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Numerical Simulation of Tangling in Jet Engine Turbines
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Abstract. The numerical analysis of certain safety related
problems presents serious difficulties, since the large num-
ber of components present leads to huge finite element mod-
els that can only be solved by using large and expensive
computers or by making rough approaches to the problem.
Tangling, or clashing, in the turbine of a jet engine airplane
is an example of such problems. This is caused by the crash
and friction between rotor and stator blades in the turbine
after an eventual shaft failure. When facing the study of
an event through numerical modelling, the accurate simu-
lation of this problem would require the engineer to model
all the rotor and stator blades existing in the turbine stage,
using a small element size in all pieces. Given that the
number of stator and rotor blades is usually around 200,
such simulations would require millions of elements. This
work presents a new numerical methodology, specifically
developed for the accurate modelling of the tangling prob-
lem that, depending on the turbine configuration, is able to
reduce the number of nodes up to an order of magnitude
without losing accuracy. The methodology, which benefits
from the cyclic configuration of turbines, is successfully ap-
plied to the numerical analysis of a hypothetical tangling
event in a turbine, providing valuable data such as the ro-
tating velocity decrease of the turbine, the braking torque
and the damage suffered by the blades. The methodology
is somewhat general and can be applied to any problem in
which damage caused by the interaction between a rotating
and static piece is to be analysed.
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Nomenclature

()™ Variables in for the equations referred to two paired
solids

()" Variables expressed in the rotated reference system
O/ X/ Y/ Z/
X %, first derivative with respect time

. g2 . . .
X %, second derivative with respect time

Scalars. Lower or upper-case italic characters

x Vectors. Lower-case bold faced characters

Tensors. Lower or upper-case italic bold faced char-
acters

™

Matrices. Upper-case bold faced characters

Johnson-Cook constitutive relation constant
Johnson-Cook constitutive relation constant

Body forces

W oo W o

Strain matrix
¢ Number of cyclic repetitions along one stage

¢y Decay coefficient for Coulomb based friction formu-
lation

C Johnson-Cook constitutive relation constant
d Nodal displacements vector
Johnson-Cook failure criterion constant
Johnson-Cook failure criterion constant
Johnson-Cook failure criterion constant
Johnson-Cook failure criterion constant
Johnson-Cook failure criterion constant

e; Unit vector in i direction

E Elastic modulus or Young modulus
fimp Impact forces

fi,, Forces introduced due to the cyclic symmetry con-
straints

H Hardening parameter
I Second order identity tensor

m Thermal softening exponent. Johnson-Cook consti-
tutive relation constant
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Lumped masses matrix

Johnson-Cook constitutive relation constant
Number of rotor blades per cyclic sector
Number of NG Vs per cyclic sector
Number of rotor blades in a stage
Number of NGVs in a stage
Displacement interpolation matrix
Temperature

Room temperature

Melting temperature

Homologous temperature

Displacement vector

Relative velocity between slave node and master seg-
ment

Scaling parameter

Scaling parameter
Equivalent plastic strain
Equivalent plastic strain rate
User defined strain rate

Dimensionless strain rate

Equivalent plastic strain to failure
Dynamic friction coefficient
Static friction coefficient

Cauchy stress tensor

Deviatoric stress tensor

Stress triaxiality

Equivalent stress

Hydrostatic stress

Yield stress

Density

1 Introduction

Numerical methods are increasingly applied to the analysis
of some engineering problems related to safety, of which
good examples are car crashworthiness simulations [1-3]
and blade containment simulations on airplane turbines [4,
5]. The main reason for this is to reduce the costly experi-
mental tests needed for safety assessment which makes use
of simulations, to decrease the number of experimental tests
in the design process of machines and structures involving
human safety risks, desirable. On some occasions there are
even legal obligations which require manufacturers to pass
tests for safety demonstration. For example, in the case
of blade containment on airplane turbines, aviation regula-
tions [6] prescribe obligatory tests for new turbines in order
to prove that (with blade failure during turbine operation)
no inner part of the turbine will be ejected outside the en-
gine casing. In these situations, numerical simulations can
reduce experimental testing, allowing manufacturers to face
such kinds of tests with a high level of confidence in prod-
ucts.

However, on some occasions the problem is too exten-
sive and creates a huge numerical model. The situation is
especially difficult when impact problems are present, given
that they usually require very small element meshes to avoid
mesh dependency on results. Such a small element size,
combined with the large scale of the problem, can lead to
millions of degrees of freedom. Under these conditions, if
there is no possibility of problem simplification, the prob-
lem can be only faced by using large and expensive comput-
ers, spending large amounts of computing time on running
the simulations.

Tangling (or clashing, following some authors [7]) is an-
other example of the above mentioned problem. It is caused
by the impact between the rotor and the stator of a turbine
after suffering a hypothetic shaft rupture (see Figure 1). In
Figure 1(a), under normal operating conditions, the turbine
is impelled by the exhaust gases leaving the combustion
chamber. In the case of shaft rupture (Figure 1(b)), two phe-
nomena happen simultaneously: first, since the turbine is no
longer connected to the compressor, no drag force brakes
turbine rotation which causes the rotational-velocity to in-
crease out of control; second, the turbine is free to move ax-
ially and is pushed towards the nozzle guided vanes (NGVs)
(Figure 1(c)) until the rotor and stator collide. The former
phenomenon is especially problematic, since uncontrolled
rotation velocity can lead to a massive blade failure or disk
burst. This is why engine manufacturers provide mecha-
nisms to decrease turbine velocity in the case of shaft fail-
ure. Such mechanisms are commonly based on a throttle
that closes fuel injection whenever shaft failure is detected.
However, a common feeling among manufacturers is that
the response time of these mechanisms is not fast enough to
solve the problem [8]. Because of this, some manufacturers
are at present studying use of the mechanism of collision
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Figure 1. Sequence of the movements inside the turbine in case of shaft failure.

between rotor and stator, after shaft failure, to decrease tur-
bine velocity faster and more safely than any other mecha-
nism. In order to test the capability of this braking strategy,
attempts have been made which focus on the numerical sim-
ulation of the problem [7, 8] before spending large amounts
of money on the development of complex experimental tests
for the study of the tangling process.

However, for a realistic simulation of the problem, in
the most favourable case, and when one single rotor disk
clashes with the nozzle guided vanes of the next stage, both
the rotor disk and the NGVs must be included in the nu-
merical simulation. To model accurately the impact be-
tween each piece, a small element size is required, leading
to meshes of millions of nodes. While some authors have
addressed this problem, increasing the element size [7],
the results obtained can only be considered a rough ap-
proach. This paper presents a novel methodology based on
the cyclic symmetry of the problem which, depending on
the number of rotor blades and NGVs, can reduce the total
number of degrees of freedom up to an order of magnitude
without a decrease in precision. The methodology is vali-
dated by using a simple example and, finally, applied to the
simulation of tangling on an actual jet turbine.

2 The Need for a Methodology to Reduce the Problem

Several numerical methods based on cyclic symmetry can
be found in the literature for turbine modelling proposes [9—
12]. Most are based on the repetition of the process along
time, that is to say, the relative position of a blade regarding
its neighbour blades will be repeated again some time later.
The basis of these methods is then to model a cyclic sector
on a process that is repeated along time and position. Con-
versely, when impact phenomena are present, all the com-

ponents considered in the analysis continuously evolve dur-
ing the tangling process: as they suffer cumulative damage,
changes in shape, stresses and temperature, amongst others,
it cannot be assumed that any one certain configuration of
the turbine will be repeated later. As a result of this, the
above mentioned methods cannot be applied.

Before starting the rotation, the problem involves an ev-
ident cyclic symmetry (see Figure 2). Depending on the
number of rotor blades and NGVs, it is always possible
to find a configuration that is repeated cyclically along the

Figure 2. Example of turbine stage with 80 rotor blades
(in black) and 64 stator blades (in grey), divided in cyclic
sectors (grey lines). The upper detail shows the blades to
be included in the smallest possible cyclic sector.
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Figure 3. Sequence of the rotation of the cyclic sector. Ini-
tial configuration of the sector modelled (a). Sector evolu-
tion with the time in (b) and (c).

stage. One stage involves one turbine rotor and the cor-
responding NGVs. Let N, be the number of rotor blades
of the stage, Ny, the number of NGVs in the same stage,
ny and ng, the number of rotor blades and NGVs per cyclic
sector and ¢ the number of cyclic repetitions along the stage
reads:

Ny =n,c
Ny, = ngpe @))
Rearranging each expressions gives:
N N,
P="T=c¢. )
Ngp ny

The maximum simplification would emerge by setting n,
and ng, as small as possible, while ¢ must be the greatest
possible. Bearing in mind that N, Ny, n,, ng, and ¢ have
to be integer numbers, it can be concluded that ¢ is the max-
imum common divisor between Ny, and N,. Figure 2 shows
an example of a stage with 80 rotor blades (N, = 80) and
64 NGVs (Ng = 64) packed in groups of four (see Fig-
ure 2), which makes Ny, = 16; the maximum common
divisor is then 16. Hence, the smallest cyclic sector must
have 16/16 = 1 NGV and 80/16 = 5 rotor blades.

However, the cyclic symmetry vanishes as soon as the
engine starts to rotate. Figure 3 shows a sequence of the ro-
tation of the cyclic sector: the left picture (a) shows the ini-
tial configuration of the sector modelled, while the central
(b) and right (c) images show how the sector would evolve
along time. Figure 3(b) and Figure 3(c) show how after
some rotation (assumed as clockwise) the rotating blades
leave the area of interaction with the NGVs included in the
sector, as well as how they should be interacting with the
following NGVs (contoured with light lines) not present
in the model. Moreover, right after the modelled rotating
blades, the neighbour blades (contoured with dark lines)
should appear to be following them, interacting with the
modelled NGVs as well. It is then concluded that a direct
use of the cyclic symmetry is not possible.

3 Proposed Methodology

The methodology proposed in this paper uses the cyclic
symmetry of the problem, avoiding the problems identified
in the previous section. It is based on the use of cyclical
symmetry boundary conditions, which are available in most
finite element commercial codes, with some modifications
explained below.

3.1 Methodology Basis

The methodology basis can be explained by observing Fig-
ure 4 and Figure 5. Our model will include the NGVs in the
minimum cyclic sector (one NGV, following with our ex-
ample) and the rotor blades included in the sector (five, in
our example), it will additionally include the rotor blades
that would be present in the cyclic sector right after the
one being modelled (Figure 4). Because of the cyclic sym-
metry, these blades belonging to the neighbour sector must
have continuously the same condition in terms of stresses,
deformation and state variables, amongst other variables,
as those belonging to the modelled, paired one to one as
shown in Figure 4. Moreover, the methodology proposed
here connects the rotating blades by cyclic pairs, in such
a way that the displacements, stresses, and deformations,
amongst others, are shared by the cyclically paired blades.
In other words, each blade will suffer the same stresses and
deformations, though obviously rotated.

If specific attention is paid to one cyclic pair of rotor
blades (in black in Figure 5(a)), the only blade interacting
with the NGVs at the beginning of the simulation will be
the leading one (on the right of the picture). However, it
will “transfer” its condition to the cyclically paired blade
suffering the same process as if there were virtual NGVs
(contoured with lines) interacting with it. Some time later
(Figure 5(b)), it will be the paired blade which will be in-
teracting with the modelled NGV, with the leading blade

paired with

paired with

paired with
‘ paired with

paired with

Figure 4. Sketch showing the paired turbine rotor blades in
a cyclic sector.
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Figure 5. Interaction of the leading blade (in black) of a paired couple of blades with the corresponding NGV (a). Inter-
action between the paired blade, some time after, with the same NGV (b).
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Figure 6. Sketch showing the process in which after each simulation step, the NGVs are rotated to a new position (rota-
tion angle equal to that of the cyclic symmetry), and the simulation is rerun again as many times as desired.

“copying” its condition as if there were behind a virtual
NGV present (contoured with lines in Figure 5(b)).

Two additional issues are required for the correct perfor-
mance of the methodology:

 In Figure 5, it can be appreciated that the simulation
cannot be extended beyond the position shown in Fig-
ure 5(b). The reason is that new additional blades
should be included in the simulation from a third cyclic
sector, increasing computational cost. Some proce-

pens only between one blade and the corresponding
NGV (in the position shown in Figure 5(a), between
the leading blade and the NGV, while the paired blade
should interact with the virtual NGV). However, since
in this methodology the leading blades are paired with
their cyclically symmetric blades, a mechanism must
be provided so that the impact of paired blades behaves
as in the impact of one single blade, which is what ac-
tually occurs in the real problem.

dures must be developed to allow the simulation to
continue.

» The real problem to be simulated is the impact be-
tween rotor blades and NGVs. Observing once again
Figure 5, in the real problem such an impact hap-

The first issue can be easily solved by a script which is able
to stop the simulation, rotate the stator blade (including its
stresses, state variable, and nodal velocities) and rerun the
simulation initializing stresses, state variables and nodal ve-
locities on the rotating blades to the same values held at
the end of the previous run. This process, which is shown
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in Figure 6 must be executed each time the rotating blades
have rotated to an angle equal to the angle of cyclic symme-
try. This sequence, repeated as many times as needed, can
enable the simulation to be extended as much as desired.

The second point, however, requires a deeper analysis
which will be addressed in the following section.

3.2 Rotor Blades Cyclic Coupling

The problem is to connect two cyclically symmetric solids
in such a way that the connection will behave in exactly
the same manner as if they were one single solid. Let a
continuum meshed be considered, such as that displayed
in Figure 7(a). Focusing on one single finite element of
the continuum and using the reference system in Figure 7
as OXY Z, the finite element equation of dynamics in the
element reads:

ﬂmp+/ NdeVol—i—/ BT odVol=Md. (3)
vol vol

with fi,, being impact forces vector, b the body forces vec-
tor, N the displacement interpolation matrix and B the strain
matrix. ¢ is the Cauchy stress tensor expressed as a vector;
M is the lumped masses matrix and d the nodal displace-
ments vector.

Figure 7(b) shows a meshed solid identical to the single
solid considered above and, on its left, a cyclically sym-
metrical one. Our target will be to pair these two solids
in such way that the set will behave as the single solid of
Figure 7(a). From a geometrical point of view, a shift can
be made from one solid to the other by applying a rotation
through the symmetry axis. For this case of the two paired
solids, there will now be two equations instead of the sin-
gle equation (3). The equation for the leading solid will be

(@) (b)

Figure 7. (a) Original continuum meshed and the single
finite element (grey) used for the analysis, with its local
reference system (OX Y Z); (b) Coupled continuums, with
their coupled finite elements and their local coordinate
systems (OX Y Z for the original, and O’ X'Y’Z’ for the
coupled one).

u Nodes where cyclic boundary
condition could be prescribed

Figure 8. Example of a problem where cyclic boundary
condition could be prescribed. Most finite element codes
provide such boundary condition option.

expressed again in the OXY Z reference system (equation
(4)) while the equation for the trailing paired blade will be
expressed in the O’ X'Y’Z’ rotated system (equation(5)).

W

uag+/ NTb*dVol+/ BT o*dVol=M*d*, (4)
vol vol

BTo"*dVol=M"*d"* .
5)

e +/ N’Tb’*dVol+/
vol N

ol

Equations (4) and (5) are similar to equation (3) with the
only difference being the fi,, term, which represents the
forces introduced due to the cyclic symmetry constraints
(usually applied by Lagrange multipliers). In this analysis it
will be assumed that the leading solid is the only one receiv-
ing impact forces, with the reason being the term fi,, only
in equation (3). From now on, the superscript ()™ will refer
to the equations for the paired solids (in the case of the su-
perscript not being present, the equations refer to the single
solid). In addition, the apostrophe ()’ refers to the variables
expressed in the rotated O’ X'Y’Z’ reference system.

Many finite element codes provide a boundary condition
for cyclic symmetries. This boundary condition is intended
to model a segment (region with the solid line in Figure 8
of an object that has a rotational symmetry (the whole area
in Figure 8, prescribing this boundary condition between
nodes on the outer borders of the segment. Such a boundary
condition reads:

u-e=u-¢, (6)

where u is the displacement of the nodes and is e; the i
direction unit vector. Equation (6) means that when this
equation is prescribed between two cyclical sets of nodes,
the displacement vectors components of the leading nodes,
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expressed in the OXY Z reference system, are equal to the
displacement vectors components of the trailing nodes ex-
pressed in the O’ X'Y'Z’ system.

This cyclic symmetry boundary condition will be used
to achieve the purpose. First of all, the condition between
all nodal displacements in the leading solid and the trailing
one is prescribed. Then, in equations (4) and (5):

d*=d*. ©)
Since the paired solids are equal, with the only difference
of being rotated the same angle as the O’ X'Y’Z’ reference
system, the interpolation and the strain matrices must be
equal, since they are expressed in their respective reference
systems. In the case of the constraint forces vector, the
cyclic symmetry implies that both f},, and f';,, must form
a self-balanced forces system. Then:

N =N
B —B ®)
fre + e =

Substituting (7) and (8) on (4) and (5), and adding the latter
two, we have the dynamics equation for the set of the paired
solids:

£ + / NT (b* + b™) d Vol
vol

+/ B” (6% + ¢™*)dVol = (M* + M*)d*. (9)
vol

Since the same displacements are wanted for the set of
paired solids (equation (9)) and the reference single one
(equation (3)), the displacements are made equal:
d* =d. (10)
The impact forces are usually obtained by penalty coeffi-
cients applied to the relative displacements between master
and slave nodes in contact. Using the same penalty coeffi-
cients on the single solid problem than on the paired solids
one read:
fimp = f]*

mp'

(11)
Substituting (10) and (11) on (9) we finally obtain:

fimp + / N (b* 4+ b™) d Vol
vol

+/ BY (6% +¢™*)dVol = (M* + M*)d. (12)
vol

Equation (12) is the dynamics equation for the paired solids
having the same displacements as the reference solid. To
make the behaviour of the two paired solids equal to that of

the reference solid, equations (12) and (3) are made equal.
That leads to:

N (b* +b*) + BT (¢* +0”*) =N"b + BTo, (13)

M* +M* =M. (14)

Satisfying equations (13) and (14), two cyclically paired
solids that will behave like the original single one are ob-
tained. Equation (14) can be easily satisfied by dividing the
density of the reference solid between the cyclically paired
solids in such way that the sum of densities of the cyclically
paired solids will give the density of the reference one:

pf=ap; P =(1—-a)p 0<a<l. (15)

Where p is the reference solid density, p* is the density for
the leading paired solid ,p"* is the density for the paired
trailing solid and « is a real number between 0 and 1. Then,
(13) is satisfied, since:

M* =aM

* /*_
M’*:(l—a)M}iM +M*=M. (16)

Given that body forces are proportional to density, equation
(13) gives:

b* +b™* =b. a7
Thus, in order to satisfy equation (13) what needs to be sat-
isfied is:

o* + O'/*

=o0. (18)
The latter equation can be satisfied by using a similar de-

composition to that in equation (14) by making:

c"=B0;06"=(1-pBo 0<B <. (19)

With o being the Cauchy stress tensor (expressed as a vec-
tor, according to the finite element method terminology) of
the reference solid, o * the Cauchy stress tensor of the lead-
ing paired solid, o’* is the stress tensor of the paired trailing
solid and B is a real number between 0 and 1. This decom-
position of the stress tensor is possible, since the same dis-
placement on the paired solids is prescribed (expressed in
their local coordinate systems). Hence, displacements and
strain histories are equal for both solids and for the refer-
ence one. Thus, in order to satisfy equation (13) the mate-



276

D. A. Cendén, B. Erice, F. Gdlvez and V. Sanchez-Gilvez

@ ;
1 I
( Shes
IERE N
Y A
®
Ino
] e -
* \T o
(B B (-8 o) | |
o A

X

Figure 9. (a) Sketch of the mechanical system of one single mass M attached to a nonlinear bar f(x) used for the ex-

ample;
equal.

rial parameters have to be scaled, that is to say:

E* = BE _
E*=(1=-PE [

% =For : (20)
U)/;* =1-8)oy

H* = BH

H*=(1-B)H [

With E being the Young Modulus, o, the yield stress, and
H the hardening parameter.

Itis noticeable that in equations (16) and (20), the scaling
parameters « and B are completely independent and any
arbitrary values can be used. Nevertheless, the case of o« =
0.5 and B = 0.5 is specially fitting. Here, the physical
meaning resembles “dividing the solid in two” with regard
to both the mass and the mechanical resistance.

By coupling the solids in the way explained above, not
only the behaviour of the coupled solids is equal to the sin-
gle one: since the equations include the impact forces, if
one single element of the set of two paired elements from
Figure 7(b) impacts against a certain piece present in the
model, the behaviour would be the same as if the element
on Figure 7(a) had impacted against the same piece. Given
that according to Newton’s law impact forces are the same
for the impactor and the target, the force felt by the piece
that receives the impact is hence the same in each case.

At first view the impact forces being the same for the
single solid and for the set of paired ones could be consid-
ered as surprising, taking into account that in the case of the

(b) equivalent system consisting on two masses «M and (1 — o) M whose displacements are prescribed to be

paired elements, if only one element impacts against some-
thing, its mass is decreased by a factor of « (or | —«) and its
stress tensor decreased by a factor of 8 (or 1 —f). However,
it should be remembered that since the nodes of the paired
elements are coupled, if the impact displaces the nodes of
one element it must also displace the nodes of its paired
element, and that is displacing the total mass of each ele-
ment. Since the element deformation is paired too, the im-
pact must also mobilise the total strength of the two paired
elements.

A simple 1 — D example of this result is explained as
follows. Figure 9(a) shows a punctual mass M attached to
the upper end of a bar having a nonlinear behaviour charac-
terised by an f(x) law, where x is the shortening displace-
ment of the bar. The other end of the bar is attached to the
ground. If a force F is applied to the punctual mass, the
dynamic equation of this system would be given by:

F—f(x)=Mx. 21
Let it be assumed now (Figure 9(b)) two punctual masses
aM and (1—a«) M , the first attached to the upper end of a bar
with a nonlinear behaviour given by Bf(x) and the second
attached to the upper end of a nonlinear bar characterised
by (1 — B) f(x). The lower end of each bar is attached
to the ground. To prescribe the same movement on each
punctual mass is akin to joining them by an infinitely rigid
bar. Therefore, if a punctual force F is applied to one of
these masses, both masses and both bars must be displaced
at the same time.

The dynamic analysis of this system would be repre-
sented (Figure 9(c)) by the two mass/bar sets, and an in-
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Figure 10. Initial configuration of the finite element models used for validate the proposed methodology.

ternal force F;,; acting on each mass which would be nec-
essary to prescribe the same displacement on them. There-
fore, for this system:

F — Fu— Bf (x) = aM, (22)

F—(1=p) f(x) =1 -a)Mi. (23)
The variable x is the same in the equations since the dis-
placement has been prescribed to be so. Then, if (21) and
(22) are added, the same expression as in equation (21) is
obtained:

F—f(x)=M%. (24)

Therefore, the set of two punctual masses «M and (1—o) M
attached to two bars Bf(x) and (1 — B) f(x) respectively,
whose displacements are prescribed to be the same, behaves
the same as a single mass M attached to a bar f(x). Ob-
viously, the response of the set of the two coupled masses
against an external force F' is the same as the response of
the single mass when subjected to the same force, regard-
less of the character of this force. If the external force is an
impact force the behaviour of each system is the same. In
the case of the coupled masses, if a force is applied to one of
the two masses, such force will move that mass, but it will
also drag the coupled mass, mobilising its inertia (mass)
and the strength of its corresponding bar. Subsequently, if
the system of one single mass impacts against an external
object, the force felt by this object would be the same as if
the object had been impacted by one of the masses of the
system of coupled masses.

It is important to note that in equations (22) and (23),
forces Bf(x) and (1 — B) f(x) can be added because they
share the same displacement x. Therefore, this addition can
be performed whether the behaviour of the bars is linear
or not (such an addition is not based on the superposition
principle).

In the case of the cyclically paired elements, the practi-
cal result of making equations (3) and (12) equal expresses
the same idea. Equation (12) is the dynamics equation of
the system of cyclically paired elements, sharing the same
nodal displacements on their local reference systems, and
equation (3) is the dynamics equation of the single element.
By making the equations equal, the dynamics law is made
equal for the single element and the paired ones, as in equa-
tions (21) and (24). If one of the paired elements impacts
against a piece its nodes will move; however, they will also
drag the nodes of the paired element, mobilising its inertia
and strength. As in the case of the simple example shown
above, the strength of each element can be added since they
share the same nodal displacements in their local coordinate
systems, no matter if their constitutive equation is linear or
not. Such an extreme is validated in the following section.

4 Validation of the Methodology

In order to test the methodology for pairing solids examined
in the previous section, a simple example was simulated us-
ing the LS-DYNA nonlinear finite element code [13]. First

a
— TS >
\

— T hg
\

Figure 11. Striking sequences between rotating and fixed
bars for a reference case (a) and for the validation case (b).



278

D. A. Cendén, B. Erice, F. Gdlvez and V. Sanchez-Gilvez

Reference

0.8 -

0.6 -

0.4

von Mises stress (MPa)

02

, _ AWk

0 1 2 3 4

time (ms)

(a)

oD

0.6

Reference

o g=0.5, B=0.5
e =02, B=0.7

0.4

s

von Mises stress (GPa)

time (ms)

()

0.5 1
Reference
0.4 1
—_
3]
S
03
)
=
3
W
2
= 02
=
S
>
0.1
0
0 1 2 3 4
time (ms)
(b)
05 T .
Reference e q=0.2, $=0.7 leading bar
- a=0.5, =0.5 leading bar -~ a=0.2, $=0.7 trailing bar
- 0=0.5, B=0.5 trailing bar
=
(=¥
Q
=
w
»
9
=
w
»
2
=
=
)
>

time (ms)

(d

Figure 12. Stress histories for the fixed (a) and rotating bar (b) in the reference calculation. Stress histories for the fixed
(c) and rotating bars (d) in the validation calculation with different values of scaling parameters o and .

of all, a reference case was modelled, consisting of a single
rotating bar that struck a small bar fixed on the periphery
(see Figure 10(a)). The rotating bar played the role of a
rotor blade, while the small bar represented an NGV im-
pacted by the rotor. Next, the same case was modelled but
including two paired bars forming a certain angle between
them, and coupled using the methodology described in the
previous sections (Figure 10(b)).

Eight-node reduced integration hexahedrons were used
to model both the reference (one rotating bar) and the vali-
dation cases (two rotating bars). In order to prescribe sim-

ilar movement conditions of a real rotor blade, the subse-
quent boundary and initial conditions were applied to the
reference case:

+ In the nodes of the rotating bar end closest to the axis
of rotation, the velocity in radial direction was set to
Zero.

* An initial rotational velocity was imposed to all the
nodes of the rotating bar, simulating the rotation of the
turbine rotor disk.
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Figure 13. Geometry and mesh used for the rotating blades
and the NGVs. The upper left detail shows the element
size used.

¢ The nodes of the left end of the fixed bar were con-
strained, simulating an NGV fixed to the turbine cas-
ing and with no rigid body movement.

In the validation case, the boundary and initial conditions
were applied only to the rotating leading bar because cyclic
symmetry condition was imposed on the rotating trailing
bar. The contact between parts was modelled using the
penalty based *AUTOMATIC_SINGLE_SURFACE algo-
rithm available in LS-DYNA [13]. No friction was mod-
elled between parts. The material model was of no im-
portance in these numerical simulations, as the authors
were seeking to demonstrate the validity of using the cyclic
symmetry condition. Hence, the bars were modelled as
an elasto-plastic isotropic material. For this purpose the
*MAT_PLASTIC_ISOTROPIC command [13], using ran-
dom material constants was used.

The sequence of Figure 11(a) shows the rotation of the
reference case bar and its deformation after striking the
fixed bar. The sequence of Figure 11(b) shows the same
striking sequence for the validation case. It can be seen in
12(b) how the rotating trailing bar was deformed when the
rotating leading bar struck the fixed short bar. As shown in
12(b), each bar was deformed equally. Moreover, they were
deformed in a manner equal to the reference case shown in
Figure 11(a).

Figures 13(a) and 13(b) show the histories of stresses
(with the von Mises stress against time chosen as an ex-
ample) obtained in a certain element of the fixed and the
rotating bar respectively.

Figure 12(c) shows the stress histories obtained in the
same element of the fixed bar shown in Figure 12(a). For
the coupled bars using cyclic symmetry condition, different
scale factors (0« = f = 0.5and @ = 0.2, B = 0.7 as ex-
amples) were used as can be seen in Figure 12(d). It can be
appreciated how in each case (reference and validation), the

von Mises stress history obtained in the fixed bar were the
same between each other and equal to that obtained in the
reference case. This result showed how the methodology
preserved the stresses obtained in the stroked parts, since
the same result was achieved using two solids paired with
the methodology proposed here and using one single solid.
In the paired bars, however, the same history as in the ref-
erence case was obtained, but scaled by the factor 8 in the
rotating leading bar, and by the factor 1 — 8 in the rotating
trailing bar, according to equation (20). Obviously, in order
to obtain the real stress state in the coupled bars, the inverse
coefficient (1/f in the rotating leading bar, or 1 /(1 — ) in
the rotating trailing bar) should be applied.

The methodology proposed in this paper was applied for
the tangling analysis on one stage of the low pressure tur-
bine (LPT) of an actual jet engine. The simulations were
run in a 2 Intel Quad-Core computer with 4 GB of RAM
memory, using LS-DYNA explicit code [13]. Even though
it was a relatively common computer, the methodology al-
lowed for simulation of more than 70 ms of the process,
modelling both the transient and the stationary phases of
the problem. The turbine velocity decrease, as well as the
blades failure patterns, were obtained as the main results.

4.1 Finite Element Model

The turbine modelled in this example consisted of 36 ro-
tor blade pairs and 12 NGVs, giving a maximum common
divisor of 12. Following the methodology presented in pre-
vious sections, it was necessary to model only 12/12 = 1
NGVs and 36/12 = 5 rotor blade pairs. Five additional
rotor blades, cyclically coupled with the previously men-
tioned rotor blade pairs, were required following the pro-
posed methodology. The reduction of the turbine compo-
nents present in the model, due to the methodology, allowed
use of a small element size (average size of 1.0 x 1.0 x 1.0
mm?) without leading to a huge number of elements. Us-
ing such an element size, the mesh reached a total number
of 717962 nodes and 583254 elements, from which 392364
elements corresponded to the rotor blades and 190890 to
the NGVs. If the proposed methodology had not been used,
392364 x 6 = 2354184 elements for the rotor blades plus
190890 x 12 = 2290680 elements for the NGVs would
have been necessary to achieve the same level of mesh res-
olution. Such resolution was important to analyse the final
condition of the blades after 70 ms, since the mesh size in
impact phenomena simulations is critical to achieve good
results if failure criteria are used [14]. The deformations
and failure patterns were then modelled with a high level of
spatial resolution.

Because of the particular geometry of the jet engine
modelled here, tangling is expected to occur only in one
stage of the turbine. This explains why one single stage was
included in the model and why the rest of the parts rotating
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with the stage were added as discrete mass and moment of
inertia (divided by 12).

The cyclic sector of the LPT was modelled by using
eight-node reduced integration hexahedrons available LS-
DYNA [13]. The thrust of the engine was modelled by ap-
plying a prescribed acceleration to the turbine rotor nodes.
The acceleration was considered positive in the downstream
direction, normal to the rotation plane. This acceleration
was calculated by dividing the thrust by the mass of the ro-
tating components of the engine. Note that to achieve the
tangling condition, the nodes belonging to the turbine rotor
should be free to move in axial direction (normal to the ro-
tation plane). Hence, no constraints were imposed on these
nodes in the axial direction. The radial velocity on the nodes
belonging to the fir-tree type root of the rotor blades (blade
base) was set to zero.

Since the only purpose in these preliminary simulations
was to analyse the braking capability of the turbine, no en-
gine torque was included in the model, and the rotor was
only submitted to an initial rotating velocity. For deeper
analyses, engine torque and aerodynamic considerations
could be combined with the methodology presented here.

The contact between all the parts was mod-
elled with a penalty based algorithm using *AUTO-
MATIC_SINGLE_SURFACE command. All the parts
were included in one set part to model the contact. In
order to achieve a reasonable braking rate in the rotational
velocity of the engine (provided by the manufacturer),
the friction coefficients were adjusted. The friction in
LS-DYNA is based on Coulomb formulation, where an
exponential function interpolates smoothly the

transition between static (us) and dynamic (i) friction
coefficients:

1= pa+ (s —pa)exp(—crfvl) . (29)
where v is the relative velocity between slave nodes and
master segments in contact and cr is a decay constant. In
this case, ¢y was set to zero, s t0 0.2 and pug to 0.2.

4.2 Material Modelling. Johnson-Cook Material Model

The Johnson-Cook (JC) material model [15, 16] is a widely
used model for impact and high strain rate phenomena.
Most non-linear finite element method codes have the JC
model already implemented. It consists of a constitutive re-
lation [15] and a failure criterion [16]. The expressions for
the constitutive relation and the failure criterion are uncou-
pled, which means that no softening effects are included.
The JC constitutive relation is relatively simple and ver-
satile. It models the flow behaviour of the equivalent or
von Mises flow stress oeq = /3J2 = /3/20¢’ : ', where
J> is the second invariant of the deviatoric stress ¢’ =
o — 1/3tr (o) I, o is the Cauchy stress tensor and [ is

the second-order identity tensor. The expression is formu-
lated by using three independent terms, which scale each
other (see eq. (25)). The first one is the strain hardening of
the material, the second is the strain rate hardening and the
third is the thermal softening. Five material constants are
necessary to model the plastic flow of the material. The JC
constitutive relation reads:
o¢ =[A+ B [1+Clg][1-T*"]. (26)

where €, is the equivalent plastic straiq, 5; = ép / &o is the
dimensionless plastic strain rate being &, with &, being the
equivalent plastic strain rate and & a user defined reference
strain rate; T* = (T — Ty) /(T,, — T,) is the homologous
temperature where 7 is the actual temperature, 7, is the
room temperature and 7y, is the melting temperature. A, B,
n, C and m are the five material constants.

The model computes the temperature increase due to
plastic work, assuming adiabatic conditions according to:

T =L ooy, 27)

pCp

where x is the Taylor-Quinney coefficient, p is the density
and C), is the specific heat.

The JC failure criterion defines a damage parameter
D [16] which is based on the accumulation of the equiv-
alent plastic strain. The evolution of this damage parameter
is defined as follows:

. 1 .
D=—F—7"—776,. (28)
& (0*.5,.T) "

where é}; is the equivalent plastic strain to failure. The ma-

terial will fail when the accumulation of equivalent plas-
tic strain reaches the equivalent plastic strain to failure. In
other words, the damage variable D will increase until it
reaches unity. At this moment the material will fail and the
elements will be deleted from the calculation, setting the
stress components to zero.

Johnson and Cook [16] proposed an expression of the
equivalent plastic strain to fracture as a function of stress
triaxiality (o), strain rate and temperature. The stress tri-
axiality is defined as:

(29)

where oy = 1 /3¢r(o) is the hydrostatic stress component
of the stress tensor. The equivalent plastic strain to fracture
51{ is defined with three separate products. The first term is
simply Rice and Tracey’s [16] original formula. The second
and third are homologous to those defined for the constitu-
tive relation, that is to say, the strain rate and temperature
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Physical properties
Err (GPa)  p (kg/m>) v Cp(J/kg °C) X
210 7850 0.3 460 0.9

Strain hardening Strain rate hardening

Thermal softening

A (MPa) B (MPa) n c g0 (571 m T (°C)
1035 190 0.3 0.006 5%10™* 4.5 870
Failure criterion
D D, D3 Dy Ds
0.1133 2.11 —1.65 0.0125 0.9768

Table 1. Johnson-Cook material model constants for FV535 Stainless Steel.

influence on the equivalent plastic strain to failure respec-
tively. The equivalent plastic strain to fracture is expression
reads:

&/ = [D1+Daexp(D30*)][1+DsInés] [1+DsT*]
(30)
where D1, D», D3, D4 and D5 are material constants.
The material chosen for modelling the turbine rotor and
the NGVs was FV535 stainless steel. A series of quasi-
static and dynamic tests of smooth and notched specimens
performed at various temperatures was necessary to ob-
tain the JC material constants for this steel. The dynamic
tests were carried out by using a Split Hopkinson pressure
bar [18]. Following the procedure developed by the authors
in [19,20] all the constants were obtained. The physical
properties and JC constitutive relation material constants for
FV535 stainless steel are summarised in Table 1.

4.3 Results

The facture patterns in rotor blades and NGVs after 70 ms
can be seen Figure 14. Figure 15 shows the history of rel-

Figure 14. Final condition of the blades. A high level of
resolution in the failure patterns was achieved.

1.02

turbine relative rotational velocity

- U S
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time (ms)

Figure 15. Time history of the relative rotation velocity of
the turbine obtained in the simulation.

ative rotational velocity of the rotor obtained in the sim-
ulations. It should be noted that following the proposed
methodology, the total simulation is obtained by a succes-
sion of intermediate calculations, and that therefore the final
history was obtained by placing the history of each interme-
diate calculation right after the history of the previous one.

5 Conclusions

The numerical analysis of tangling in jet engine turbines
was performed by using a new methodology based on the
finite element method. The methodology took advantage of
the cyclic symmetry of the problem, reducing the number
of degrees of freedom without a decrease on the accuracy
of the solution. The reduction of the number of degrees
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of freedom achieved depended on the total number of rotor
blades and NGVs in one LPT stage. In the case of the tur-
bine considered in this article, the methodology allowed the
division of the total number of elements by a factor close to
eight.

The methodology, which can be also applied to other
engineering problems where rotation, impact and/or wear
are involved, allowed the numerical simulation of weighty
problems with relatively simple computers. It could be also
applied when a high accuracy is desired in the impact and
damage processes involved in the problem.
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