
Enhanced Failure Detection Mechanism in 
MapReduce 

Bunjamin Memishi 
PhD student - 2nd year, 

Facultad de Informatica, Universidad Politecnica de Madrid, Spain 
Email: bmemishi@fi.upm.es 

Dissertation Advisors: Maria S. Perez and Gabriel Antoniu 

DOCTORAL DISSERTATION COLLOQUIUM 

EXTENDED ABSTRACT 

Abstract—The popularity of MapReduce programming model 
has increased interest in the research community for its improve­
ment. Among the other directions, the point of fault tolerance, 
concretely the failure detection issue seems to be a crucial one, but 
that until now has not reached its satisfying level. Motivated by 
this, I decided to devote my main research during this period into 
having a prototype system architecture of MapReduce framework 
with a new failure detection service, containing both analytical 
(theoretical) and implementation part. I am confident that this 
work should lead the way for further contributions in detecting 
failures to any NoSQL App frameworks, and cloud storage 
systems in general. 

Index Terms—MapReduce, fault tolerance, failure detection 

I. INTRODUCTION 

Nowadays storage systems face the need of storing large 
amount of data, created in a rapid period of time. Keeping 
its consistency, replication, proper authentication and autho­
rization etc., is getting more and more complex. Improper 
functioning of these properties may have undesirable con­
sequences in different storage systems, especially in those 
systems whose monitoring should be done in real time, like 
finance and military domains. 

MapReduce represents a programming model for processing 
and generating large data sets. Its simple philosophy at im­
plementation and usage, automatic parallelism while keeping 
a powerful scalability, has made huge community interest 
for MapReduce exploration, especially in environments where 
data-intensive applications are primary concern. However, on 
the other side MapReduce performance is not appropriate for 
HPC (High Performance Computing), although some alterna­
tives have arisen. In-between them is the possibility to improve 
the performance and the reliability by means of the application 
of an improved failure detection. 

Encouraged by this, my next research steps will be devoted 
into the possibility of using proper failure detection mecha­
nisms as a decent distributed computing service, in order to 

improve the fault tolerance of MapReduce framework. 
The main research focus during my doctorate period at 

Universidad Politecnica de Madrid (UPM) is part of the FP7 
SCALUS project [1]. This work will be devoted into the 
possibility of using proper failure detection mechanisms as 
a decent distributed computing service, in order to improve 
the fault tolerance of MapReduce framework. All the design 
and implementation aspects will be concentrated on Hadoop 
[2], as the most wide-spread implementation of MapReduce. 

II. DISCUSSION 

A. MapReduce 

It's been almost a decade that MapReduce has been com­
mented by researchers, including the database community. 
Even though its benefits are questioned when compared with 
parallel databases, some authors suggest that both of the 
approaches have their own advantages, and do not bring a po­
tential obsolation risk for the other opponent [3]. MapReduce 
advantages over parallel databases include storage-system in­
dependence and fine-grain fault tolerance for large jobs [4]. It 
is because of this, MapReduce is growing popularity and use 
for different large-scale computing environments, such as in 
Facebook, Inc., Yahoo! Inc., Microsoft Corporation, etc. 

The most common implementation of MapReduce comes as 
a part of the open-source Hadoop framework [2]. By default, 
Hadoop uses the Hadoop Distributed File System (HDFS) as 
the underlying storage backend, but it was designed to work 
on other file systems as well. A new network striping module 
for HDFS, created by Facebook, is now available [5]. 

Every MapReduce execution needs a special node, called 
master; the other nodes are called workers. While the master 
keeps several data structures, like the state and the identity of 
the worker machines, the worker nodes are assigned different 
tasks by the master. 

MapReduce tasks are re-executed in case of failure, and 
a potential failure of a single master causes an additional 

mailto:bmemishi@fi.upm.es


bottleneck. Idle nodes with the corresponding replicas have 
more priority to be selected when you need to re-execute a task 
which failed in the primary worker. In some cases, migration 
is needed: the failed task has to migrate to a node that does 
not hold the necessary data. All these processes waste time, 
and in fact, because of this MapReduce performance it seems 
not appropriate for HPC (High Performance Computing). 
However, it is observed from that the detection of the failed 
worker tasks in Hadoop have a certain delay, yet not solved, 
while causing [6]: 

. Execution time for a small job increases significantly 

. A healthy node to possibly be added into blacklist by 
mistake 

. Too many unnecessary backup tasks scheduled 
To conclude, Hadoop couples failure detection and recov­

ery with overload handling into a conservative design with 
conservative parameter choices, causing a bigger slowdown 
in reacting to failures and also exhibiting large variations in 
response time under failure [7]. 

B. Failure detectors 

Asynchronous distributed systems are characterized by the 
fact there is no bound on the time it takes for a process to 
execute a computation step, or for a message to go from its 
sender to its receiver. This is why these systems are usually 
called "time-free" systems [8]. 

Apart from their advantages, in asynchronous systems [9], 
Consensus and NBAC (Non-Blocking atomic commit) are 
problems that do rise often, needing a solution that is efficient 
and optimized too. Knowing that Consensus and NBAC (Non-
Blocking atomic commit) are unsolvable in asynchronous sys­
tems with process crashes (even if communication is reliable), 
one way to circumvent such impossibility results is through 
the use of unreliable failure detectors. 

Failure detectors are abstract devices that offer information 
about the operational status of processes in a distributed 
system. It is believed that the failure detector abstraction is 
a fundamental one and should sit as a first-class citizen of a 
distributed programming library. Additionally, failure detectors 
are important because of the possibility to classify problems 
in distributed computing [10]. 

Failure detectors may be divided in perfect or eventual. 
Perfect detectors may report some process to have crashed, 
immediately with the first sings of unresponsiveness, while 
the eventual detectors report a level of suspect. The type of 
failure detectors can be decided by the level of accomplishing 
two main properties: 

1) Completeness, and 
2) Accuracy. 

In [11], based on the above mentioned properties and their 
corresponding variants, authors present a table of different 
failure detectors, in total eight (8). Basically, every failure 
detector should belong to one of the groups. 

On the other side, there are researchers that have tried 
applying their failure detectors for a particular problem. From 

this aspect, an application based taxonomy may be derived as 
for: 

. Consensus/Atomic Broadcast 

. Interactive Consistency 

. Atomic Commitment 

. Register Implementation, etc. 

Anyway, there are cases when the failure detection algo­
rithm have been modeled with the possibility of adjusting to 
different environments; in such a group belongs the (p accrual 
failure detector [12]. The real significance of the algorithm 
lies of decoupling the monitoring with the interpretation, 
in contrary with the other traditional failure detectors. Here 
basically every application may have its own interpretation 
when suspecting failures. 

A good initial summary of the research in failure detection 
has been made in [11]. In fact, this work may be considered 
an unofficial start, where the authors propose to add a failure 
detector as an external mechanism but that is unreliable and 
that can do mistakes, while solving Consensus and Atomic 
Broadcast in asynchronous systems. After this, many other 
research works succeeded. 

Failure detection based on Gossip-based protocol has been 
discussed in [13]. The authors try to add another feature 
to the algorithm, while combining it with partial broadcast 
algorithm, and with this to present a prototype protocol. It 
is even mentioned that Gossip-based protocol has its weak­
ness, when many failures happen in the system, which as a 
consequence suggests time-to-time broadcast to be done. In 
[14], there have been proposed two different failure detection 
algorithms, that may work with or without stable storage. [15] 
has its importance because it divides failure detection and 
membership as two things, additionally not going with heart 
beating method. There may be noticed the basic approach, 
when they present the algorithm as two components. 

More concrete work of failure detectors in Storage Systems 
has been proposed in [16]. Here, heart beating has been 
combined with some intelligent prediction model, based on 
the previous heart beating information. The good thing is that 
you may tune the protocol to as many nodes as you want in 
the system, making subgroups, for example based on different 
data centers or similar. 

Furthermore, there exists works relating failure detection 
in MapReduce itself [7] [6]. In [7] the problem of today's 
MapReduce model has been explained well, giving sufficient 
proofs, but no real solution has been proposed. While in [6], 
the authors try to implement an algorithm with fine-tuning the 
failure detection after the estimation of each job as been done. 
Additionally, it has been added a kind of reputation layer that 
chooses nodes healthy nodes for executing tasks, depending 
on the nodes behavior history. 

III. PROPOSAL 

Analyzing the MapReduce execution task, we may say that 
the problem resembles to the NBAC problem. This, because 
every task needs results from each worker, otherwise it cannot 



give an appropriate output. So, suspecting and detecting each 
node (master or worker) in a right time is necessary. 

Looking into the existing research papers, we see no real 
challenge in solving the existing fault tolerance issues in 
MapReduce, particularly the issue related to detecting failures. 
Being convinced that this is not enough, our idea encompasses 
these steps: 

1) Job Estimation Application based (coarse-grained) - as 
it was mentioned before, there are cases in which job 
estimation has been done, but it was fine-grained. As 
this may lead to an additional performance overhead, 
we think to tune our algorithm of estimating jobs but 
from the application based level. 

2) Improved collaboration between NameNode/DataNode 
and JobTracker/TaskTracker - main tools in Hadoop are 
HDFS and MapReduce. As HDFS consists of NameN-
ode and DataNodes, while MapReduce has JobTrackers 
and TaskTrackers, we see it necessary that these two 
layers improve their collaboration, while exchanging the 
information with each other. 

3) Customizable (p accrual FD - it was chosen this al­
gorithms because of its high level of customization 
possibilities. 

4) Applications information interchange - finally, this step 
belongs to additional benefits, when some applications 
have longer jobs, while the other applications have 
shorter lasting jobs, with the possibility of information 
interchange. This, in order that different applications are 
prepared faster for job re-execution. 

The ongoing schedule should consist in: 

. Completing the model implementation - basically, this 
part should contain the first prototype that validates that 
our idea is sane and feasible in practice. 

. Model validation - short-term future works should consist 
in the model validation by the end of this school year. Ex­
tensive experiments should follow in a non-small testbed 
environment like Grid5000 [17] experimental testbed. 

. Fine-tune the model for other frameworks - MapReduce 
algorithm is already perfect for parallelization and thus 
is a good candidate for implementation on architectures 
with specialized hardware, such as GPUs and FPGAs. 
We think that our contribution will make easier detecting 
the failures also in these heterogeneous hardware envi­
ronments. 

. The modified MapReduce on top of a monitoring system 
for clouds - another possibility that we are looking into 
is the attachment of the modified MapReduce framework 
containing our failure detection mechanism on top of 
monitoring system for clouds. Basically, the idea consists 
in trying to benefit from the monitoring system informa­
tion, in order to use it as input to our failure detection 
mechanism. 

Along with the theoretical work should continue exper­
iments, starting with combination of different MapReduce 
frameworks and failure detection algorithms we have nowa­

days, to finally reach the level of introducing MapReduce with 
our own added value algorithm. 

REFERENCES 

[1] SCALUS, SCALUS - Scaling by means of ubiquitous storage, http:// 
www.scalus.eu/. 

[2] T. A. S. Foundation, "Hadoop," http://hadoop.apache.org/, 2011. 
[3] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, 

A. Pavlo, and A. Rasin, "MapReduce and parallel DBMSs: friends or 
foes?" Commun. ACM, vol. 53, pp. 64-71, January 2010. [Online]. 
Available: http://doi.acm.org/10.1145/1629175.1629197 

[4] J. Dean and S. Ghemawat, "MapReduce: a flexible data processing 
tool," Commun. ACM, vol. 53, pp. 72-77, January 2010. [Online]. 
Available: http://doi.acm.org/10.1145/1629175.1629198 

[5] N. Rutman, "Map/Reduce on Lustre - Hadoop Performance in 
HPC Environments," Langstone Road, Havant, Hampshire, P09 ISA, 
England, Tech. Rep., 2011. [Online]. Available: http://doi.acm.org/10. 
1145/1629175.1629197 

[6] H. Zhu and H. Chen, "Adaptive failure detection via heartbeat under 
hadoop," in Services Computing Conference (APSCC), 2011 IEEE Asia-
Pacific, dec. 2011, pp. 231 -238. 

[7] F. Dinu and T. S. E. Ng, "Hadoop's overload tolerant design exacer­
bates failure detection and recovery," in 6th International Workshop on 
Networking Meets Databases (NetDB'll), June 12 2011, pp. 1 - 7. 

[8] M. Reynal, "A short introduction to failure detectors for asynchronous 
distributed systems," SIGACT News, vol. 36, pp. 53-70, March 2005. 
[Online]. Available: http://doi.acm.org/10.1145/1052796.1052806 

[9] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, 
P. Kouznetsov, and S. Toueg, "The weakest failure detectors to solve 
certain fundamental problems in distributed computing," in Proceedings 
of the twenty-third annual ACM symposium on Principles of distributed 
computing, ser. PODC '04. New York, NY, USA: ACM, 2004, pp. 338-
346. [Online]. Available: http://doi.acm.org/10.1145/1011767.1011818 

[10] F. C. Freiling, R. Guerraoui, and P. Kuznetsov, "The failure detector 
abstraction," ACM Comput. Surv., vol. 43, pp. 9:1-9:40, February 2011. 
[Online]. Available: http://doi.acm.org/10.1145/1883612.1883616 

[11] T. D. Chandra and S. Toueg, "Unreliable failure detectors for reliable 
distributed systems," J. ACM, vol. 43, pp. 225-267, March 1996. 
[Online]. Available: http://doi.acm.org/10.1145/226643.226647 

[12] X. Dfago, P. Urbn, N. Hayashibara, and T. Katayama, "The accrual 
failure detector," in RR IS-RR-2004-010, Japan Advanced Institute of 
Science and Technology, 2004, pp. 66-78. 

[13] R. van Renesse, Y. Minsky, and M. Hayden, "A gossip-style failure 
detection service," in Proceedings of the IFIP International Conference 
on Distributed Systems Platforms and Open Distributed Processing, 
ser. Middleware '98. London, UK: Springer-Verlag, 1998, pp. 55-
70. [Online]. Available: http://portal.acm.org/citation.cfm?id=1659232. 
1659238 

[14] M. K. Aguilera, W. Chen, and S. Toueg, "Failure detection and 
consensus in the crash-recovery model," Distrib Comput., vol. 13, pp. 
99-125, April 2000. [Online]. Available: http://portal.acm.org/citation. 
cfm?id=1035750.1035753 

[15] A. Das, I. Gupta, and A. Motivala, "Swim: scalable weakly-consistent 
infection-style process group membership protocol," in Dependable 
Systems and Networks, 2002. DSN 2002. Proceedings. International 
Conference on, 2002, pp. 303 - 312. 

[16] Y. Wan, Y Luo, L. Liu, and D. Feng, "A dynamic failure detector for 
p2p storage system," in New Trends in Information and Service Science, 
2009. N1SS '09. International Conference on, 30 2009-july 2 2009, pp. 
15 -19. 

[17] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, 
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, 
B. Quetier, and O. Richard, "Grid'5000: a large scale and highly 
reconfigurable grid experimental testbed," in Grid Computing, 2005. The 
6th IEEE/ACM International Workshop on, nov. 2005, p. 8 pp. 

http://
http://www.scalus.eu/
http://hadoop.apache.org/
http://doi.acm.org/10.1145/1629175.1629197
http://doi.acm.org/10.1145/1629175.1629198
http://doi.acm.org/10
http://doi.acm.org/10.1145/1052796.1052806
http://doi.acm.org/10.1145/1011767.1011818
http://doi.acm.org/10.1145/1883612.1883616
http://doi.acm.org/10.1145/226643.226647
http://portal.acm.org/citation.cfm?id=1659232
http://portal.acm.org/citation

