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ABSTRACT

Fusarium equiseti and Fusarium acuminatum are toxigenic species that contaminate cereal crops from
diverse climatic regions, They are common in Spanish cereals, The information available on their
phylogenetics and toxigenic profiles is, however, insufficient to assist risk evaluation. In this work,
phylogenetic analyses were performed using partial sequences of the translation elongation lactor gene
(EF-1&) of E equiseti and F. acuminatum strains isolated from barley and wheat from Spain and other
countries. The Northern and Southern European F equiseti strains largely separated into two phyloge-
netically distinct clusters. This suggests the existence of two distinct populations within this species,
explaining its presence in these regions of markedly different climate, Production of type A and B
trichothecenes by the Spanish strains, examined in wheat cultures using a multitoxin analytical method,
indicated that F equiseti could produce deoxynivalenol and nivalenol and other trichothecenes, at
concentrations that might represent a significant risk of toxin contamination for Southern European
cereals. F acuminatum showed low intraspecific genetic variability and 58% of the strains could produce
deoxynivalenol at low level. Neither species was found to produce T-2 or HT-2 toxins. The present results
provide important phylogenetic and toxigenic information essential for the accurate prediction of
toxigenic risk.

1. Introduction

Fusarium acuminatum, Fusarium subglutinans, Fusarium solani,
Fusarium oxysporum, Fusarium semitectum, Fusarium verticillioides

Cereals are a dietary staple in most temperate regions. Unfor-
tunately, they can become colonised by Fusarium, often resulting in
severe crop disease, strongly reduced yields, and the accumulation
of secondary metabolites toxic to humans and animals. Fusarium
head blight (FHB) of small grain cereals is a disease complex that
involves several Fusarium species causing largely indistinguishable
symptoms. The species predominantly associated with FHB in
Europe are Fusarium graminearum, Fusarium avenaceum and Fusa-
rium poae (Nicholson et al,, 2003; Somma et al., 2010; Xu et al,,
2008). Less frequently isolated species are Fusarium tricinctum,
Fusarium sporotrichioides, Fusarium equiseti, Fusarium langsethiae
and Fusarium culmorum (Kosiak et al., 2003; Logrieco et al., 2003;
Xu et al, 2005). Other species encountered sporadically include

and Fusarium proliferatum (Logrieco et al,, 2003). Climate change
scenarios predict increasing temperatures and variations in water
availability could induce changes in the profile of FHB species on
cereals. Since each species has a characteristic mycotoxin profile,
the risk of mycotoxin contamination of cereals might also change
{Miraglia et al., 2009).

F. equiseti is a cosmopolitan fungus distributed across regions
with cool through to hot and arid climates (Leslie and Summerell,
2006). It behaves as a soil saprophyte associated with rotting fruit
and other decaying plant material, and as a pathogen of a wide
range of crops. This species is often detected in Norwegian cereals
(Kosiak et al.,, 2005), but it is also common in Southern Europe
(Logrieco et al.,, 2003), particularly in Spain (Jurado et al., 2006a;
Marin, 2010; Soldevilla et al.,, 2005). Further, it belongs to the so-
called Fusarium incarnatum—FE  equisefi species complex,
a genetically highly diverse group (O’'Donnell et al,, 2009) the
members of which are associated with human disease.



E acuminatum is widely distributed around the world, although
mainly in temperate regions. It behaves as a soil saprophyte but is
also found associated with the roots and crowns of plants (Leslie
and Summerell, 2006; Pitt and Hocking, 2009). Its presence has
recently been reported in Southern Europe, particularly Spain
(Marin, 2010).

Both E equiseti and E acuminatum have been reported tricho-
thecene producers (Adejumo et al., 2007; Kosiak et al, 2005;
Logrieco et al, 1992). Trichothecenes are potent inhibitors of
protein synthesis in eukaryotic cells (Brown et al., 2001), a conse-
quence (mainly) of their interfering with peptidyl transferase
activity. They cause different acute and severe diseases in humans
and animals depending on the type of trichothecene ingested
(Trenholm et al., 1989). E equiseti produces trichothecenes such as
T-2 toxin, 4-acetylnivalenol (FUS-X), deoxynivalenol (DON), niva-
lenol (NIV) and scirpentriol or its mono- and diacetyl derivatives
(MAS and DAS) (Kosiak et al., 2005; Leslie and Summerell, 2006). It
has been also reported to produce butenolide, beauvericin, equi-
setin (EQ), fusarochromanone (FUSCHR) and zearalenone (ZEA)
(Leslie and Summerell, 2006). E acuminatum has been reported to
produce trace levels of trichothecene toxins such as diacetoxy-
scirpenol {DAS), monoacetoxyscirpenol (MAS), neosolaniol {(NEO)
and HT-2 toxin (HT-2) (Adejumo et al., 2007; Wing et al, 1993,
1994). Additionally, it produces enniatin B, steroids and mon-
iliformin (Leslie and Summerell, 2006).

The identification of Fusarium species traditionally relies on the
detection of morphological and physiological features. However,
discrimination among similar species is often difficult, Neither do
such methods detect intraspecific variability. Fortunately, phylo-
genetic analyses that make use of DNA sequence data have made
significant contributions to our understanding of the systematics of
Fusarium, providing species boundaries that are essential for
establishing inter- and intraspecific relationships with respect to
toxin profiles (Jurado et al., 2006a; Kristensen et al., 2005; Mirete
et al,, 2004; O'Donnell et al., 2009). Additionally, these techniques
have provided the basis necessary for developing rapid, specificand
accurate diagnostic methods based on PCR. These can be used to
predict mycotoxin risk, providing the information necessary for
early control strategies to be adopted (Jurado et al., 2005, 2006b;
Knutsen et al,, 2004; Konstantinova and Yli-Mattila, 2004). Several
genomic sequences have been used to analyse intraspecific vari-
ability in Fusarium, including intron regions of histone coding
genes, the B-tubulin gene (§TUB), the calmodulin gene (O’'Donnell
et al,, 1998a; Steenkamp et al.,, 2002), and the translation elonga-
tion factor gene EF-1a (O’Donnell et al., 1998b, 2000). EF-1« gene
has been used as a single-locus identification tool and is a suitable
genetic marker for discriminating between Fusarium species
(Geiser et al,, 2004).

The literature contains little information regarding the phylo-
genetics of E acuminatum. However, several reports suggest the
existence of intraspecific diversity within F equiseti (Kosiak et al.,
2005; Kristensen et al,, 2005; Jurado et al,, 2006a). Kosiak et al.
(2005) reported the existence of two groups with differences in
morphological features and toxin production. However, the strains
used in their study were basically all from Northern Europe. Later,
a preliminary phylogenetic analysis conducted with F equiseti
strains from both Southern Europe (mostly isolated from Spanish
cereals) and Northern Europe showed them to occupy one of two
different clusters (Jurado et al., 2006a). The toxigenic profiles of the
Spanish isolates were not analysed.

The aim of the present work was: (i) to examine, using partial EF-
1a gene sequences, the phylogenetics of E equiseti and F. acuminatum
strains isolated from cereal-producing regions in Spain, and (ii) to
analyse the toxin profile of these Spanish strains in relation to their
phylogenetics and those of Northern European strains.

2. Material and methods
2.1. Fusarium strains

Eight E equiseti and 36 F acuminatum strains were isolated from
barley cultivated in two different regions of Spain (Castilla y Léon
and Castilla-La Mancha) in 2006 (Table 1). Fungal cultures were
maintained on potato dextrose agar medium (PDA) (Scharlau
Chemie, Barcelona, Spain) at 4 °C and stored as spore suspensions
in 15% glycerol in our collection at the Complutense University of
Madrid (UCM).

2.2. DNA extraction and PCR amplification of a partial sequence of
EF-1w

Genomic DNA extractions of pure cultures of eight strains of
E equiseti and 36 strains of F acuminatum were undertaken using
three mycelium disks excised from 5 to 7 day-old PDA plate
cultures, and making use of the DNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. A
partial sequence of the EF-1a gene was obtained by PCR using the
primers and protocol described elsewhere (0’'Donnell et al., 1998b).
PCR-amplified fragments were purified using the UltraCleanTM
PCR Clean-UpTM kit (MoBio Laboratories Inc., USA) according to the
manufacturer’s instructions. Automated sequencing of both DNA
strands was performed with the EF-1« pair of primers using a 3730
DNA Analyzer and the Big Dye® Terminator v 3.1 Cycle Sequencing
Kit (Applied Biosystems, USA) at the UCM Genomic Unit. The
sequences were corrected using Chromas v 1.43 software (Brisbane,
Australia) and analysed and edited using Bioedit Sequence Align-
ment Editor v 7.0.9.0 software (Hall, 1999).

2.3. Phylogenetic analyses

Using PAUP v 4.0 b10 software (Swofford, 2003), individual
maximum-parsimony (MP) phylogenetic analyses were performed
for E equiseti and F. acuminatum using the partial sequences of the
EF-1a gene obtained. Additional sequences previously obtained in
our laboratory (Jurado et al., 2006a) were included, as were others
retrieved from databases, along with sequences for species closely
related to E equiseti and E acuminatum (Fusarium scirpi and
E avenaceum respectively). A total of 70 strains for E equiseti and 63
for £ acuminatum were employed in the phylogenetic analyses
(Table 1). An E graminearum strain (AF212461) was used as an
outgroup in both the E equiseti or E acuminatum MP analyses. Gaps
were coded as missing data and were excluded from analyses.
Unweighted parsimony analyses were performed on the individual
data sets using the heuristic search option with 1000 random
additional sequences with tree bisection-reconnection (TBR)
branch swapping. Clade stability was assessed via 1000 bootstrap
replications (Hillis and Bull, 1993). Additionally, phylogenetic
analyses based on Neighbor Joining were performed using the
Jukes—Cantor model (Jukes and Cantor, 1569).

Nucleotide diversities estimated as the average number of
differences per site between two homologous sequences () were
calculated using DnaSp v 4.50.3 software (Rozas et al., 2008),
employing Eq. (10.5) of Nei (1987). Molecular diversities were
calculated in each species for both the total sequence dataset and
for the sequence dataset of each cluster. Gaps present in the
alignment were excluded from analysis.

To determine the proportion of the total genetic variance
attributable to inter-population differences, Wright's Fst statistic
was determined via analysis of molecular variance (AMOVA) using
the Arlequin v 3.01 software {Excoffier et al., 2005). The Wright’s Fst
statistic for the different groups was estimated using DNAsp v
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Table 1 (continued)

Isolate name Strain Host Origin Accession
number

ACUS0 R-6934 Soil Australia F[154736"

ACU52 R-9382 Chrysanthemum China F154738"

ACU59 NRRL 54216 - - HMO0G8314

F. avenaceum

AVE1 VI01057 Wheat Norway AJ54351 gh

2 Jurado et al., 2006a.

b Kristensen et al,, 2005.

¢ Macid-Vicente et al., 2008.

4 Nitschke et al., 2009.

® Amatulli et al., 2010.

 O'Donnell et al,, 2009.

# O'Donnell et al,, 2000.

Nalim et al., 2009.

O’Donnell et al, 2010.

Isolates tested [or trichothecene production.

G e T

450.3 software (Rozas et al,, 2008) using Eq. (3) of Hudson et al.
(1992) to take into account the genetic distances between the
groups in both species.

To show more clear dendrograms for each species, the MP
analyses were repeated eliminating some of the isolates that
occurred in the same cluster in the first analyses, and which either
had identical sequences or had differences of up to five singletons
(non-parsimonious informative sites). These isolates were given
the same name followed by different numbers. In both species, the
dendrograms obtained in both the first and second MP analyses
showed identical topologies. The same was also recorded when
using the Jukes-Cantor model.

24, Growth conditions for toxin detection

Twelve strains of E equiseti, including four isolated in a previous
study (Jurado et al., 2006a) and 12 strains of E acuminatum isolated
in the present work were tested for trichothecene production
(Table 1). Fifty gram samples of autoclaved wheat kept at a mois-
ture content of 45% for one night were inoculated with a small
quantity of each strain. Cultures were incubated at 25 °C under
fluorescent light (12 h photoperiod) for four weeks, then dried at
48 °C for 24 h and ground to a fine powder. Control (non-inocu-
lated) wheat was treated in the same way.

2.5. Chemical analysis

A multitoxin analytical method, combining high-performance
liquid chromatography (HPLC), atmospheric pressure chemical
ionisation (APCI) and triple quadrupole tandem mass spectrometry
(LC-MS/MS) under the selected reaction monitoring (SRM) mode,
was used to detect the following mycotoxins: NIV, DON and its
derivatives, FUS-X, NEO, HI-2, T-2 and DAS. Standards of these
toxins were purchased from Sigma—Aldrich (Milan, Italy) and
stored at 4 °C in the dark. The details of the procedure have been
previously described (Somma et al., 2010). The limits of detection
for NIV, DON, FUS-X, NEO, HI-2, T-2, DAS were 0.0033, 0.0005,
0.0015, 0.0033, 0.0033, 0.001, 0.0025 and 0.001 pg/g respectively.

3. Results
3.1. Phylogenetic analyses

The amplification of EF-1a produced a sequence of 616 bp and
612 bp for E equiseti and E acuminatum respectively. In E equiseti,

the total number of nucleotides analysed, excluding indels, was
584. Of these, 95 nt were polymorphic sites and 60 were
parsimony-informative sites. In the case of E acuminatum,
excluding indels, the total number of nucleotides analysed was 589.
Of these, 11 nt were polymorphic sites and 9 nt were parsimony-
informative sites. Nucleotide diversities per site (mw) were
0.02846 + 0.00197 (standard deviation) and 0.00433 + 0.00073 for
the E equiseti and F acuminatum EF-1« sequences respectively.

Results from the first (data not shown) and second MP phylo-
genetic analyses (Figs. 1 and 2) generated the same EF-1a geneal-
ogies for E equiseti and for F acuminatum. Figs. 1 and 2 show the
bootstrap 50% majority consensus trees based on MP analysis plus
the consistency (CI), retention (RI) and rescaled consistency (CR)
indices. For E equiseti, both types of phylogenetic analysis (MI* and
Jukes-Cantor model |data not shown for the latter]) revealed three
distinct clusters of isolates corresponding to F, equiseti types 1 and 11
and E scirpi. The genetic distance, in terms of Fst estimated using
DNAsp software, between E equiseti type | and type 1l was 0.87166,
between F. equiseti type Il and E scirpi it was 0.56589, and between
E equiseti type 1 and F scirpi it was 0.63569. The Fst fixation index
value, determined by AMOVA for the three groups as a whole was
0.90646. The E equiseti type | and type 1l groups were homogeneous
and showed low intra-group variability. The nucleotide diversity
per site within these groups was m = 0.00359 -+ 0.00104 and
7 = 0.00607 + 0.00110 respectively. Variability was higher among
the strains of the E scirpi group (7 = 0.03026 + 0.00343). The results
did not support any influence of the host. However, the Northern
European and Southern European E equiseti strains largely sepa-
rated into the type | and type Il phylogenetic clusters (Fig. 1), with 16
of the 17 Spanish strains in the type II cluster and all 20 Northern
European strains in the type I cluster. Strains from other locations
(Table 1) fell into either the type I, type Il or F, scirpi clusters.

The phylogenetic analyses revealed three defined groups for
F. acuminatum (A, B and C) (Fig. 2) plus a set of sequences that did
not belong to any of the above clusters. The Fst fixation index
obtained for this species was 0.84570. The intraspecific variability
for the EF-1a sequences was very low, with 7 values between
groups A, B and C less than 0.002 (data not shown).

3.2. Toxin production

To characterize the chemical profile of E egquiseti and
E acuminatum toxin production, 12 isolates of each species were
examined (Table 2). None of the 12 isolates of E eguiseti tested
produced 3/15Ac-DON, and none of the 12 E acuminatum isolates
produced NIV, 3/15Ac-DON, DON derivatives, NEO or DAS. T-2 and
HT-2 were absent in all cultures of both species. In E equiseti, NIV,
DON, DON derivatives, FUS-X, NEO and DAS were produced by 3
(25%), 10 (83.33%), 4 (33.33%), 5 (41.67%), 3 (25%) and 3 (25%)
isolates respectively (Table 3). Production levels were very variable,
ranging from 227 to 7005 pg/kg for NIV, from 46 to 1035 pg/kg for
DON, from 367.5 to 10,150 pg/kg for DON derivatives, from 32.5 to
16,750 pg/ke for FUS-X, from 38.1 to 1665 ng/keg for NEO, and from
9.65 to 197 pg/kg for DAS. In F acuminatum the production of DON
and FUS-X was detected in 7 (58.33%) and 1 (8.33%) isolate
respectively. The production level was constant, ranging from 45.1
to 61.1 pg/kg for DON, and from 32.5 to 16,750 ng/kg for FUS-X
(Table 3). Three isolates of E equiseti produced both type A (NEO
and DAS) and type B (NIV, DON, 3/15Ac-DON, DON derivatives and
FUS-X) trichothecenes, whereas seven produced only type B
trichothecenes. Only two isolates produced no type of trichothe-
cene, In E acuminatum, seven isolates produced only DON, and only
one of these produced FUS-X. Five isolates did not produce any of
the trichothecenes analysed (Table 2).
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Table 2

Toxin production by the E equiseti and F. acuminatum strains isolated from Spanish cereals. NIV: nivalenol; DON, deoxynivalenol; FUS-X, 4-acetylnivalenol; NEO, neosolaniol;
DAS, diacetoxyscirpenol; DON derivatives; n.d., not detected; 1, type A (NEO and DAS) and type B (NIV, DON, 3/15A¢-DON, DON derivatives and FUS-X) trichothecene producer;
2, type A trichothecene producer; 3, type B trichothecene producer; 4 non-trichothecene producer.

Isclate Name Toxin production (ug/kg)

Toxin profile

Type B trichothecene

Type A trichothecene

NIV DON 3/15Ac-DON DON derivatives FUS-X NEO DAS

F. equiseti

EQU1 (type 11) nd. nd. n.d. n.d. n.d. n.d. n.d. 4
EQU2 (type II) nd. 46 nd. nd. nd. n.d. n.d. 3
EQU3(type 1) nd. 624 nd. nd. nd. n.d. n.d. 3
EQUA4 (type 1T) nd. nd. nd. nd. nd. n.d. n.d. 4
EQUS (type 1I) 1195 67.01 nd. 1185 121 n.d. n.d. 3
EQUG (type 1I) n.d. 61.5 nd. n.d. n.d. n.d. n.d. 3
EQU7 (type II) 7005 1035 nd. 10150 16750 1665 197 1
EQUS (type 1) n.d. 52.1 nd. n.d. n.d. n.d. n.d. 3
EQUS (type 1) nd. 116.5 nd. 578.5 2320 60.65 15.9 1
EQU10 (type 1) 227 62.3 nd. 367.5 1115 38.1 9.65 1
EQU11(type 1I) n.d. 56.55 nd. n.d. n.d. n.d. n.d. 3
EQU12 (type IT) nd. 60.35 nd. nd. 325 n.d. n.d. 3
F. acuminatum

ACU1 .. 58.65 n.d. n.d. n.d. n.d. n.d. 3
ACU8 .. 48.4 n.d. n.d. n.d. n.d. n.d. 3
ACU10 .. 60.11 n.d. n.d. 46.7 n.d. n.d. 3
ACU11 nd. 61.1 nd. nd. nd. n.d. n.d. 3
ACU14 nd. nd. n.d. n.d. nd. n.d. n.d. 4
ACU17 nd. nd. nd. nd. nd. n.d. n.d. 4
ACU18 nd. 58.2 nd. n.d. nd. n.d. n.d. 3
ACU21 n.d. 45.1 n.d. nd. n.d. n.d. n.d. 3
ACU23 n.d. 58.35 nd. nd. n.d. n.d. n.d. 3
ACU24 nd. nd. n.d. nd. n.d. n.d. n.d. 4
ACU29 .. n.d. n.d. n.d. n.d. n.d. n.d. 4
ACU34 n.el. n.d. n.d. n.d. n.d. n.d. n.d. 4

4. Discussion

Accurate predictions of mycotoxigenic risk basically rely on the
correct identification of the fungal species in agrofood products and
the determination of the toxigenic profiles of strains from different
origins that might adequately represent the species. Conventional
methods for identifying fungal species may overlook diversity at
intraspecific level, i.e,, the existence of cryptic populations. Phylo-
genetic analyses, however, provide a useful tool for revealing such
populations, they can efficiently assist in the identification of fungal
strains, and permit toxigenic profiles to be associated with partic-
ular populations or species. In the present work this approach was
used to investigate a sample of isolates from two Fusarium species,

Table 3

Percentage of F. equiseti and F. acuminatum strains producing any of the toxins tested
in this study, and the minimum and maximum quantities produced. NIV: nivalencl;
DON, deoxynivalenol; FUS-X, 4-acetylnivalenol; NEQ, neosolaniol; DAS, diacetoxy-
scirpenol; DON derivatives; n.d., not detected.

Toxin production

(ngfkg)

Toxin Producer Minimum Maximum

isolates (%)
F. equiseti
NIV 25 227 7005
DON 83.33 46 1035
DON derivatives 33.33 367.5 10150
FUS-X 41.67 325 16750
NEOQO 25 38.1 1665
DAS 25 9.65 197
F. acuminatum
DON 5833 75.1 61.1
FUS-X 833 46.7 46.7

E equiseti and F. acuminatum, which often occur in cereals grown in
Spain, and which have not been characterized to date. Their
phylogenetic analysis also included a representative sample of
isolates of different origin in order to situate them within a wider
geographical context, particularly that of Europe.

The phylogenetic results for F equiseti reveal the existence of
wide genetic variability and two different clusters, type 1 and type
II, that predominantly group the Northern and Southern European
E equiseti strains respectively. These results agree with those of
a previous study by our group (Jurado et al., 2006a). Further, four
out of five strains from Northern Europe described by Kosiak et al.
(2005) fell into the type I cluster, while the other fell into the
E scirpi cluster. The existence of two distinct populations within
this species might explain its presence in these two regions of
markedly different climate. The genetic isolation of these two
populations {which would depend greatly on the amount of sexual
reproduction practised) may have occurred and genetic differences
providing better adaptation to ecophysiological factors may have
arisen in both. Although the life cycle of E equiseti includes the
perfect stage Gibberella intrincans (Leslie and Summerell, 2006),
perithecia of G. intrincans have only been observed in laboratory
experiments. Therefore, the predominant mode of reproduction of
E equiseti is considered to be asexual. If no sexual events occur
between the two proposed populations, the different features and
toxigenic profiles of each will persist. Additional studies would be
useful for characterizing these two populations, including an
examination of the ecophysiological characteristics of individuals
from both populations and their relationship with their climato-
logically different origins.

Several studies indicate that F equiseti strains can produce
a wide array of toxins (Adejumo et al., 2007; Kosiak et al,, 2005).
In the present study, the toxigenic profile of the type I Spanish
strains showed differences with respect to previously reported



strains from Northern Europe (Kosiak et al., 2005), which fell into
the type 1 cluster. In neither set of strains, however, was the
production of toxins T-2 nor HT-2 detected. Kosiak et al. (2005)
reported E equiseti strains to produce higher quantities of type A
trichothecenes, no detectable levels of DON nor DON derivatives,
but significant amounts of NIV and FUS-X. In the present study, the
Spanish E equiseti strains did produce DON, DON derivatives and
the highly toxic NIV at higher levels. Over 80% of the strains
produced at least DON and 25% produced NIV as well. Further, the
type Il population showed diversity among individuals regarding
the set of toxins produced and the relative quantities manufac-
tured. In any event, the low level of non-toxigenic strains (less than
20%), the importance of some of the toxins produced, and their
wide occurrence in cereals, highlight the potential contribution of
E equiseti to the toxin risk associated with the consumption of
Spanish cereals, as well as the need to design early detection and
control strategies for this species. The PCR-based E equiseti detec-
tion protocol {Jurado et al., 2005, 2006b) may be useful in this
respect.

The topology of the dendrogram obtained, which included the
closely related species E scirpi as a reference, suggests that further
studies are needed for clear species distinctions to be made. Indeed,
the present results, and those of a recent study on the clinically
important E incarnatum—F equiseti species complex involving the
use of multilocus DNA sequence data (O’'Donnell et al., 2009), show
the strong variability of F equiseti and F scirpi. O’'Donnell et al.
(2009) concluded that the E incarnatum—F. equiseti complex con-
tained 28 phylogenetically distinct species in which both E equiseti
and F scrpi were represented in two distinct clusters. These
E equiseti and F. scirpi strains were also included in the present
phylogenetic study, and they clustered within F. equiseti type [ and
E scirpi respectively. Unfortunately, it would seem that no isolate of
E equiseti type Il was included in the study performed by O'Donnell
et al. (2009). Further studies should examine a fully representative
sample of the diversity of F eguiseti in order to obtain a reliably
robust phylogeny.

Diversity was also found for E acuminatum, with different clusters
detected, although no relationship with host or geographic origin
could be established (all these groups contained E acuminatum
strains isolated from Spanish barley). However, analyses of the EF-1a
genomic sequence revealed less intraspecific variability than that
recorded for E equiseti, with a low number of parsimony-informative
sites and little nucleotide diversity despite the different origins of the
strains analysed. Thus, these results are suggestive of a quite
homogenous population. This species is clearly phylogenetically
distinct from other related species with similar morphological
features within the E avenaceum/E. acuminatum/F. tricinctum species
complex (Harrow et al,, 2010; Leslie and Summerell, 2006). Harrow
et al. (2010) suggest that E acuminatum may not be as abundant as
E avenaceumn, probably as a consequence of biogeographic limitation,
narrow host preferences and/or competitive disadvantages restrict-
ing its presence in different environments, and indicate that this
might be related to the scant variability it shows. As mentioned
above, a number of authors have reported different toxigenic profiles
for E acuminatum. However, to our knowledge, the production of
DON by E acuminatum has not been previously reported. In the
present study seven out of 12 strains analysed were able to produce
DON, although at a very low level. This suggests that this species
should not be considered a DON non-producing species, although
additional studies are needed to confirm this. The potential toxin risk
of DON contamination should not, therefore, be dismissed. A study
including both phylogenetic and toxin analyses are essential for
accurate predictions of toxin risk since this could detect intraspecific
variability that otherwise might be overlooked, and associate toxi-
genic profiles to groups/lineages/species.

In summary, the present results suggest the existence of two
phylogenetically distinct populations of E equiseti apparently
associated with two different geographical/climatic regions:;
Northern and Southern Europe (type I and type Il respectively).
Toxin production by the type Il population indicates that its
members could pose a risk of cereal contamination in Southern
Europe, particularly involving DON and NIV, In the case of
F. acuminatum, although the potential DON risk is probably small, it
should not be disregarded.
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