonstrated that use 
of parallelizable sparse direct solvers, in conjunction with matrix 
formation and inversion, is a viable alternative to a time-stepping 
approach. Gennaro et al. [67] found the effectiveness of sparse direct 
solvers for biglobal instability problems to depend strongly on 
whether incompressible or compressible analysis is performed and 
whether spectral collocation or high-order finite-differences are used 
for the spatial discretization. 

Motivated by these findings, research into high-order finite-
difference methods was initiated, posing the question of accuracy 
before turning attention to efficiency. Besides standard high-order 
central finite differences, summation by parts [68,69], Pade [70], 
dispersion-relation preserving [71], and the less-known finite-
difference scheme of very-high-order q, (FD-q) of Hermanns and 
Hernandez [58] were pitched against each other, and their results 
were compared against those delivered by the spectral collocation 
method based on (standard and coordinate-transformed) Cheby-
shev-Gauss-Lobatto grid. Figure 6 shows the relative error for the 
amplification rate of the leading eigenmode of plane Poiseuille flow 
(PPF) at Re = 104, a = 1 (Orszag [72]) as obtained by the five 
methods using double precision arithmetic and the converged 

Fig. 4 Correspondence of the frequencies of the damped linear two-dimensional eigenmodes of the converged steady-states obtained from discrete 
Fourier transforms of the DNS signals at Re = 2000. 
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Fig. 5 Frequency diagram of the first POD chrono-mode, Eq. (12), (<yr = 0.000976, 0.012695, 0.041992) at Re = 2000. 
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Fig. 6 Relative error for the amplification rate of the leading 
eigenmode of plane Poiseuille flow at Re = 104, a = 1 (Orszag [72], 
Kirchner [73]), obtained by spectral collocation using the Chebyshev-
Gauss-Lobatto grid and high-order finite-difference methods of various 
orders q: Fade [70], DRP [71], SBP [68,69], and FD-? [58]. 

result of Kirchner [73], OJ^ = 0.2375264888204682 as reference. 
Figure 7 shows the eigenspectrum of Blasius flow at Res, = 580, 
a = 0.179 (Mack [74]), obtained with spectral collocation based on 
mapped Chebyshev-Gauss-Lobatto grids, as well as members 
q = 8 and q = 16 of the FD-q family [58]. A brief account of the 
findings is presented here; further details may be found in Paredes 
etal . [36]. 

In the PPF, it is seen that at a given order (here eight, although 
analogous results have been obtained at all orders) the performance 
of the better-known high-order FD methods [68-71] is comparable, 
while the FD-q method is substantially more accurate; to achieve a 
relative error of 10~4 in the amplification rate, N = 80 points are 
needed by FD-^8 and more than N = 150 by all other methods. 
Conversely, and much more importantly from the point of view of the 
subsequent use of the FD-q methods as the basis for spatial 
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Fig. 7 Eigenspectrum of Blasius flow at Res, = 580, a = 0.179 (Mack 
[74]), obtained with spectral collocation based on mapped Chebyshev-
Gauss-Lobatto grids, as well as two high-order finite-difference methods 
[58]. 

discretization in biglobal, PSE-3D and triglobal instability analyses, 
at a given affordable level of discretization, say N = 200 points, 
Pade, summation by parts (SBP), and dispersion relation preserving 
(DRP) methods of eighth order produce a relative error of 10~5 in the 
recovery of the leading eigenmode, while the error of the FD-^8 
method is slightly larger than 10~7. As the order of the FD-q method 
is increased, its results approach those of the spectral collocation 
method, with which the method becomes identical when q = N. 

At all formal orders examined, in order for the Pade/DRP/SBP 
schemes to become competitive with FD-q, the former need to 
recover the accuracy lost due to their treatment of the boundary 
closure if a given bandwidth corresponding to q order is used. 
Although this is not an issue from the point of view of efficiency 
when local instability is analyzed, where full eigenspectrum 
computations are performed using the QZ algorithm, FD-q has a 
competitive advantage in performing global instability analysis, 
where use of sparse matrix libraries is essential and one seeks to use 
the method having optimal convergence properties between all 
available having the same nominal order of accuracy and associated 
sparsity pattern. 

The accuracy of the FD-q method is preserved in open flows, as 
shown in Figs. 6 and 7, where the leading unstable eigenmode and the 
least stable part of the Blasius eigenspectrum are shown, recovered 
by the spectral collocation method and N = 129 Chebyshev-Gauss-
Lobatto points, as well as FD-^8 and FD-^16. Even for such 
relatively low values of q, the entire discrete eigenspectrum is seen to 
be recovered as reliably as by the spectral collocation method, while 
none of the three methods is capable of capturing the continuous 
spectrum correctly; as is known analytically, the latter is a vertical 
line at cr = 1. Interestingly, even at q = 8, the discrete approxi­
mation of the continuous spectrum is more vertical than that deliv­
ered by the collocation method, although, as q increases, the FD-q 
and spectral results come closer and collapse onto each other at 
q = N. 

D. Three-Dimensional Parabolized Stability Equation Using FT)-q 

Paredes et al. [36] discuss a step-by-step construction of the 
analysis tools, validating extensively each of the analysis steps. A 
parabolized variation of the three-dimensional stability equations 
(PSE-3D) can be derived if the basic flow can be assumed to 
experience slow variations along one of the three spatial directions 
(see Table 1). In this manner, the three-dimensional eigenvalue 
problem is replaced by an initial value problem that is solved using a 
marching procedure along the slow direction. The PSE equations can 
be written in a compact form as 

ox 
(17) 

where operators C and M act only in y and z but depend on the 
complex value a(x) = ar(x) + iat(x), the real part of which is 
related with the periodicity length along the homogeneous spatial 
direction x through ar = 2Tt/Lx, and the imaginary part is the spatial 
amplification/damping rate. An ambiguity exists in the PSE formula­
tion, in which the changes in amplitude along the slow spatial 
direction can be contained both in the amplitude function q or in the 
phase function of the Ansatz (see Table 1). A normalization condition 
is required to close the formulation of the problem (see Herbert [26] 
for a review in conventional PSE). In this work, the following 
normalization condition is used: 

f ~ t 9 u _ /" 1 

J a dx } a 2 2 - | f i | ^ = 0 (18) 

where u = (u, v, w)T. This normalization imposes that the kinetic 
energy of the shape functions remains independent of x. Thus, the 
amplitude growth is absorbed into the phase function. 

After developing and validating a standard PSE approach using 
the FD-q spatial differentiation in both planar and axisymmetric 
geometries, the spatial biglobal EVP is solved by a companion 
matrix; the novelty of these results makes them interesting in their 
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Fig. 8 Isosurface of the flowfield formed by an axially inhomogeneous 
system of steady laminar vortices and their leading global eigenmode 
obtained by the linear PSE-3D methodology at Re = 1200. 

own right, although in the work of Paredes et al. [36] they have been 
used to provide the necessary initialization for the PSE-3D approach. 
Both the axisymmetric PSE and the PSE-3D codes were validated 
using the nonparallel model Batchelor vortex. Subsequently, a basic 
state composed of an axially inhomogeneous pair of counter-rotating 
(true, axially inhomogeneous) Batchelor vortices has been analyzed 
using the PSE-3D methodology. The PSE-3D marching integration 
is initialized by the leading spatial mode of two model Batchelor 
vortices exposed in [36] with axial velocity defect y = 0.9, vortex 
core radius 8 = 1.0, and swirl parameter K = —1.14 at Re = 1200 
and the fixed frequency co = 2. The resulting sought complex 
eigenvalue of the spatial biglobal EVP is a0 = 1.79368 — iO. 589156. 
Figure 8 shows the isosurface of the axial velocity flowfield, q = 
q + eq with e = 10~4/| u01, for the leading linear flow perturbation, 
while more details are provided in the paper of Paredes et al. [36]. 

E. Triglobal Instability Analysis on a Desktop Computer Using FD-q 
Finally, the FD-q method [58] has also been the enabling 

technology permitting the solution of the triglobal EVP by matrix-
forming techniques, in which no assumptions of flow homogeneity in 

Fig. 9 Leading biglobal eigenmode of lid-driven cavity flow [65] 
recovered by solution of the triglobal EVP, without assuming spanwise 
flow homogeneity. Isosurfaces of u at (—0.4, —0.03, 0.4). 

any spatial direction are made. Validation was provided by the well-
known leading two-dimensional biglobal eigenmode of lid-driven 
cavity flow [65,75,76], which was recovered by the triglobal 
analysis, the latter performed without exploitation of the spanwise 
invariance of the basic state. A result is shown in Fig. 9, while details 
are discussed by Paredes et al. [36]. 

Interestingly, from a computational efficiency point of view, the 
resolution used for the result shown in Fig. 9 can be compared against 
that used for the solution of the biglobal EVP [48,49] in both cases 
forming and storing the respective matrices. The leading dimension 
in the former EVP has been 4 x 562 x 12, which is of the same order 
of magnitude as the leading dimension resulting from a typically 
used resolution in the latter EVP, e.g., 4 x 340 x 90 used to ensure 
convergence in [49]. The sparse treatment of the matrix discretizing 
the triglobal EVP, as opposed to the dense parallel approach used for 
the solution of the biglobal problem meant that a typical dual-
processor desktop with 8 GB of RAM and 3 MB of L2 cache could be 
used for the first, in the place of a distributed memory supercomputer 
with several hundred processors used in our earlier biglobal analysis 
work [49,77]. 

V. Conclusions 

Global linear instability theory has yielded ground-breaking 
advancements in the understanding of fluid flow instability over or 
through complex geometries, both in the original modal context and 
in the more recently incorporated into global instability analysis non-
modal theory. Simplifying assumptions made in the past in order to 
render instability analysis of a realistic configuration amenable to the 
classic linear instability theory may now be questioned in the light of 
the new methodology. If the assumptions of local and quasi-local 
theories are verified in a context of a global analysis, the former 
methodologies are bound to prevail as the methods of choice for the 
analysis on account of their efficiency, otherwise they may now be 
abandoned in favor of the more complete global instability analysis 
approach. 

The last decade saw significant achievements of the theory, such as 
the overall first TriGlobal modal analysis, and the first such analysis 
using matrix-forming techniques, as well as the first global instability 
analyses of turbulent flow over airfoil geometries. However, most 
flows in three-dimensional domains with two inhomogeneous spatial 
directions, and all but a handful of flows in three inhomogeneous 
spatial directions are yet to be analyzed from a global instability 
theory point of view, even in the laminar regime. Consequently, the 
pages of high-impact factor journals are duly filling up at an accel­
erating pace with results obtained using state-of-the-art computa­
tional technologies to address the still formidable numerical tasks 
associated with the theory. However, contrary to the situation in a 
flat-plate boundary layer or a shear-layer flow, in both of which the 
underlying experimentally observed instability modes have been 
extensively studied in parallel with theoretical efforts for their 
explanation, what is largely missing from reported analyses of global 
flow instability is a culture of using experimental reality both as a 
sanity check of theory and as guidance for its further development. 
Besides this major concern, other reasons to contain the euphoria 
surrounding global instability are associated with a list of challenges, 
some of which discussed explicitly and others alluded to herein, are 
summarized next. 

In contrast to closed systems, theoretically-founded inflow/ 
outflow boundary conditions for open systems, equally relevant to 
BiGlobal and TriGlobal instability analysis, are presently missing. 
To-date only heuristic arguments can be found in the literature 
regarding the degree by which the various approximations to a theo­
retically unknown boundary closure affect either the shape of the 
eigenspectrum and amplitude functions, or the maximal ampli­
fication of optimal perturbations, when a modal or a non-modal 
instability analysis is performed, respectively. A prime case in this 
point is the Blasius boundary layer, whose eigenspectrum has been 
exhaustively studied by local and non-local analysis, but is yet to be 
reconciled with results of global linear theory, other than under 
conditions mimicking classic linear stability theory approximations. 



Vortical flows, modeled by isolated or systems of (viscous or 
inviscid) infinitely long axisymmetric tubes of vorticity, is another 
example of prototype flow the instability of which is well-understood 
from a clas sic linear theory point of view. However, it has been shown 
that using more realistic spatially-diffusing vortices and relaxing the 
axial homogeneity assumption, instability results are obtained, 
which are not only quantitatively but also qualitatively different to 
those delivered by the classic analysis. A new theoretical concept 
capable of handling basic flow inhomogeneity along the axial 
direction, in conjunction with strong dependence of the basic state on 
the plane normal to the vortex axis was introduced in the past and is 
further discussed in references herein. 

Instability analyses of turbulent flows with two homogeneous 
spatial directions have long been performed in case the dynamics are 
driven by a single frequency, while analogous linear stability theory 
in flows in which a broadband turbulence spectrum exists has 
only recently begun. Despite the obvious qualitative analogies of 
the proper orthogonal decomposition and global linear theory 
eigenfunctions in those flows on which both analyses have been 
attempted so far, no firm theory currently exists to relate the two, 
although recent evidence suggests that they may be related, as antic­
ipated by the early proper orthogonal decomposition developers. The 
construction of reduced order models, first for efficient description 
and then for control of flow at conditions amenable to application of 
global theory is still at its infancy. Combination of results of flow 
topology and those delivered by global linear instability analysis 
constitutes a very powerful tool for quantification of the identified 
structures and has only been used on two related flows so far; this line 
of work should be intensified in future. 

Contrasting the presently feasible state of affairs against the 
ultimately desirable targets in global linear instability and motivated 
by some of the questions posed above, recent work aiming at order-
of-magnitude improvements in the numerical solution of the 
eigenvalue (and singular value) problems governing global flow 
instability has been introduced. The efficiency gains offered by the 
stable very high-order finite-differencing scheme used to discretize 
the related spatial operators has been put to use to obtain accurate 
PSE-3D and TriGlobal Eigenvalue problem solutions on present-day 
desktop computers. 
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