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Abstract—By spectral analysis, and using joint time-frequency 
representations, we present the theoretical basis to design invariant 
bandlimited Airy pulses with an arbitrary degree of robustness 
and an arbitrary range of single-mode fiber chromatic dispersion. 
The numerically simulated examples confirm the theoretically pre­
dicted pulse partial invariance in the propagation of the pulse in 
the fiber. 

Index Terms—Fiber optics, optical fiber communication, optical 
fiber dispersion, optical pulse shaping. 

I. INTRODUCTION 

I DEAL Airy pulses are an infinite energy kind of pulse 
which propagates undistorted on dispersive media, pro­

posed in [1] within the context of quantum mechanics. Due to 
the unique properties of Airy pulses, the intensity profile re­
mains invariant during propagation. However, ideal Airy pulses 
are impractical because of their infinite energy. The proper­
ties of finite-energy Airy beams by temporal truncation were 
investigated theoretically within the context of optics in [2]. 
Over the years, nondiffracting waves have been systematically 
investigated, and in linear optics, spatial Airy beams have been 
proposed for several applications [3]-[6], and spatiotemporal 
light bullets Airy pulses has also being investigated, under 
linear and nonlinear conditions [7], [8]. 

Recently, the authors of this study have patented an optical 
fiber transmission system based on Airy pulses, using the unique 
properties of these pulses [9]. In this study, we analyze and sim­
ulate the proposed transmission system pulses, providing the 
design tools needed. In the remainder of this study, we ana­
lyze the effect of the single-mode fiber (SMF) chromatic dis­
persion (including cubic-order phase dispersion) on the ideal 
Airy pulse, as well as a spectrally windowed bandlimited pulse. 
We also provide the design tools required to obtain the spectral 
function of a practical finite-energy Airy pulse, by an asymmet­
rical spectral-domain flat-top windowing of an ideal Airy pulse, 

which can be used to obtain pulses of different degree of ro­
bustness against different amounts of chromatic dispersion. As 
it is shown, a portion of the temporal waveform keeps invariant, 
providing a relative insensitiveness of the pulse to variations of 
chromatic dispersion. 

II. SPECTRAL ANALYSIS OF IDEAL AIRY PULSE 

PROPAGATION ON A SMF 

In the spectral domain, an ideal Airy pulse can be defined 
from its spectral function as ([10], p. 87) 

A{u) = expÜfw3) (1) 

where w is the baseband angular frequency, i.e., ui = 
^opt — wo, wopt is the optical angular frequency, uio is 
the central angular frequency, j is the imaginary unit, and 
£ is a real constant number. In temporal domain, the cor­
responding complex envelope function of the Airy pulse, 
a (i), can be obtained from the inverse Fourier transform 
of A(u>). Neglecting the fiber attenuation and nonlinear ef­
fects, the spectral response of an SMF section with length 
z can be modeled as a phase-only filtering responsible 
of the chromatic dispersion, which can be expressed as 
H(u,z) = exp(—j/3(uj)z), where f3(uj) is the propagation 
constant of the single mode as a function of the baseband 
angular frequency u> (centered at wo)- The function can be very 
accurately expressed as the Taylor expansion until third order of 
w, leading to the following expression for the transfer function 

H(w,z) = exp(- ; ,z( /3o+/3iw + ( / V 2 V 2 + ( /33/6V 3)) , 
where /?¿ = dlj3 (u>)/du>t at w = 0. The quadratic and cubic 
terms are responsible of the chromatic dispersion, which in gen­
eral produces a distortion in the complex envelope of the trans­
mitted pulse because of the different values of group velocity 
of each spectral component. As represented in Fig. 1 (a), we can 
calculate the effect of the Airy pulse propagation thought the 
fiber as by applying the previous transfer function to the Airy 
pulse, Fplop(u;,z) = A(v)H(w,z), obtaining Fp r op(w, z) = 
exp( - j ( /3 0 z + Pizw + ( /3 2 z/2V 2 + (¡33z/6 - £)w3)). It can 
be demonstrated that the second-order phase term affects as a 
frequency shift Au>(z) in the Airy pulse, with 

In order to demonstrate this, we can express Fplop(ui, z) as 
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FpTOp{w,z) — 

A{w - AUJ(Z)) exp(j(60 + hv + b2u
2 - fczu;3/6)), 
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Fig. 1. Spectral input and output signals and transfer function of the optical 
fiber for (a) ideal Airy pulse as input and (b) bandlimited Airy pulse. 

where the coefficients 6¿ can be deduced expanding the Airy-
pulse expression 

A(OÜ - Au{z)) = exp(j{-£(Auj(z))3 + 3£(AOÜ{Z))2U; 

-3£AÜJ(Z)ÜJ2 + &3)) (3) 

obtaining the coefficients 60 = £(Au;(£))3 ~~ Poz,bi = 
—3£(AUJ(Z))2 — Piz, and the second-order phase term is 
canceled with b2 = 3£AUJ(Z) - ¡32z/2 = 0. With all this, we 
can express 

FpIop{üu, z) = A{ou - AÜÜ{Z))D3{ÜÜ, z) 

xexp{-j(At(z)uj + ^(z))) (4) 

where </>(z) = -b0 = p0z - £(/32z/6£)3 and 

At(z) = -h = plZ + S_z2 (5) 

D3{u>,z)=exp(-jfozu3/6). (6) 

As shown in the next section, under some conditions, 
the cubic-order phase distortion produced by D3(UJ,Z) can 
be neglected, and the temporal complex envelope function 
/prop {t, z) can be obtained by applying the inverse Fourier 
transform of (4) as 

/prapfr z) « a(t - At(z)) exp(i(Aa;(^)i - 0(z))) (7) 

where fpiop{t,z) is the inverse Fourier transform of 
FPioP{w,z). It can be easily deduced that the waveform 
invariance of the temporal envelope amplitude is 

| / p r 0 p ( * ^ ) | « | o ( í - A í ( « ) ) | . (8) 

Joint time-frequency representations provide a clear visual­
ization of the interaction of pulses with optical media [11], [12]. 
In this study, we use joint time-frequency representations to vi­
sualize the frequency shift and invariant waveform of the Airy 
pulse during the propagation through the fiber. Fig. 2 shows an 
illustrative example of the time-frequency distribution of an 
ideal Airy pulse before and after its propagation through the 
fiber over a distance, z. It can be observed that in both fig­
ures, the time-frequency distribution remains undistorted, but 
there is a frequency shift AOJ(Z) of the whole distribution. In 
time domain, the envelope amplitude remains undistorted. The 
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Fig. 2. Frequency shift effect of the dispersion on the time-frequency distribu­
tion of an ideal Airy pulse after its propagation in an optical fiber. 

cubic-order phase distortion has been neglected in this example. 
Also, no consideration about the pulse temporal duration and 
limited bandwidth has been done in this whole section. These 
aspects are discussed in the next section. 

III. NONIDEAL AIRY PULSE PROPAGATION ON SMF: FLAT-TOP 

WINDOWED AIRY PULSE 

An ideal Airy pulse has an infinite bandwidth. In a prac­
tical implementation, we can only obtain an approxima­
tion to the ideal Airy pulse. We can spectrally window the 
ideal Airy spectral function with a flat-top window function 
W{u)),Aw{u,ti) = W(UJ)A(UJ), where W{w) is approxi­
mately constant over most of the total window bandwidth, B. 
By using a flat-top window, the resulting spectral function is 
locally the same as the ideal spectral function, and it can be 
expected that the invariance property of the pulse will also 
locally remain. As shown in Fig. 1(b), applying again the 
transfer function H(UJ, z), and from ideal Airy pulse propaga­
tion effect deduced in (4), we can calculate the effect of the 
fiber dispersion on the bandlimited pulse Aw(w, 0) 

Fw,piap{w, z) = AW{UJ, 0)H{ou, z) 

= W{UJ)A(UJ)H(UJ,Z) 

= W{UJ)FPIOP(UJ,Z) 

= W{u>)A(u - Au(z))D3(u,z) 

x exp{-j{At{z)uj + <j>{z))) 

= AW(UJ,Z)D3(W,Z) 

xexv{-j{At{z)u) + (J>{z))) (9) 

where 

Aw(w, z) = W(u)A{u - AUJ{Z)). (10) 

We provide two conditions to neglect the distortion of the 
cubic-order phase D3 (u, z). First, we define a strict nondistor-
tion condition, a sufficient condition to totally neglect the distor­
tion imposing D3 (a;, z) w 1 in the signal bandwidth] UJ \ < B/2, 
using (6) with I a; I = B/2 

\(33zB3/á8\ < 2TT (11) 

This condition has to be met for all z within the path where 
the pulse invariance is desired. Since it can be too restrictive 



for relatively high bandwidths, we also define a less restrictive 
condition using the group delay function of Fw,Prop{w, z) 

TTV,prop(w,z) = —d£Fw,Prop(w,z)/du) 

= 3(/?3z/6 - £)u2 + fozu/2 + faz (12) 

where / denotes the phase of the function. From this, we can 
easily deduce the quasi-nondistortion condition to neglect fa in 
the group delay function TwiProp(ü;, z) 

l/W6| < |£|. (13) 

Under this condition, the group delay function of the dis­
persed pulse is not affected by the cubic phase dispersion term, 
and it does not distort the overall temporal intensity distribution 
of the pulse, as shown in the examples. If we neglect the cubic 
phase term of the dispersion, we can assume Fw,Piop(<¿>, z) ^ 
Aw{u,z)exip(— j(At(z)ui + <f)(z))), and in time domain, we 
can deduce/w,prop (i,^) ^ aw(* — At(z),z) exp(— jf(z)), 
obtaining 

\fw,pIop(t,z)\ pa \aw(t- At(z),z) (14) 

where /W]Prop(i, z) and ow(i, z) are the inverse Fourier trans­
form of -Fw,proP(w, z) and A-w(u>, z), respectively. In order to 
show the partial invariance of the pulse in the propagation that 
(14) implies, we proceed to analyze bandlimited, spectrally 
flat-top windowed Airy pulse, aw {t,z). In Fig. 3, a joint 
time-frequency analysis of aw {t, z) is shown, where we can 
observe that the signal can been decomposed in two parts: 
"head" and "tail.". In the spectral domain, the "head" can be 
defined as the symmetric spectral section of A-w (w, z), which 
can deduced from Fig. 3 as the spectral portion of A-w (w, z) 
centered in Aw[z), with bandwidth Bhead(z)- From (10), we 
have A-W(UJ,Z) ¡=s A(w — Au>(z)) in most of the window 
bandwidth B, and we can finally deduce 

• head {u,z) 
A{u-
0, 

Aw(z)), Aw(z)| <Bhead{z) 
Au(z)\ >Bhead(z) 

(15) 
where -Bhead(z) — (B — Aui(z))/2. On the other hand, the 
"tail" of the pulse can be defined as Ftai\(ui, z) — Aw(<¿>, z) — 
-Fhead(i*', z). As shown in Fig. 3, the bandlimited Airy temporal 
envelope function aw {t, z) can be decomposed into 

aw{t,z) 
/head(í)Z), 

/ ta i l (M)) 
0, 

t € ihead(z) 
t G itail(z) 
t Í itotal(^) 

(16) 

where fhead(t,z) and fta,n{t,z) are the inverse Fourier trans­
forms of Fhead(w, z) and Ftaii(w, z), and/head(z), /taii(z), and 
hota,\{z) are, respectively, the time interval corresponding to the 
"head," "the tail," and the total parts of the pulse. 

Since the time-frequency distribution of the "head" of 
the pulse is locally the same as the frequency-shifted 
ideal Airy pulse distribution, during the "head" interval 
of the pulse, the temporal envelope will be approxi­
mately the same as the frequency-shifted ideal Airy pulse, 
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Fig. 3. Time-frequency decomposition of asymmetrically flat-top windowed 
Airy pulse in "head" and "tail." 

/head(*,z) « a(t)exp(jAuj(z)t),t e /head(z), and the tem­
poral envelope amplitude remains invariant and approximately 
equal to that of the ideal Airy pulse 

I/head ( M ) I W |a(*)|. * € ihead(z). (17) 

In order to define the time intervals /total{z), Ihead{z), and 
-ftaii(z), w e have to distinguish from the different sign of £. 
For £ < 0, we can define Itotai(z) = [0,T{z)],Ihead(z) = 
[0,Thead(z)], and Itaii(z) = {Thea.d(z),T(z)]. In the case 
£ > 0, we have the time reversed version of the signal, and 
we can define the intervals itotai(z) = [-T(z), 0], head(z) = 
[-Thead(z),0],andJ tai l(z) = \-T{z), -Thead{z)). We can ap­
proximate the duration of each decomposed part using the Airy 
pulse group delay function, TAW(W, z) = — d¿Aw{w, z)/duj = 
—3£(w — Au>(z))2, which is only defined in the signal band­
width |Ü;| < B. We can approximate the duration of the whole 
pulse T(z) as the maximum absolute value of the group delay 
function, which can be deduced as the maximum absolute value 
at the edges of the band u> = ±B/2 

T(z) = max i TAW Í — ,z) , TAV! (- — ,z\ J 

3IÍI ( | + |Aa;(z)|) . (18) 

Also, we can approximate the duration of the "head" of the 
pulse as the maximum absolute value of the group delay func­
tion in the spectral range of the "head," which can be deduced as 
the minimum absolute value at the edges of the band u> — ± 5 / 2 

Thea.d(z) = min I TAW(—,Z) , TAW(- — ,Z\ J 

•3iei (|-|Aü;(z)|y (19) 

IV. PROPOSED DESIGN 

In our proposed design, we consider a situation represented in 
Fig. 4, with an invariant path with length L, and a preinvariant 
path with length I, where z origin (z — 0) is set in the center of 
the invariant path. The preinvariant path is defined to consider 
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Fig. 4. Representation of input signal and optical fiber paths considered in the 
proposed design. 
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Fig. 5. Relation between RT and Rw 

the possibility of introducing the pulse at an arbitrary distance 
I before the invariant path. The objective of the design consists 
in obtaining the expression of the pulse at the beginning of the 
preinvariant path to be introduced in the fiber at z = —L/2 — I, 
which lead to a pulse with a spectral function Ayy(w, 0) in the 
center of the invariant path, at z = 0. We can define this ini­
tial pulse by using an spectral function FQ(U). In the previous 
section, we have obtained the expression of a pulse at an ar­
bitrary z, assuming a pulse Aw(v) at a position z = 0. The 
previous expressions can also be used for negative values of 
z. Therefore, the corresponding pulse at z = —L/2 — I can 
be obtained using (9). If we neglect linear and constant phase 
term (which does not affect to the pulse waveform), we obtain 
F0(w) = AW{UJ, -L/2 - l)D3(u, -L/2 - I), and using (6) 
and (10), it can be expressed as 

FQ(u>) = W{w) exp(j(C - fo(-L/2 - I)) 

x(w-p2(L/2 + l)/6£)3). (20) 

The condition for strict nondistortion of the pulse due to cubic 
phase during the invariant path can be obtained from (11) using 
the extreme values \UJ\ — 5 / 2 and \z\ — L/2 

\fcLB3/96\ < 2TT (21) 

and the condition for quasi-nondistortion of the pulse due to 
cubic phase can be obtained from (13) using \z\ = L/2 

|/?3(£/12)| « |f|. (22) 

Let us define some interesting design parameters in the de­
sired invariant path z £ [—L/2, L/2]. The maximum absolute 
deviation of the pulse frequency Awmax regarding the central 
frequency, in the extreme points of the path, z — zhL/2 can be 
obtained from 

Awmax = max(|Aw(z)|) 

= |Aw(L/2)| = |Aw(-L/2) | = IhL 
12f 

(23) 

We also define two temporal parameters, T¡nv and Tmax , 
where Tjnv is the invariant part of the pulse duration in the 
whole path z £ [—L/2, L/2], and can be calculated as the min­
imum duration of the head of pulse, and Tmax is the maximum 
total duration of the pulse in the whole path. These extreme 

values occur in the extreme points of the path, z 
From (18) and (19), we can deduce 

Tinv = min(Thead(z)) = 3|£| ( - - Aw„ ( — - Aw m a x j 

max(T(z)) = 3|£| [ - + Awmax Í — + Aw m a x j 

±L/2. 

i 

(24) 

(25) 

Let us also define a temporal ratio RT = T¡nv/Tmax G (0,1), 
which indicates "how invariant" is the temporal amplitude en­
velope of our spectrally windowed Airy pulse as it propagates 
through the fiber, obtained from the proportion between Tmv 

and Tmax. We also define the spectral ration R^ = Awmax/-B £ 
(0,1/2), which indicates the maximum relative frequency vari­
ation of the pulse. Both parameters RT and R^ can be obtained 
as 

RT — Tinv/Tm 

Ru = Awmax/,B = 

{B - 2 A a w ) 2 (1 - 2R„f 
{B + 2 A u w ) 2 

1 + RT 

(l + 2ñ w ) 2 

2-2R7 

(26) 

(27) 

In Fig. 5, RT and Rw are represented, where it can be observed 
that theoretically we can obtain a perfectly invariant pulse, with 
RT Rt 1 and Ru at 0. 

V EXAMPLES AND SIMULATION RESULTS 

Without loss of generality, in these examples, we are going to 
assume standard SMF (ITU-T G.652) in which dispersion pa­
rameter can be modeled as D(\) — D1550 + <Si55o(̂  — An) 
ps/(nm-km), where An = 1550 nm, D1550 — 17 ps/(nm-km), 
and 51550 — 0.056 ps/(nm2'km). From this, we can obtain 
/32 — -21.68 ps2/km and /33 = 0.0911 ps3/km at the central 
frequency WQ — 27r/n with /n — 193.413 THz. Nonlinear ef­
fects are out of the scope of this paper, and fiber attenuation will 
not be considered in order to have a more clear visualization of 
the pulse waveform invariance. 

As a first example, we consider a total signal bandwidth of 0.1 
THz, i.e., B — By — 2-K • 0.1 THz^rad centered at t¡;0pt — LJQ, 
and a desired invariant path length of L — 100 km, without 
preinvariant path, / — 0, where the initial pulse is supposed to 
be introduced right at the beginning of the invariant path. From 
the strict nondistortion condition of (21), we obtain a phase 
value of 0.0238 rad, which can be neglected regarding 27r. The 
strict nondistortion condition is a sufficient condition for com­
pletely neglecting the cubic phase propagation distortion. Using 
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Fig. 6. Representation of Tm a x (blue solid), T¡„v (blue dotted), and |£| (red 
dotted) as a function of RT for (a) first and (b) second examples. 

(24)-(27) and (2), we can calculate Tmax, T¡nv, and £ parame­
ters as a function of RT ratio, as shown in Fig. 6(a). In principle, 
we can theoretically obtain a value of RT as close to 1 as de­
sired, but Tmax , T;nv, and £ asymptotically tend to infinity when 
fix — 1- Therefore, it is theoretically possible to get as degree 
of invariance as close to the perfect invariance as desired, al­
though it may lead to impractical designs as we approach to the 
ideal perfect invariance. 

For illustrative purposes, we select a medium value of RT — 
0.5, which lead to the values Tmax — 1.36 ns, T;nv — 0.681 ns, 
and £ — 3.351 • 103 ps3, and from (27), we obtain a maximum 
relative deviation of frequency R^ = 0.0858 and Awmax = 
Ru • B = 2TT • 8.58 GHz-rad. The initial pulse to be introduced 
in the fiber at z = —L/2 is spectrally defined by (20). For the 
window function W(u>), we have selected a raised cosine func­
tion with a roll-off factor of 20%, with a total bandwidth B. 
Fig. 7 shows the temporal amplitude envelope, as well as the 
joint time-frequency analysis, of the resulting propagated pulse 
obtained from numerical simulation for three positions of the 
invariant path (z = —L/2,0, and L/2). Because of the positive 
value of £, the pulse is reversed from the pulses shown previ­
ously, where negative values of £ were assumed. The selected 
value of RT — 0.5 implies T¡nv — Tm a x /2, and therefore, the 
'head' of the pulse has approximately same duration as the "tail" 
in the extremes of the path, z = ±L/2. In the center of the in­
variant path z = 0, there is no tail and the "head" duration is 
equal to the total duration of the pulse, Thead(0) — T(Q). 

As a second example, we consider a signal bandwidth of 2 
THz, i.e., B — 2ir • 2 THz-rad centered at w0pt — 0̂= a 

desired invariance path duration of L = 1 km, and a prein-
variant path of I = 3 km. Applying (21) for the cubic phase 
strict nondistortion condition, we get a phase value of 1.88 rad, 
which can obviously not be neglected regarding 27r. Even if 
the strict nondistortion condition is not satisfied, we still can 
get little cubic phase distortion if the quasi-nondistortion con­
dition is satisfied; from (22), £ > 0.0152 ps3. In Fig. 6(b), 
we represent again Tmax , T¡nv, and £ parameters as a function 
of RT. We select RT = 0.7, which leads to Tmax = 0.454 
nm, Tinv — 0.318 nm, and a value of £ = -3.233 ps3 that 
satisfies the quasi-nondistortion condition. The negative value 
of £ is selected to illustrate the inverted temporal waveform 
of the pulse regarding the previous example. We also obtain 
R„ = 0.0445, Awmax = 2TT • 0.89 THz-rad. The initial pulse 
at z = — I — L/2 to be generated and introduced in the fiber 
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Fig. 7. Invariant path simulation results for the first example. Temporal enve­
lope amplitude and joint time-frequency analysis. (Multimedia file included.) 
(a) z = - 5 0 km. (b) z = 0 km. (c) z = 50 km. 

is spectrally defined in (20). Again, a raised cosine function is 
used as a window function W(u), with a roll-off factor of 20% 
and a total bandwidth B. Fig. 8 shows the temporal amplitude 
envelope, as well as the joint time-frequency analysis, of the 
resulting propagated pulse, obtained for three positions of the 
invariant path (z — —L/2,0, and L/2). The selected value of 
RT = 0.7 implies Tinv = 0.7 • Tmax. 

In order to better illustrate the pulse propagation through the 
fiber in the invariant path, we have included an animation for 
each example. We have included two supplementary AVI files 
that show a representation of the pulse propagation in the in­
variant path, for first and second example, respectively, cor­
responding to intermediate z values of the invariant path. We 
can observe the invariance of the "head" of the pulse, with a 
minimum duration of the invariant part T;nv and a maximum 
total duration Tmax , as deduced theoretically. It is also inter­
esting to observe the nonuniform velocity effect (acceleration) 
of the pulse. As indicated in (5), the dependence of the delay 
of the pulse Ai(z) on z is not linear, and the pulse velocity is 
not constant. This nonuniform velocity is due to the fact that 
the group velocity function depends on frequency, and there­
fore, the frequency shift Aui(z) also produces a variation in the 
pulse apparent velocity. We can express At(z) — At\(z) + 
At2(z), where Aíi(z) = faz and At2{z) w /3|z2/(12£). The 
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Fig. 8. Invariant path simulation results for the second example. Temporal en­
velope amplitude and joint time-frequency analysis. (Multimedia file included.) 
(a) z = - 0 . 5 km. (b) z = 0 km. (c) z = 0.5 km. 

delay term Ati(z) constituting the main delay component of 
the pulse in its propagation through the fiber is subtracted from 
the total pulse delay represented. Thus, the pulse delay observed 
in the animations only corresponds to At2(z) term. The max­
imum delay variation in the invariant path due to At2(z) term is 
At2{L/2) = Ai 2 ( -L /2 ) = 29.21 ps for the first example, and 
A¿2(-L/2) — At2(—L/2) — —3.03 ps for the second example. 
Therefore, it is a very marginal effect compared to the main 
delay component Aii (z), which is in the order of microseconds 
for distances in the order of kilometers. 

Fig. 9 represents the initial pulse to be generated at the be­
ginning of the preinvariant path for the second example (it was 
assumed no preinvariant path in the first example), and we have 
also included a supplementary AVI file that shows the animation 
of the propagation of the pulse during the preinvariant path. As 
can be observed in the animation, as the pulse propagates in the 
fiber, its waveform evolves to the desired pulse in the invariant 

N 
X 
t 195 

§194 
f 193 

Spectrogram 

( 

D_ •—• 
O 0 A C 
<U " O u D 

> 3 

£ I 0 

-3.5 km 

0.2 0.4 0.6 

Time [ns] 

Fig. 9. Preinvariant path simulation results for the second example. Temporal 
envelope amplitude and joint time-frequency analysis of the pulse. (Multimedia 
file included.) 
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Fig. 10. Cubic phase distortion for the second example, comparing the propa­
gating pulse at the initial point of the invariant path z = —L/2 (red dotted) and 
the final point of the invariant path z = L/2 (blue solid). 

path, as predicted in the previous theory. Nonuniform velocity 
effect can also be observed, where again the main propagation 
delay term, At\(z), is subtracted from the total pulse delay. 

In Fig. 10, we show how the cubic phase term distortion af­
fects to the pulse temporal waveform in the second example 
(for the first example, the cubic phase distortion is neglectable), 
where the whole delay term Ai has been subtracted for a clear 
visualization. As can be observed, it causes some shift in the rip­
ples of the pulse, but the overall envelope shape remains undis-
torted, verifying the validity of the proposed quasi-nondistortion 
condition. 

It is also worth noting that, since only linear effects are in­
volved in the invariant propagation of Airy pulses, a perturba­
tion or noise added to the initial Airy pulse affects similarly as 
in generic pulses propagation under linear conditions, being lin­
early summed to the predicted invariant propagated pulse. 

VI. CONCLUSION 

Here, we have extensively developed the analytic basis for 
design invariant bandlimited Airy pulses in SMFs, using the 
unique propagation properties of Airy pulses in dispersive 
media. Joint time-frequency analysis plays an important role 
in this analysis and design. In order to get the finite energy 
Airy pulse, a truncation in the spectral domain (instead of 
temporal domain like in [2]) is applied. This spectral truncation 
consists in applying an asymmetric flat-top window to the ideal 
Airy pulse spectra, which does not locally affect the unique 
properties of the Airy beams. 

There are several pulse shaping techniques that can be ap­
plied to generate the initial pulse of the proposed designs. Fiber 
Bragg gratings (FBGs) [13] and spatial light modulators [14] 
have shown to be very suitable in shaping optical pulses of rel­
ative complexity. FBG-based implementations are an in-fiber 



inexpensive solution, which have been demonstrated for intro­
ducing high amounts of pure third-order dispersion [15]. Spatial 
light modulators have been implemented in commercial highly 
sophisticated pulse shapers devices, which can be used for this 
purpose in a more flexible and reconfigurable way, but with 
higher costs. 

Regarding the potential use of Airy pulses in fiber-optic com­
munication systems, from the previous analysis and examples, it 
can be observed that very long pulses and very large pulse band­
width are required. This, in principle, can imply a serious limi­
tation of such a system because of the little spectral efficiency, 
unless a controlled intersymbol interference scheme based on 
the propagation properties of these pulses is applied. 

As we have shown, we can design a finite Airy pulse with a 
defined degree of invariance to chromatic dispersion. It is theo­
retically possible to obtain an arbitrarily high degree of invari­
ance, although a too high required degree of invariance may lead 
to impractical designs. Therefore, we need to obtain a tradeoff 
solution between the degree of invariance and the feasibility of 
the desired initial pulse. 
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