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A B S T R A C T 

E-learning systems output a huge quantity of data on a learning process. However, it takes a lot of spe­
cialist human resources to manually process these data and generate an assessment report. Additionally, 
for formative assessment, the report should state the attainment level of the learning goals defined by the 
instructor. 

This paper describes the use of the granular linguistic model of a phenomenon (GLMP) to model the 
assessment of the learning process and implement the automated generation of an assessment report. 
GLMP is based on fuzzy logic and the computational theory of perceptions. This technique is useful for 
implementing complex assessment criteria using inference systems based on linguistic rules. Apart from 
the grade, the model also generates a detailed natural language progress report on the achieved profi­
ciency level, based exclusively on the objective data gathered from correct and incorrect responses. This 
is illustrated by applying the model to the assessment of Dijkstra's algorithm learning using a visual sim­
ulation-based graph algorithm learning environment, called GRAPHS. 

1. Introduction 

Assessment is a key part of any learning process. It is, however, 
resource intensive, and is not easy to automate if the criteria to be 
implemented are complex. Additionally, one of our goals as instruc­
tors is to examine what the key features of an effective e-learning 
system for teaching mathematical concepts and algorithms are. 
We defined eMathTeacher (Sanchez-Torrubia, Torres-Blanc, & 
Krishnankutty, 2008), a set of specifications that we used to build 
the GRAPHS1 environment (Sanchez-Torrubia, Torres-Blanc, & 
Escribano-Blanco, 2010b), geared to graph algorithms and based on 
visual simulation (Malmi et al., 2004). Tools like these generate a 
huge amount of data, and it is impracticable to process data manu­
ally. Additionally, a formative learning process assessment should 
specify the level of attainment of the learning goals defined by the 
instructor. This may require the definition of complex criteria. This, 
plus the fact that the assessment should be as fast as possible, is an­
other obstacle to manual data processing. 

To solve this problem, we devised an interdisciplinary solution. 
This solution was to combine an e-learning system based on visual 
simulation with an automatic assessment expert system based on 
fuzzy inference. This hybrid system would output a formative 
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assessment based on natural language (NL) reports. For this pur­
pose, we designed a general linguistic granular model of learning 
assessment. Based on this design, we modelled the assessment of 
Dijkstra's algorithm learning based on visual simulation in 
GRAPHS. The implementation of this model generates a personal 
natural language report on the level of learner attainment across 
one or more algorithm simulations. 

1.1. Visualization and eMathTeacher compliance 

The 1981 Sorting out Sorting video (Baecker, Sherman, & Group, 
1981) and the BALSA system (Brown & Sedgewick, 1984) intro­
duced the use of visualization as algorithm learning support. It 
would be out of the question to detail the many applications devel­
oped since then, most of which are available on the web. For an 
extensive review of the state of the art on this topic, see (Shaffer 
et al., 2010). Most of these applications are applets that render 
visualizations of several algorithms. An important group is com­
posed of systems that integrate a script language to build visualiza­
tions. This applies to systems like XTANGO/POLKA (Stasko, 1998), 
Swan (Shaffer, Heath, & Yang, 1996), ANIMAL (Rolsling & Freisle-
ben, 2002), JAWAA (Akingbade, Finley, Jackson, Patel, & Rodger, 
2003), AlViE (Crescenzi & Nocentini, 2007) or JHAVE (Naps, 
2005), which also include a collection of ready-made visualiza­
tions. The systems closest to our approach are JHAVE and, espe­
cially, TRAKLA2 (Malmi et al., 2004). JHAVE visualizations include 
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pop-up questions addressing algorithm execution details and are 
useful for assessing user knowledge. TRAKLA2 includes user 
authentication and is designed to assess learner knowledge 
through the visual simulation of an algorithm on system-generated 
data. After the algorithm has been simulated, the process is com­
pared with the model and the system outputs the number of cor­
rectly executed steps. The drawback of this method is that if 
there is an error at the start of the simulation, all the subsequent 
steps will be incorrect. This would result in an extremely low 
grade. The current trend in this field is towards the construction 
of hypertextbooks, which, apart from theoretical explanations, 
contain algorithm visualizations and practical exercises with self-
assessment (Rolsling, Mihaylov, & Saltmarsh, 2011). If such hyper­
textbooks are then integrated into a learning management system 
(LMS) (like Moodle, for example), the self-assessment functions 
could be integrated into the system to build an automated learning 
assessment system (Rolsling et al., 2010). 

The construction of visualization systems has gone hand in 
hand with theoretical research into their impact on learning and 
how best to improve their effectiveness (see, i.e., (Hundhausen, 
Douglas, & Stasko, 2002; Naps et al., 2002; Naps et al., 2003). When 
designed and used under the right conditions, visualization tech­
nologies for algorithm teaching have proved to be a very positive 
learning aid. Learners who were actively involved in visualization 
consistently outperformed other learners who viewed the algo­
rithms passively (Hundhausen et al., 2002). Thus, when using an 
e-learning tool, the program should request continuous user-side 
interaction to rule out laziness and force learners to predict the 
next step. This was the key idea behind the eMathTeacher set of 
requirements. 

Since the late 1990s, we have developed several web applica­
tions for graph algorithm learning based on visualization and aimed 
at promoting active learning (Sanchez-Torrubia, Torres-Blanc, & Lo­
pez-Martinez, 2009; Sanchez-Torrubia et al., 2010b). These applica­
tions were designed on the basis of the philosophy underlying the 
eMathTeacher specifications. An e-learning tool is eMathTeacher 
compliant (Sanchez-Torrubia et al., 2008; Sanchez-Torrubia et al., 
2009) if it works as a virtual math trainer. In other words, it has 
to be an online learning tool with built-in self-assessment that 
helps students (users) to actively learn math concepts or algorithms 
independently, correcting their mistakes and providing them with 
clues to find the right answer. Basically we design tools that act 
as nagging teachers working next to the student. The effectiveness 
of these specifications for building mathematical concept and algo­
rithm learning support tools was examined in Sanchez-Torrubia et 
al. (2008), Sanchez-Torrubia et al. (2010b). Throughout the algo­
rithm simulation, learners using eMathTeacher-compliant tools 
can be sure that all the steps they have taken are correct. Learner 
proficiency then can be assessed based on the mistakes they make 
in each step before they enter the correct value. This will prevent a 
grade from misrepresenting the learner's real proficiency level as a 
result of a mistake in the early stages of the simulation. 

1.2. Learning process and formative assessment 

A key part of the learning process is assessment. There are two 
types of assessment: summative and formative assessment. Sum-
mative assessment occurs at the end of a learning process and 
serves the purpose of determining the learner's level of knowledge. 
On the contrary, formative assessment is part of the learning pro­
cess and takes place during this process. This type of assessment 
provides learners with feedback about what they know, what their 
weaknesses are and what they need to work on. Its goal is to let 
learners know how they are doing rather than to award grades. 
Therefore this assessment must be ongoing throughout the entire 
learning process. 

Learning processes that generate a lot of data, such as courses 
implemented by e-learning tools, are hard to assess, and this takes 
up a great deal of instructors' time. Additionally, formative assess­
ments should give learners detailed feedback about their strengths 
and weaknesses. Besides, rapid feedback increases the effective­
ness of formative assessment. This, plus the huge amount of data 
to be processed, makes automation a number one priority. Auto­
mation will require an expert system capable of implementing 
similar criteria to the standards applied by an expert instructor. 
Natural language is what human beings (and therefore learners) 
understand best. On this ground, formative assessment should take 
the format not only of numerical data but also of reports written in 
natural language. 

To automate formative assessment, we set ourselves the chal­
lenge of building a model that reproduces an instructor's reasoning 
for learning assessment. The expert system based on this model 
will provide learners with a natural language report on their 
attainment at each step of and throughout the learning process. 
Besides, the numerical grades output by the system will not be a 
direct result of counting correct and incorrect responses; the re­
sponses will be aggregated taking into account the importance of 
different error types, thereby emulating the instructor's criteria. 

1.3. State of the art of fuzzy assessment 

Fuzzy inference techniques are based on fuzzy set theory, fuzzy 
logic and approximate reasoning. They enable experts to express 
their reasoning in natural language and simulate this reasoning 
using linguistic rules and variables. 

Fuzzy logic techniques have been used since 1995 (Biswas, 
1995) to develop different learner knowledge assessment methods. 
Most of these methods aim to assess learners compared with a 
group, i.e., assign grades to fit a predefined reference curve. They 
are known as grading on a curve methods (Bai & Chen, 2008a; 
Bai & Chen, 2008b; Law, 1996; Li & Chen, 2009; Saleh & Kim, 
2009). Other authors report methods for assessing learners di­
rectly. The first was presented by Biswas. His method is based on 
fuzzy set theory and similarity functions, where the grade of each 
response is represented by a fuzzy set. Chen and Lee (1999) report 
an improvement on Biswas' method and Chen and Wang (Chen & 
Wang, 2009) modify this method by using interval-valued fuzzy 
sets to represent the grade of each response. Ma and Zhou (2000) 
present a method aimed at assessing project-based learning. In this 
method, both the assessment criteria and the grades assigned to 
each project are decided by means of fuzzy group decision making 
techniques. Recently, Tay and Lim (2011) presented an assessment 
system, based on fuzzy IF-THEN rules with rule refinement, to ob­
tain a finer-tuned assessment. One weakness of all these methods 
is that instructors have to participate in each and every assess­
ment, as it is they that provide the fuzzy system input data. The ex­
pert is then irreplaceable. For example, Biswas' method multiplies 
the instructors' workload, as they have to give not one but six sat­
isfaction levels for each response. 

In Sanchez-Torrubia et al. (2010a) and Sanchez-Torrubia and 
Torres-Blanc (2010) we presented preliminary solutions to the 
problem of instructorless automatic assessment, where assess­
ment criteria were not based merely on counting correct and incor­
rect responses. The proposed solutions are fuzzy inference systems 
based on Mamdani's direct method. The drawback of these sys­
tems is that they suffer either major defuzzification-induced infor­
mation losses during the inference process or, if intermediate 
denazifications are omitted, an exponential increase of the com­
putational complexity. 

As already mentioned, our goal is to build an automated system 
that emulates the entire assessment process enacted by an instruc­
tor. This process ranges from counting objective data on correct 



and incorrect responses, through the generation of a formative 
assessment report, to the assignment of a final grade. Of all the fuz­
zy techniques, the methodology that best suits our purpose is the 
granular linguistic model of a phenomenon (GLMP) (Martinez-
Cruz, Van der Heide, Sanchez, & Trivino, 2012). We have used this 
methodology to build the GLMP of learning assessment that repre­
sents instructor reasoning. In this article, we present the model and 
its implementation, which provides formative learning assessment 
through reports written in natural language. 

1.4. Problem-solving specifications 

When a learner simulates an algorithm in the GRAPHS environ­
ment (see Section 2.1), the system generates an XML interaction 
log. Based on this XML file, our computer system must generate 
a natural language report stating how correct the simulation is. 
The report must contain different detail levels, ranging from the 
correctness of the execution of each step, through the correctness 
of each of the key aspects of the algorithm, to an overall appraisal 
of the simulation including a numerical grade. Additionally, if the 
learner completes several simulations one after the other, the re­
port must also include an assessment of the learning process. 

The article is organized as follows. In Section 2 we detail the 
background required to be able to understand the article as a 
whole. Section 3 focuses on the description of the GLMP applied 
to learning assessment. Section 4 tailors the GLMP to the assess­
ment of Dijkstra's algorithm learning through simulation in G 
RAPHs. Section 5 describes the methodology used to build the 
assessment reports. Finally, Section 6 addresses the response pro­
vided by the expert system based on real data, and Section 7 out­
lines the conclusions. 

environment was designed to integrate eMathTeacher-compliant 
tools (Sanchez-Torrubia et al., 2008; Sanchez-Torrubia et al., 
2009), that is, the learner simulates algorithm execution using 
the respective inputs. It is also important to highlight that, in an 
eMathTeacher-compliant tool, algorithm simulation does not pro­
ceed until the user enters the correct answer. 

The environment runs on Java Web Start, features a language 
selector (currently English and Spanish) and is an extendible sys­
tem, including a kernel and series of algorithms that will exploit 
its functionalities. The graphical interface was designed to be 
user-friendly, intuitive and visually attractive (see Fig. 1). 

Users simulating an algorithm execution in GRAPHS have to 
manipulate several data structures depending on which algorithm 
step they are executing. At the end of the simulation, the system 
generates an XML interaction log (Sanchez-Torrubia & Torres-
Blanc, 2010) that records both user errors and correct actions la­
belled by type. In the following we describe the structure of the 
interaction log file, showing the different types of user input and 
their action codes. The errors to be taken into account in the 
assessment will be defined depending on these codes and then 
normalized for use as system input data (see Section 4.1). These in­
puts are described by the request message identifier tag if they are 
correct or by the generated error message identifier tag if they are 
incorrect. 

In particular, users simulating Dijkstra's algorithm execution 
have to manipulate fixed and unfixed nodes, select the active node, 
and update distances and predecessors among the set of (unfixed) 
nodes adjacent to the active node. Each of the correct and incorrect 
actions in the interaction is characterized by a tag. This tag corre­
sponds to its identifier tag in the properties file, enabling the inter­
nationalization of a Java application (see Table 1). 

2. Background 

2.1. GRAPHs. Generation of assessment expert system input data 

GRAPHS (Sanchez-Torrubia et al., 2010b) is an environment de­
vised to visually simulate an algorithm running on a graph. This 

2.2. Granular linguistic model of a phenomenon (GLMP) 

The concept of granular linguistic model of a phenomenon 
(GLMP) is part of our contribution to Zadeh's computational theory 
of perceptions (CTP) (Zadeh, 1999). We have developed this concept 
as a result of a research line aimed at developing computational 
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Table 1 
Pseudocode actions and GRAPHS outputs (* is MSG or ERR, depending on whether it 
corresponds to an error or a correct action). 

Action 
code 

C,-, 
C,-2 

C,-3 
C2-3 

C2-l 

C2-2 

Pseudocode action 

Selection of active node 
End of algorithm check (while 
condition) 
Final node check (if condition) 
Distance and predecessor 
update 
Set of adjacents check (for 
loop) 
Selection of adjacent 
Time taken 

XML tags 

<MSG_SEL_ ACTIVE_NODE_*> 
<ALERT_FINISH_*> 

<ALERT_ACTIVE_IS_FINAL_*> 
<MSG_SEL_ UPDATE _MED_*> 

< ALERT_ADJ ACENT_* > 

<MSG_SEL_ADJACENT_NODE_*> 

systems able to generate linguistic descriptions of data. Elsewhere, 
we have applied this concept to describe the behaviour of traffic on 
a roundabout (Trivino et al., 2010), generate financial reports from 
Internet data (Mendez-Nunez & Trivino, 2010), describe the surface 
of Mars (Alvarez-Alvarez, Sanchez-Valdes, & Trivino, 2011) and 
generate linguistic reports assessing the results of simulation ses­
sions in a learner driver trainer (Eciolaza, Trivino, Delgado, Rojas, 
&Sevillano, 2011). 

Let us introduce several earlier definitions to explain the con­
cept of GLMP: 

• Designer. We use the term designer to refer to a person or team 
of people that interprets the available data and produces the 
linguistic utterance. We say that the designer is the person 
who perceives and speaks when the computer perceives and 
speaks. In other words, the machine emulates the designer's 
way of thinking. Later on, we will see how the designer uses 
his/her own perceptions to create the GLMP. 

Here, the designer is an expert teacher, and our aim is to auto­
mate learning process assessment. The designer uses her own expe­
rience to interpret the available data and then create a 
computational model that conforms to her assessment criteria. 

• Computational Perception {CP) is the computational model of 
a unit of information acquired by the designer about the phe­
nomenon to be modelled. In general, CPs correspond to specific 
parts of the phenomenon at a particular granularity level. A CP 
is a couple (A,W), where: 
- A = (a1}a2 an) is a vector of linguistic expressions (NL 

words or sentences) that represents the whole linguistic 
domain of CP. Each a, describes the value of CP in a particular 
situation with a specific granularity level. These sentences 
can be either simple, e.g., a, = "The student's exercise is good" 
or more complex, e.g., a, = "The student has progressed over 
the last month". 

- W= (wi,w2 wn) is a vector of validity degrees, also called 
weights, w, e [0,1] assigned to each a, in the specific context. 
The concept of validity depends on the application, e.g., it is a 
function of the truthfulness and relevancy of each sentence 
in its context of use. 

• Perception Mapping {PM). We use PM to create and aggregate 
CPs. There are many types of PM, and we will use several in this 
paper. 

A PM is a tuple {U,y,g,T), where: 
- V is a set of input CPs U= {u1}u2 un}, where u, = (A,., Wu.) = 

{(a"\w"0,(a2,w2)>--->(a"L>w!L)}- I n t n e special case of a 
first-order perception mapping (1-PM), U is a variable defined 
in the input data domain, e.g., the value z eR provided by a 
thermometer. 

-y is the output CP y = (Ay, Wy) = {(d[,w![),(a^,w^), 

- g is the aggregation function with output Wy = g(WUj, WU2, 
. ..,WU„), where Wy is the vector (w]

y,w2
y,... ,wly) of validity 

degrees assigned to each linguistic expression in y and WUj 

are the validity degrees of the input perceptions. Fuzzy logic 
researchers have developed many different types of aggregation 
functions. For example, g could be implemented using a set of 
fuzzy rules. In the special case of 1-PMs, g fuzzifies the data, 
i.e. g is built using a set of membership functions: 
wy = ( / ^ (z), ^ ( 0 , • • •, Ha>„y (

z)) = « , w 2 , • • •, w % ) • w h e r e 

/VO2) l s t n e validity degree assigned to aj and z is the input 
daJta. 

- T is a text generation algorithm that allows generating the sen­
tences in Ay. In simple cases, T is a linguistic template, e.g., "The 
temperature in the room is {high | medium | low}". 

The granular linguistic model of a phenomenon consists of a 
network of PMs. Each PM receives a set of input CPs and propagates 
a CP upwards. We say that each output CP is explained by the PM 
using a set of input CPs. In the network, each CP covers specific as­
pects of the phenomenon with a set granularity level. 

Using different aggregation functions and different linguistic 
expressions, the GLMP paradigm enables the designer to model 
his/her perceptions computationally. 

Note that the output of PMt is designed as CPt in our notation, 
i.e., edges in the graph inherit the id-number from the generating 
node. 

Fig. 2 shows an example where the designer uses several PMs 
and CPs to explain the top-order computational perception (2-
PM6) about energy consumption efficiency. The designer can use 
this top-order perception to answer a general question about the 
monitored phenomenon. Fig. 2 includes several selected sentences 
that describe the current situation accounting for the data pro­
vided by the sensors. 

3. Granular linguistic model for the assessment phenomenon 
and its applications 

In this section we will look at how the designer, i.e., the teacher, 
uses a GLMP to create a generic model of her own perception of the 
assessment process. Using different aggregation functions and dif­
ferent linguistic expressions, the GLMP paradigm provides enough 

CP6 J 
Efficiency is high ,-- ~~^ 

(2-PIVM 
CF0^ft^lcp 

The room is comfortable > \ ° 

f2-PM^ f2-PMJ 

CP ^ » c _ c p ^ i C c p 
The temperature is medium - ~\s^~ >, 3 

M-PIVM (^-PU2) M-PIVU 

Thermometer Hygrometer Watt-meter 

Fig. 2. Basic example of GLMP together with several generated sentences. 



resources to design an automatic assessment tool for use in e-
learning systems. The case study (in Section 4) details how to apply 
these concepts to assess the simulation of Dijkstra's algorithm. 

When they execute the assess action, instructors group the lear­
ner errors according to the concept to which they are related and 
assesses them according to criteria of importance, repetition, etc. 
Instructors then aggregate these errors using an experience-based 
inference method to output the final grade. Instructors often per­
form much of this error clustering, assessment and aggregation al­
most automatically based on their knowledge and experience. This 
is the groundwork for building a GLMP to generically represent the 
process enacted to perform this task. This general model will then 
have to be tailored to each case by defining its constituent CPs and 
PMs. This way, the assessment task can be automated using objec­
tive and easily calculated input data. 

3.1. Top-order computational perception 

Designing a GLMP is an iterative process that starts with the 
definition of the top-order computational perception. Here, it is a 
matter of answering a general question about a learning process: 

"What level of proficiency do students demonstrate/acquire 
after completing a set of exercises?" 

A standard response to this question could be 

"The correctness level is satisfactory in most of the important exer­
cises, and the grade obtained is 8.1". 

This would be generated using the template: 

"The correctness level is {unsatisfactory | satisfactory | very satis­
factory} in {Few | Some | Most} of the important exercises, and 
the grade obtained is {/grade}". 

Therefore, the top-order-CP will correspond to the final grade. 
This includes a numerical grade and an overall natural language 
assessment of all the corrected exercises. 

3.2. First-order computational perceptions 

Each 1-CP will represent one of the elementary errors that can 
occur during the completion of an exercise. The input data, normal­
ized in [0,1], can be a quotient of either correct and incorrect ac­
tions or errors and the total number of occurrences of that type 
of action. 1-PM fuzzifies this datum using linguistic labels to out­
put the vector of weights of 1-CP. 

Each of these 1-CPs will represent the answer to the question 

"What is the size of error £,?" 

And a standard response will be 

"Error Et is low", 

which will be generated by the template 

Error Et is {low\medium\high}. 

The 1-CPs can also indicate whether or not there is a critical er­
ror (see, i.e., Section 4.1.2). 

3.3. Second-order computational perceptions 

At the next level, elementary errors represented by 1-CPs are 
clustered depending on the types or concepts to which they are re­
lated. Note that this is not necessarily a classification, as one and 
the same error can express a weakness concerning more than 
one concept or have an impact on the performance of more than 
one task. 

In this case, the 2-CP will represent the concept comprehension 
or task performance quality including errors that explain this per­
ception. These 2-CPs will answer a question like 

"How many Etype errors are there?" 

And a standard response would be 

"There are few Etype errors", 

which will be generated by the template 

There are {very few\few\several\many} E^ve errors. 

The 2-CP is the output of the 2-PMthat is built from the explan­
atory CPs used as input. Its output is the result of fuzzy aggregation 
and will lead to a vector of validity degrees corresponding to the 
linguistic expressions that belong to the output 2-CP. 

The aggregation function associated with each PM will imple­
ment assessment criteria like "a few errors like this are permissible 
as they are probably the result of a minor slip-up", "this is a major er­
ror and must be penalized", or "these two errors together are a sign 
that this concept has been misunderstood". In the example GLMP be­
low, we will show how to implement these criteria in practice 
using linguistic labels and if-then rules. 

Similarly, the CPs at one level (and possibly from a previous le­
vel) can be regrouped to represent the comprehension of a concept 
or the skill at executing a more complex task. 

As mentioned in Section 1.3, the designs proposed in (Sanchez-
Torrubia et al., 2010a and Sanchez-Torrubia & Torres-Blanc, 2010) 
suffered from sizeable information losses or high computational 
complexity. With GLMP, however, the system processes errors 
without any information loss, as each CP is explained based on 
the weight vectors of subordinate CPs. Additionally, computational 
complexity is very low as the operations are performed on weight 
vectors instead of the whole fuzzy sets. On the other hand, the re­
port on each error type is generated based on the linguistic expres­
sions and validity degrees, or vector of weights. This is the output 
of the respective PM. 

3.4. Summarizer and top-order computational perceptions 

As mentioned earlier, the top-order-CP is able to answer a gen­
eral question about the assessment phenomenon. This way, it can 
represent the assessment of a single exercise or a set of exercises, 
as described in Section 3.1, whichever is preferred. The set of 
exercises can represent the assessment of several topics or the 
learning process of one and the same concept over time. In the 
second case, the exercises completed last should carry a greater 
weight than exercises completed first in order to give consider­
ation to learning progress. In the first case, each exercise will be 
rated depending on the relative importance of the topic under 
assessment. In both cases, the different assessment ratings of 
the various exercises will be represented by a vector of impor­
tance that will attach the respective weight to each exercise with­
in the summary. 

As mentioned in Section 3.1, the top-order-CP will answer a 
question like 

"What level of proficiency do students demonstrate/acquire 
after completing a set of exercises?", 

using a template like: 

"The correctness level is {unsatisfactory | satisfactory | very satis­
factory} in {Few | Some | Most} of the important exercises, and 
the grade obtained is {fgrade}. 

The first part of this template has the linguistic structure of a 
fuzzy summary that can be expressed as follows (Yager, 1982, 
1991; Zadeh, 1983): 



The correctness level is S in Q B exercises 

where 

- (Ms a fuzzy quantifier (Yager, 1993; Zadeh, 1983). 
- B is a vector of importance (Kacprzyk & Yager, 2001; Kacprzyk & 

Zadrozny, 2005; Yager, 1996) 
- S is a summarizer (Yager, 1982; Yager, 1991). 

The validity degree of these linguistic summaries and the selec­
tion of the most informative summary will be calculated in each 
case using different techniques (see, i.e., Section 5.2). 

If the model is applied to assess a single exercise, the top-order-
CP will be the highest-ranking of the second-order CPs described in 
Section 3.3 and will answer a question like 

What is the correctness level of the exercise? 

The template will be: 

The correctness level of the exercise is {poor | fair | good | very good 
| excellent} and the grade obtained is {grade}. 

3.5. Applications 

algorithm in question, we will define the assessment criteria that 
will then be built into the model structure and functions. Once 
the model has been implemented, the data on correct and incorrect 
responses obtained from the log generated by the algorithm simu­
lation will be used as input data for the algorithm simulation auto­
matic assessment system. 

Another interesting application of this model is the intelligent 
assessment of multiple-choice examinations. Here intelligent 
means capable of implementing differential criteria rather than 
just totting up correct and incorrect responses. Evidently, it would 
be too labour-intensive to tailor this model to assess just one 
examination, unless fixed errors and criteria (which can be kept 
unchanged for years) are used to build the model. Once the model 
has been built, it remains merely to detail the test items that pro­
vide the data on correct and incorrect responses for each 1-CP. Spe­
cifically, this model could exploit the built-in automatic correction 
facilities of learning management systems (LMS) by implementing 
instructor criteria for assessing multiple-choice examinations. As 
these systems capture data automatically, the assessment process 
is fully automated. 

Similarly, this model could be applied to implement formative 
self-assessment systems using data generated by completing the 
hypertext-book exercises as mentioned in Section 1.1. 

The above learning assessment model can be applied to any 
assessment system providing data on correct and incorrect re­
sponses. To tailor this model to a particular case, the designer will 
first have to select the elementary errors that the assessment is to 
take into account. These errors and the basic criteria on which they 
rely (linguistic labels) will define the 1-PMs that constitute the 
GLMP groundwork. The elementary errors will then be grouped 
by type, and the assessment criteria will be defined for each error 
type by means of the aggregation functions of the respective 2-
PMs. This process can be repeated as often as necessary until the 
top-order-CP representing the overall assessment is reached. 

The case study in Section 4 details how this model is built in the 
particular case of the assessment of Dijkstra's algorithm learning 
through a set of simulations performed in the GRAPHS environ­
ment. As described in Section 2.1, this learning environment cre­
ates an XML interaction log every time a learner simulates an 
algorithm running on a graph. The elementary errors, identified 
by the tags of a particular algorithm log, will serve to define the 
1-CPs of an algorithm assessment GLMP. Depending on the 

4. Granular linguistic model of Dijkstra's algorithm simulation 
assessment 

Fig. 3 shows the diagram of the GLMP used to assess the profi­
ciency level acquired after simulating Dijkstra's algorithm in 
GRAPHS environment. 

In the following sections, we will detail each of the elements 
that constitute the PMs and CPs illustrated in Fig. 3. We will de­
scribe the rule sets used to aggregate the input variables that ex­
plain each 2-CP and the method used to build the sentences for 
inclusion in the natural language final report. 

4.1. 1-CPs 

The 1-CPs interpret student actions performed during learning 
sessions. As explained in Section 2.1, this information is available 
in an XML interaction log file created by the e-learning computa­
tional system (Sanchez-Torrubia & Torres-Blanc, 2010). Table 2 
shows the relationship between the action codes (corresponding 

2-CP12 
Current student 

skill 

1 
> 

2-CP,, 
Session 

correctness level 

Activation and 
flow control 

1-CP7 

Fig. 3. Granular linguistic model of the assessment of a set of Dijkstra's algorithm simulations. 



Table 2 
GRAPHS outputs and assessment system inputs. 

Action code 
Input datum 
First-order computational perceptions 

C,_, 
£1-1 
1-CP, 

C,_, 

£1-1 
1-CP2 

Cl-2 Ci_3 

£l-23 
I-CP3 

C2-3 

£2-3 
I-CP4 

C2-3 

£2-3 
I-CP5 

C2-I C2-2 

£2-12 
1-CP6 

Time 

1-CP7 

to XML tags as shown in Table 1) and the 1-CPs in the GLMP (note 
that some action codes have been grouped by similarity). 

The data contained in the codes generated by the interaction log 
described in Section 2.1 are normalized and used to define the 1-
CPs. £, and Tare normalized as follows: 

Ej = min 
Number of errors Q 

Time = 

[Number of correct acctions C,' 
time taken 

maximum time' (1) 

In an eMathTeacher-compliant tool, algorithm simulation does not 
continue unless the user enters the correct answer. For this reason, 
when the quotient in £,- (Eq. (1)) is greater than or equal to 1, the 
error rate indicates that the learner has no understanding of the 
algorithm step, and the data item is truncated at 1. This way, all 
the variables are defined in [0,1]. 

The interaction log elements are then grouped by 7 types (see 
Table 2) for the purpose of analysing the data in order to obtain 
the algorithm simulation correctness level. Each type outputs a 
1-CP that describes the correctness level achieved for each action 
type performed during algorithm simulation. 

4.1.1. 1-CPj active node selection (quantifier) 
This 1-CP represents the number of errors during the selection 

of the next active node (which corresponds to the node nearest 
to the start node that has not yet been fixed). This is the most 
important step in each iteration, as it is the algorithm's basic prin­
ciple. This 1-CP will have the highest weight in the final assess­
ment. 1-CP! is the result of the fuzzification of error £i_! and is 
obtained using 1 -PMi. 

The input datum for l-PA^ is defined by Eq. (2): 

. f Number of tags d 1 error(< MSG.SEL.ACTIVE.NODE.ERR>) 1 
1 ' ~ m m [Number of tags C, , correct(< MSG.SELACTIVE.NODE.MSG >)' J 

(2) 

According to the definition of 1-PJW, the 1-PAfi of level of the active 
node selection error (quantifier) is a tuple (U,y,g,T), where: 

U is a variable defined in the input data domain, i.e., z = EX-\ (Eq. 
(2)). 
y = ( A e i l , < i ) = {(al,wl),(a2 ,w2),(a3 ,w3),(ai,wi)}, where 
Ae> , are linguistic expressions that represent the level of active 
node selection error (e-i_i) and are built with four linguistic 
labels: {very small, small, large, very large}. 

The linguistic labels membership functions {very small, small, 
large, very large} are illustrated in Fig. 4(a). 

4.1.2. 1-CP2 active node selection (existence) 
In view of the importance of this step, we decided that error-

free action performance should be given special consideration. 
The input datum for perception 1-CP2 is the same quotient as de­
scribed in Section 4.1.1. In this case, however, it describes exclu­
sively whether or not E1-1 = 0. Its main application will be to 
award 10 or the perfect grade in the final assessment. 

The 1-PM2 of the existence of an active node selection error is a 
tuple (l/,y,g,I), where: 

U is a variable defined in the input data domain, i.e. z = EX-\ 
(Eq. (2)). 

y= (^e, u,W
2
ei i£) = {(a2,w2),(a2

2,w
2
2)}, where /_e, 1£ are lin­

guistic expressions that represent the existence of active node 
selection error (e^E) and are built with two linguistic labels: 
{null, not null}. 
g is a two-component function whose image, on the numerical 
value z = EX-\ (Eq. (2)), is the vector of validity degrees W2 = 

(/Wz),/Vu«W) = ( w W ) where < i£ = { gĵ ) | [ ^ =°. 

T the active node selection error is [null | not null}. 

4.1.3. 1-CP3 flow control 
This 1-CP studies the proficiency level with respect to the algo­

rithm flow controls (while and if statements) that discern whether 
or not the final node has been reached and whether or not the algo­
rithm has finished. Because of the number of times these state­
ments are repeated and as the response is yes or no in both 
cases, a few errors may be due to the occasional slipup. If the num­
ber of errors is above a certain limit, however, this is a sign of dis­
regard for or unawareness of the foundations of any algorithm. On 
this ground, the errors are not penalized until a set limit is reached 
(see Fig. 4(b)). Otherwise, the overall understanding of the algo­
rithm will be considered to be insufficient. The input datum 1-
PM3 is given by Eq. (3). 

The flow control 1-PM3 is a tuple (l/,y,g,I), where: 

U is the input data z = £^23 (Eq. (3)). 
y = (Aex 23,W

3
ei 23) = {(a\,w\), (al,wl)}, whereAex 23 are linguis-

£!_23 = min 
No of tags C1_2fcC1_3 errors(< ALERT.FINISH.ERR > fc < ALERT_ACTIVE.IS_FINAL.ERR >) 

No of tags d-z&CVa correct(< ALERT.FINISH.MSG > k < ALERT_ACTIVE_IS_FINAL_MSG >) ' (3) 

g is a four-component function whose image, on the numerical 
valuez = EX-\ (Eq. (2)), is the vector of weights or validity degrees 

^ e , , — (/^ery-smdll2); Ismail (Z)> Am e(Z),H very-large (*))= (v 
obtained from the linguistic label membership 

functions. 
T the active node selection error is [very small | small | large | very 
large}. 

tic expressions that represent the flow control errors (e-1-23) and 
are built from two linguistic labels: {acceptable, unacceptable}, 
g is a two-component function whose image, on the numerical 
value z = £1_23 (Eq. (3)), is the vector of weights w] 23 = 

T the flow control error is {acceptable | unacceptable}. 

The membership functions for the linguistic labels {acceptable, 
unacceptable} are illustrated in Fig. 4(b). 

http://ALERT_ACTIVE.IS_FINAL.ERR


1-PM1 (El-1) & 1-PM4 (E2-3) 1-PM3 (El-23) 

| reasonable unreasonable \ 

0.2 04 „ 0.6 

Fig. 4. Membership functions for the linguistic labels of 1-PMs for variables £,_, and £2-3 (a). £1-23 (b), £2-12 (<0 and Time (d). 

4. J.4. J-CP4 distance and predecessor update (quantifier) 
This quantity reflects the quotient between the number of cor­

rect and incorrect responses when updating the distances and pre­
decessors of adjacent nodes to the active node. This is another very 
important step in the iteration, as it will calculate the distance and 
store the best path (retrievable from the predecessors). Therefore, 
this perception will also carry an important weight in the final 
assessment. The 1-PM4 input datum is given by Eq. (4): 

£ 2 3 = min 
No of tags C2 3 error(< MSG.SEL.UPDATE.MED.ERR >) 

No of tags C2 3 correct(< MSG.SEL.UPDATE.MED.MSG >) ••}• 
(4) 

The 1-PJVI4 of level of distances and predecessors update error (quanti­
fier) is a tuple (U,y,g,T), where: 

U is the input data z = E2-3 (Eq. (4)). 
y=(Ae23,Wt2J)={(a*,w*),(aiw*),(aiw*),(ai,wi)}, 
where Ae2 3 are linguistic expressions that represent the level of 

predecessor update error (e2_3E) and are built with two linguistic 
labels: {null, not null}. 
g is a two-component function whose image, on the numerical 
value z = E2-3 (Eq. (4)), is the vector of validity degrees 

= (Pnuu(z),^nnuu(z)) = (wlw5
2), where 

(1,0) i fE 2_ 3=0 
(0,1) i f E 2 _ 3 ^ 0 ' 

T the distance and predecessor update error is {null | not null}. 

W; 
?2 3E 

5 

4.1.6. 1-CP6 adjacent check and selection 
This 1-CP aims to find out if the student has understood that the 

only vertices modified in this algorithm step are the adjacents to 
the active vertex that have not yet been fixed. As with 1-CP3, this 
step is very often repeated, meaning that a few errors may be 
due to occasional mistakes. The 1-PM6 input datum is given by 
Eq. (5). 
The 1-PM6 of adjacents check and selection is a tuple (l/,y,g,I), 
where: 

£2-1 min 
No of tags C2_i 

No of tags C2-\ & 
k C2-2 errors(< ALERT-ADJACENT.ERR > j 
C2-2 correct{< ALERT_ADJACENT_MSG > , 

< MSG-SEL-ADJACENT-NODE-ERR >) 
; < MSG_SEL_ADJACENT_NODE_MSG >) ' (5) 

distance and predecessor update error (e2_3) and are built with 
four linguistic labels: {very small, small, large, very large}, 
g is a four-component function whose image, on the numerical 
value z = £2_3 (Eq. (4)), is the vector of weights W^ = 

(fJ-vey-small(Z),Hsmdl(Z),Hlarge(Z),Hvery-large(Z)) = « > ™2, W i K)-
T the distance and predecessor update error is {very small | small | 
large | very large}. 

The membership functions for {very small, small, large, very 
large} are illustrated in Fig. 4(a). 

4.1.5. 1-CP5 distance and predecessor update (existence) 
As with the selection of the active vertex, we give special con­

sideration to the fact that this action is error free. The input datum 
of I-PM5 is £2_3 but exclusively describes whether or not £2_3 = 0. 
Its main application will be to award 10 or the perfect grade in 
the final assessment. 

The 1 -PM5 of the existence of distance and predecessor update er­
ror is a tuple (l/,y,g,I), where: 

U is the input data z = £2_3 (Eq. (4)). 

y = (Ae2 3C,Ws
ei J = {(af,wf), (ai.w*)}, where Ae2 3C are lin­

guistic expressions that represent the existence of distance and 

U is the input datum z = £2_i2 (Eq. (5)) 

y = (Ae2 12,W
6
e2 i2) = {(af,wf),(a«,w«)}, where Ae2 12 are lin­

guistic expressions that represent the adjacent check and selec­
tion errors (e2_12) and are built from two linguistic labels: 
{reasonable, unreasonable}. 
g is a two-component function whose image, on the numerical 
value z = E1_12 (Eq. (5)), is the vector of weights W^2 u = 
( A e ( 0 , l*vnre(Z)) = ( w ? , w f ) . 

I the adjacent check and selection error is {reasonable | 
unreasonable}. 

The membership functions for {reasonable, unreasonable} are 
illustrated in Fig. 4(c). 

4.1.7. l-CP7time 
This perception rates how long it takes the student to simu­

late the algorithm. As the main goal is error-free simulation, this 
item will only influence the final result if it is close to the 
maximum acceptable time. The 1-PM7 input datum is given by 
Eq. (6): 

Time = 
time taken 

maximum time' (6) 



The 1-PJWy of time is the tuple (U,y,g,T), where: 

U is the input datum z = Time (Eq. (6)). 
y = (Anme,Wnme) = {(a],w]), (a7

2,w
7
2)}, where Atime are linguis­

tic expressions that represent the time it takes to simulate the 
algorithm and are built from {adequate, inadequate}, 
g is a two-component function whose image, on the numerical 
value of z = Time (Eq. (6)), is the vector of validity degrees of 
WLe = (fiad{Z),fiinad{Z)) = (w7,W7

2). 
T the time taken to perform the algorithm simulation is {adequate | 
inadequate}. 

The membership functions for {adequate, inadequate} are illus­
trated in Fig. 4(d). 

4.2. 2-CP 

At a second level, we define three 2-CPs explained by 1-CPs (see 
Fig. 3): 2-CP8 activation and flow error, 2-CP9 adjacent management 
error and 2-CP10 existence of essential errors. According to the gen­
eral model described in Section 3, each of these 2-CPs represents 
a concept or work area within Dijkstra's algorithm simulation or, 
as in the case of 2-CP10, a special circumstance related to the qual­
ity of the simulation execution, which the professor intends to take 
into account. These three 2-CPs explain 2-CPn that represents the 
simulation correctness level, which is used to output the assessment 
of a full simulation of Dijkstra's algorithm. 

4.2.1. 2-CPg activation and flow error 
2-CP8 sets out to describe node activation and flow control er­

rors and is explained by \-CPx and 1-CP2 (perceptions describing 
active node selection error £i_i) and 1-CP3 (perception describing 
while and if statement simulation error £1-23). Fig. 5 illustrates 
the membership functions used for the linguistic labels of activa­
tion and flow error. 

The 2-PM8 of activation and flow error is a tuple (U,y,g, T), where: 

U is the set of input CPs l-CPlt \-CP2 and 1-CP3, U-• 

A^„KJ A^VKK, 

Ae, 

y=[AearWlf) = {{a\,w\),{al,wl),{alwl),{al,wl),{alwl)}, 
where Aeaf are linguistic expressions that represent the level of 
activation and flow error (eaf) and are built with five linguistic 
labels: {very low, low, medium, high, very high}, 
g is a five-component aggregation function, whose image is the 
vector of validity degrees Ws

e^ = g(w\ 1? W^ i£, W^ \ = 

g((w\,w\,w\,w\), (wj,wl), (w^,wl)j = (wf ,w|,w§,vv|,w§ J. 

T the activation and flow error is {very low | low | medium | high | 
very high}. 

Fig. 5 shows the membership functions for labels {very low, 
low, medium, high, very high}. 

As mentioned in Section 4.1.1, the selection of the active node is 
a key feature of Dijkstra's algorithm. On the other hand, only a very 
small number of flow control errors is acceptable (see Section 
4.1.3). Additionally, the errors are somehow accruable, and a 
build-up of either of the two types should be penalized. These fea­
tures are reflected in the following Mamdani-type rule set: 

(1) IF e!_23 is unacceptable AND e\_\ is very large AND e\ _iE is n o 
error THEN ea{ is very high. 

(2) IF e!_23 is unacceptable AND e\_\ is very large AND e 
1-1E is 

error THEN ea{ is very high. 

1 vlow low medium high vhigh 

Fig. 5. Membership functions for the linguistic labels of 2-PMs and 2-PM9. 

(3) IF e!_23 is unacceptable AND e\_\ is large AND e\ _iE is n o 
error THEN ea{ is very high. 

(4) IF e1_23 is unacceptable AND eX-\ is large AND e^_1E is error 
THEN eaf is very high. 

(5) IF e1_23 is unacceptable AND eX-\ is small AND e^_1E is no 
error THEN ea$ is high. 

(6) IF e1_23 is unacceptable AND eX-\ is small AND e^_1E is error 
THEN eaf is very high. 

(7) IF e1_23 is unacceptable AND eX-\ is very small AND e^_1E is 
no error THEN ea{ is medium. 

(8) IF e!_23 is unacceptable AND e\_\ is very small AND e!_1E is 
error THEN ea{ is high. 

(9) IF e!_23 is acceptable AND e-i_i is very large AND e i_iE is n o 
error THEN ea{ is very high. 

(10) IF 
^1-23 is acceptable AND e\_\ is very large AND e\_\E is error 

THEN eaf is very high. 
(11) IF 

^1-23 is acceptable AND e\_\ is large AND e\_\E is no error 
THEN eaf is high. 

(12) IF 
^1-23 is acceptable AND e\_\ is large AND e\_\E is error 

THEN eaf is high. 
(13) IF 

^1-23 is acceptable AND e\_\ is small AND e\_\E is no error 
THEN eaf is very low. 

(14) IF e!_23 is acceptable AND e\_\ is small AND e!_1E is error 
THEN eaf is low. 

(15) IF e!_23 is acceptable AND e\_\ is very small AND e!_1E is no 
error THEN ea{ is very low. 

(16) IF 
^1-23 is acceptable AND e\_\ is very small AND e\_\E is 

error THEN ea$ is very low. 
We find that rules 1, 3, 9 and 11 above do not affect the de­

sign, as they can never fire. The rule set will be used to calculate 
weights Ws

e . For example, w\, which is the validity degree of 
the expression The activation and flow error is very low, is calcu­
lated according to Eq. (7). Similar calculations are used to output 
the other validity degrees of this perception and 2-CP9 and 2-
CPn-

Wj = max{min(w\, w\, w\), min(yv], w\, w\), min(yv], w\,w\)). 

(7) 



4. IF e2_i2 is unreasonable AND e2_3 is small AND e2_3E is not 
null THEN eam is high. 

5. IF e2_i2 is unreasonable AND e2_3 is very small AND e2_3E is 
null THEN eam is medium. 

6. IF e2_i2 is unreasonable AND e2_3 is very small AND e2_3E is 
not null THEN eam is high. 

7. IF e2_i2 is reasonable AND e2_3 is very large AND e2_3E is not 
null THEN eam is very high. 

8. IF e2_12 is reasonable AND e2_3 is large AND e2_3E is not null 
THEN eam is high. 

9. IF e2_12 is reasonable AND e2_3 is small AND e2_3E is null 
THEN eam is very low. 

10. IF e2_12 is reasonable AND e2_3 is small AND e2_3E is not null 
THEN eam is low. 

11. IF e2_12 is reasonable AND e2_3 is very small AND e2_3E is null 
THEN eam is very low. 

12. IF e2_12 is reasonable AND e2_3 is very small AND e2_3E is not 
null THEN eam is very low. 

vbad • 
vgood • 

• poor 
• outstanding • 

• average 
• perfect 

•good 

Fig. 6. Membership functions for 2-PMn 

Of the five linguistic expressions that 2-CP8 produces, one will be 
chosen for entry in the report to be delivered to the student. This 
expression will be chosen (see Section 5.1) using Takagi-Sugeno 
fuzzy reasoning (Takagi & Sugeno, 1985). This same method of 
selection will be used for 2-CP9 and 2-CPn. 

4.2.2. 2-CP9 adjacent management error 
2-CP9 describes adjacent management errors and is explained 

by 1-CP4 and 1-CP5 (perceptions describing distance and predeces­
sor update errors £2_3) and by 1-CP6 (perception describing adja­
cent check and selection error E2_12). 

The 2-PM9 of adjacent management error is a tuple (l/,y,g,I), 
where: 

U is the set of input CPs, 1-CP4, 1-CP5 and 1-CP6, U = 

{(Aei3,Wt23),(Aei3E,Wli3E),(Aeiu,Wt2^}. 

y = (A^,WL) = {(a9„w9),(a9,w9
2),(a

9,w9
3),(a

9,w9
4),(a

9,w9
5)}, 

where Aeam are linguistic expressions representing the level of 
adjacent management error (eam) and are built with five linguis­
tic labels: {very low, low, medium, high, very high}, 
g is a five-component aggregation function whose image is 

the vector of weights W9 =g(wt ,Wl ,VV? ) = 
° ?am ° \ ?2 3 ' e2 3£ ' e2 1 2 / 

g((W\,w^,w^,w\), (w\,w5
2), (w\,wl)) = (w\,w9

2,w
9
3,w

9
A,wl). 

J the adjacent management error is {very low | low | medium | high 
I very high}. 

Fig. 5 shows the membership functions for labels {very low, 
low, medium, high, very high}. The rules are designed as described 
in Section 4.3.1, although some corrections are necessary due to 
the characteristics of 1-CP6. The following shows the rules that af­
fect the result only. 

1. IF e2_12 is unreasonable AND e2_3 is very large AND e2_3E is 
not null THEN eam is very high. 

2. IF e2_12 is unreasonable AND e2_3 is large AND e2_3E is not 
null THEN eam is very high. 

3. IF e2_12 is unreasonable AND e2_3 is small AND e2_3E is null 
THEN eam is medium. 

4.2.3. 2-CPw non-essential errors 
2-CP10 identifies the simulations with no essential and very few 

or no other errors and is explained by 1-CP2,1-CP3,1-CP5 and 1-CP6. 
Its goal is to award 10 or the perfect grade in the final evaluation. 

The 2-PM10 of no errors in essential steps is a tuple (l/,y,g,I), 
where: 

U are 1-CP2, 1-CP3, 1-CP5 and l-CPfi, U -. *«*><*} 

k B ,w 

Ae„.,W' 

^ • W U ,w: 

{(< ), (a2°,w2°)}, where Aem are the lin­
guistic expressions that represent the existence of errors in essen­
tial steps (ene) and are built with two linguistic labels: {null, not 
null}, 
g is a five-component aggregation function whose image is 

the vector of weights 

(w]° v2°) where W]' 

W , 
e l IE ' 

if w\ 

Wi ,Wi 

(1,0) 
(0,1) otherwise 

T the error in essential steps is {null | not null}. 

' e2 12 

Vf = 1 

4.2.4. 2-CPJJ simulation correctness level 
Then we aggregate 2-CP8 (activation and flow control), 2-CP9 

(adjacent management), 2-CP10 (non-essential errors) and 1-CP7 

(time) to build a perception that describes the level of Dijkstra's 
algorithm simulation correctness. 

The construction of the 2-PM is a two-phase process. First, we 
obtain the validity degrees for the linguistic expressions that will 
produce part of the natural language report. Second, we get a 
numerical rating (Grade) of the simulation under assessment. This 
numerical variable will be used as an input datum for the 2-PM12 of 
learning outcomes. 

The 2-PMn of level of simulation correctness is a tuple 
(U,(y,yG),(g,gG),T), where: 

U are 2-CP8, 2-CP9, 2-CP10 and 1-CP7, U = {(ASaf, Wla Y 

Ae^,W9 Ae„„,Wl[ Arime, Wti„,„ 

y = ( /UW") = { ( a ] \w») , ( a» ,w») ,K ,w») , (< ,w») , 

(a^,w^), (a^jW^1), (aj^wj1)}, where Aas are the linguistic 
expressions that represent the algorithm simulation correctness 
level (assessment) achieved by the student and are built from 
{very bad, poor, average, good, very good, outstanding, perfect}. 
yG = Grade is a numerical variable that expresses the numerical 
grade of the algorithm simulation. 



g is a seven-component aggregation function whose image is 2. 

the vector of weights W^1 = g W W , W ] ° , W L J = 

n (wf,w|,w§,w|,w§), (yv\,w\,w\,w\,wf), (w}°,w\°), [w],w7
2) j = 

,» w i \ w . ; \ w i \ w : \ w ; \ w i \ w . "i1 ^ < 
gG is the numerical grade of the simulation. It is obtained using 
the weighted mean of the weights: 

Grade =gG(WH) 
^ w » Aa 

n iwj 
(8) 

where ACJ are the centroids of the membership functions of the 
linguistic labels {very bad, poor, average, good, very good, out­
standing, perfect} (see Fig. 6). 

T the correctness level achieved by the student is {very bad | poor | 
average | good | very good | outstanding | perfect}, and the grade 
obtained in this simulation is {Grade*10}. 
To aggregate the information from the subordinate perceptions, 

we take several things into account: 

• Time is not an important factor, unless it is very close to the per­
mitted limit (see Fig. 4(d)), and has no influence whatsoever in 
cases where there are very few errors. 

• The perfect label will only be associated with exercises in which 
there is no essential and very few non-essential errors, i.e., 
W]° = (1,0). In this case, we do not take into account any of 
the other subordinate perceptions. 

• More adjacent management than activation and flow errors 
are permitted, as the selection of the next active vertex 
is the concept that is considered critical in Dijkstra's 
algorithm. 

• Errors are to some extent accruable, also taking into account the 
criteria expressed in the previous point. 

The above conditions are summarized in a set of 100 rules, of 
which only some examples are given: 

IF ene is not null AND time is inadequate AND eaj is 
eam is very low THEN assessment is outstanding. 

4. IF ene is not null AND time is inadequate AND ea$ is 
eam is low THEN assessment is very good. 

5. IF ene is not null AND time is adequate AND ea$ is 
eam is medium THEN assessment is good. 

6. IF ene is not null AND time is inadequate AND ea$ is 
eam is medium THEN assessment is average. 

8. IF ene is not null AND time is inadequate AND ea{ is 
eam is high THEN assessment is poor. 

21. IF ene is not null AND time is adequate AND ea{ is 
eam is very low THEN assessment is average. 

51. - 100. IF ene is null THEN assessment is perfect. 

very low 

very low 

very low 

very low 

very low 

medium 

AND 

AND 

AND 

AND 

AND 

AND 

Additionally, 2-CPn can be considered as a top-order-CP when 
the goal is to assess a single algorithm simulation. In this case, 
the perception will respond to the question: 

What correctness level does the student achieve in this algo­
rithm simulation? 

4.3. Top-order-CP learning outcomes 

The top-order-CP, 2-CP12, will describe the results achieved in a 
set of Dijkstra's algorithm simulations. It is explained by a set of 2-
CPns obtained from several simulations performed by a student. 

We will use a vector of importance (b\ b„) to build the 
aggregation functions of this 2-PM12. To select this vector, we as­
sume that students gradually make fewer mistakes as they learn 
more about the algorithm until they are capable of almost always 
solving the problem without making any mistakes. For this reason, 
more importance will be attached to later simulations. 

As for 2-CPn, the construction of this perception is a two-phase 
process. First, we obtain weights for the linguistic expressions that 
will output the natural language report on the set of simulations 
under assessment. Second, we get a numerical /Grade that corre­
sponds to the grade for that set of simulations. 

The 2-PM12 of learning outcomes is a tuple {U,(y,yG),(g,gG),T), 
where: 

1. IF ene is not null AND time is adequate AND ea{ is very low AND 
eam is very low THEN assessment is outstanding. 

U are the 2-CPnS provided by the simulations under 
assessment. 

-few- • most 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 
x 

0.8 

• unsat • • sat • • vsat 

Fig. 7. Membership functions for quantifiers and attributes. 



y = (AQS, TQS), where AQS are the nine linguistic expressions that 
represent the learning outcomes obtained in a set of n simula­
tions and are built using the quantifiers Q, {few, some, most} 
and the attributes S {unsatisfactory, satisfactory, very 
satisfactory}. 
yG=/Grade is a numerical variable that expresses the numerical 
grade of a set of n simulations. 
g is an aggregation function TQs = g{Grade-i Graden). The 
validity degrees IQS are calculated according to Eq. (11), as 
explained in Section 5.2. 
gc is a weighted average of the inputs with weights given by the 
vector of importance (b\ bn), whose image is the numerical 
grade of the set of simulations 
, , , , £ " i b ; * Grade, 
/Grade = g^Crade,,..., Craden) = ^ = 1 ' '-. (9) 

2-4=1 Dj 

T the correctness level achieved by the student is {unsatisfactory | 
satisfactory | very satisfactory} in {few | some | most} of the impor­
tant simulations, and the grade obtained is {fGrade*10}. 
Fig. 7 illustrates the membership functions for the quantifiers 

{few, some, most] and the membership functions for the attributes 
{unsatisfactory, satisfactory, very satisfactory}. 

This top-order-CP represents the model answer to the following 
general question on a set of simulations completed by the student: 

"What correctness level does the student achieve in the set of 
simulations?" 

Note that, using the vector of importance (1,1 1), this same 
model can be applied to study the level of correctness achieved by 
a group of students. 

5. Preparing assessment reports 

When processing each interaction log, the system generates a 
series of weight vectors W'x with i = \ 11 corresponding to each 
of the CPs. These weight vectors are used to generate the different 
levels of the assessment report. Simulation assessment also gener­
ates a table that contains the validity degrees of the nine possible 
quantifier and attribute combinations. In this section, we describe 
the criteria used to select the linguistic expression that will be en­
tered in the report. 

5.1. Assessment report for one simulation 

The perception 2-CPn contains the numerical grade that the 
student receives for an algorithm simulation. As mentioned earlier, 
this grade is obtained by applying Eq. (8), and the numerical grade 
output will be Grade*10. Of the seven linguistic expressions that 2-
CP-ii produces (Section 4.2.4), we will choose the linguistic label 
that has the maximum membership degree of Grade (in the event 
of a draw the most favourable label is chosen). This expression will 
be part of the natural language report that will be delivered to the 
student. For each of the other 2-CPs, the linguistic expression is se­
lected similarly, that is, we select the one whose label has a max­
imum membership degree of: 

where wj and Tic' are, respectively, the degrees of validity and cen-
troids for 2-CPk. For 1 -CPs we select the linguistic expression whose 
validity degree is maximum, choosing the best in the case of a draw. 

This way, we get a detailed report that indicates the parts of the 
simulation that the student finds harder, as well as where his or 
her strengths lie. 

5.2. Report on a set of simulations 

The top-order-CP (2-CP12) template can output nine different 
expressions depending on the selections of the three quantifier la­
bels and the three attribute labels. The objective is to assess the 
validity and relevance of each of these reports and choose the best. 
The validity degree of each of these summaries is calculated using 
the following equation (Yager, 1982; Yager, 1991; Yager, 1995; Za-
deh, 1983): 

f^Ub1*jis{Grade1y\ 
TQS = / H SLA )' (11) 

which expresses the validity degree of summary "Q B y's are S", 
where the validity degree of "y,- is S" is iis(yd- In Eq. (11), Q_ is one 
of the quantifiers {few | some | most}, B is the importance vector 
and S is one of the linguistic labels {unsatisfactory | satisfactory | very 
satisfactory}. 

One option for selecting the best summary could be to choose 
the one that has the best validity degree IQS. But, as Yager suggests 
in (Yager (1991), Yager (1995)), this is not always the one that con­
tributes the most relevant information. The selection of the most 
relevant linguistic expression and, especially, the selection of the 
combination of the most relevant expressions is an open question. 
In this paper we will use the Yager's measure of informativeness 
(Yager, 1982). For the linguistic summary "Q_y's are S", depending 
on the type of quantifier Q, the measure of informativeness is for­
mulated as follows: 

/QS = max(TQS * Sp(Q) * Sp(S), (1 - TQS) * Sp(Q) * Sp(S)), (12a) 

when Q is a monotonically non-increasing quantifier; 

IQS = max(a * TQS * Sp(QJ * Sp(S), (1 - a) * TQS * Sp(Q) 

*Sp(S)), (12b) 

when Q is an unimodal quantifier and a is the center of maximum of 
Q; 

/Qs = max(TQS * Sp(Q) * Sp(S), (1 - TQS) * Sp(Q) * Sp(S)), (12c) 

when Q is a monotonically increasing quantifier. 
In these equations Sp indicates the specificity of the associated 

fuzzy set (Yager, 1998). 
In this paper we propose a method for calculating the informa­

tiveness of the summary "Q_ B y's are S", as an extension of the 
measure proposed by Yager for application to our particular prob­
lem. To add the importance B within the summary we considered 
that each of the weights of B represents a number of repetitions fa, 
of the !th simulation. Accordingly, the set of simulations on which 
the label S is applied is substituted by a new set where the !th 
element is repeated fa, times. This changes the specificity of the 
above label on the new set. Note that this does not constitute a 
change in the validity degree IQS of the summary "Q_ B y's are S" 
calculated in Eq. (9), as the validity degree of this summary is 
equal to the validity degree of "Q_y's are S", where y are the ele­
ments of the new set. The method that we propose for calculating 
the informativeness of summary "Q_B y's are S" changes, not the 
equations proposed by Yager, but the universe of discourse to 
which these equations are applied. The labels Q_ S that have the 
greatest informativeness JQS will provide the summary that will 
be chosen for the report. 



6. Examples and results analysis 

6.1. Report on a simulation 

The student simulates Dijkstra's algorithm on a graph, where 
eleven vertices have to be fixed to find the shortest path between 
the two specified vertices. Data extracted from the XML interaction 
log (see Section 4.1) are f ^ ^ l / l l , £!_23 = 1/23, £2_3 = 3/10, 
£2_i2 = 0/10 and Time = 0.8. GLMP is used to prepare an assessment 
report based on these data: 

The vectors of validity degrees of the 1-CPs and linguistic 
expressions selected for the natural language report follow: 

W] t = (1,1,0,0) and the selected expression is a]: the active 
node selection error is very small. 
W2

e = (0,1), the active node selection error is not null. 
W3

e = (1,0), the flow control error is acceptable. 
W^2 = (0.33,1,0,0), the distance and predecessor update error is 
small. 
W5

ei 3c = (0,1), the distance and predecessor update error is not 
null" 
W^ =(1,0), the adjacent check and selection error is 
reasonable. 
W7

tjme = (1,0), the time taken to perform the algorithm simulation 
is adequate. 

The vectors of validity degrees of the 2-CPs, the weighted 
means, the linguistic label membership degrees over the weighted 
mean and the linguistic expressions selected for the natural lan­
guage report follow: 

Ws. = (1,1,0,0,0), the weighted mean is ^y—^ = 0.1. The 
of \ WS 

linguistic label membership degrees over 0.1 are 
(0.33,0.33,0,0,0), and the linguistic expression selected for 
the report is a\: The activation and flow error is very low. 

J2w!*Acl 
W9

e =(0.33,1,0,0,0), the weighted mean is i=V = 0.15. 
E-J 

The linguistic label membership degrees over 0.15 are 
(0,0.67,0,0,0), and the linguistic expression selected for the 
report is The adjacent management error is low. 
W]° = (0,1), The error in essential steps is not null. 

And, finally, the top-order-CP produces the following vector of 
validity degrees, linguistic expression and numerical grade: 

W]l =(0,0,1,0,0.33,1,0), Grade = gG(W%) ^ - ' ^ * "J = 0.731. 
E.,w" 

The linguistic label membership degrees over 0.731 are 
(0,0,0,0.5929,0.6571,0,0) and the linguistic expression 
selected for the report is The correctness level achieved by the stu­
dent is very good, and the grade obtained in this simulation is 7.31 

Table 3 
Data of the learning process interaction log with its respective numerical 
assessments. 

Ei-i 

3/7 
1/5 
3/9 
1/11 

0/9 

£l-23 

0/15 
1/10 
0/19 
1/23 
1/19 

£2-3 

3/11 
2/7 
6/16 
3/10 
1/6 

£ 2 - 1 2 

3/28 
1/18 
0/40 
0/10 
0/8 

Time 

0.85 
0.73 
0.31 
0.8 
0.49 

Crade*W 

4.09 
6.99 
4.94 
7.31 
9.40 

Although all the perceptions can generate their respective 
part of the report, we will select the linguistic summaries for 
2-CP8, 2-CP9 and 2-CPn, unless a great deal of detail is required. 
This way, the output of the GLMP for the simulation whose data 
are f ^ ^ l / l l , E^s = 1/23, £2_3 = 3/10, £2_12 = 0/10 and 
Time = 0.8 is: 

The activation and flow error is very low and the adjacent manage­
ment error is low, the correctness level achieved by the student is very 
good, and the grade obtained in this simulation is 7.31. 

6.2. Report on the learning process 

Let us now look at how the Dijkstra's algorithm learning process 
assessment report is obtained when the student completes more 
than one simulation. In this case, the importance of a simulation 
grows the more previous simulations the student has completed. 
To do this, we define the vector of importances (see Section 5.2) 
as B = (12,22,32,...). In this example, the student has completed 
five simulations, and Table 3 shows the interaction log data. 

Table 4 shows the validity degrees and the informativeness of 
the linguistic summaries (see Section 5.2). 

We select the two summaries with the greatest informativeness 
to generate the following report: 

In this process of 5 simulations (where importance = i2), the cor­
rectness level achieved by the student is very satisfactory in most of 
the important simulations (truthfulness = 1), satisfactory in some of 
the important simulations (truthfulness = 1), and the grade obtained 
is 7.79. 

6.3. Report on a set of simulations 

When the aim is to assess the level of learning demonstrated by 
a group of students in a Dijkstra's algorithm simulation examina­
tion, we can apply a variant of top-order-CP, 2-CP\2. We define 
the vector of importance (see Section 5.2) as £ = (1,1,1,...) in order 
to assess the exercises of all the students equally. Table 5 shows 
the data obtained by a group of eight students. 

Table 6 shows the validity degrees and informativeness of the 
linguistic summaries (see Section 5.2). 

By slightly amending the template for adaptation to the current 
case and choosing the two summaries with the greatest informa­
tiveness, we generate the following report: 

In this group, the correctness level achieved by the students is very 
satisfactory in most cases (truthfulness = 0.823), satisfactory in some 
cases (truthfulness = 1), and the average for this group is 7.23. 

6.4. Analysis of assessor results 

In the example shown in Section 6.2 (see Table 3), we find that 
the arithmetic mean of the grades obtained is 6.55; however, as 
indicated in the report, the grade provided by the GLMP is 7.79. 
This difference is due to the importance attached to the later sim­
ulations. Note also that the result of the third simulation is lower, 
which has a negative influence on the final grade. If we were to 
switch simulations 2 and 3, the final grade would be 8, that is, 
the model rewards the positive progress of learning. 

Table 4 
Validity degrees and informativeness of the linguistic summaries for the learning 
process described in Table 3. 

TQS Unsat Sat Very sat 7<jS Unsat Sat Very sat 

Few 1 0 0 Few 0.0303 0.1374 0.0739 
Some 0 1 0 Some 0 0.1683 0 
Most 0 0 1 Most 0.0189 0.1657 0.1847 



Table 5 
Interaction log data for a group of students with their respective numerical 
assessments. 

£1-1 

3/11 
1/11 
1/11 
0/11 
1/11 
0/11 
2/11 
1/11 

£l-23 

1/23 
1/23 
1/23 
1/23 
1/23 
1/23 
1/23 
2/23 

£2-3 

3/10 
3/10 
4/10 
2/10 
0/10 
0/10 
2/10 
1/10 

£2-12 

1/10 
0/10 
2/10 
0/10 
0/10 
0/10 
4/10 
0/10 

Time 

0.51 
0.75 
0.65 
0.8 
0.69 
0.95 
0.77 
0.86 

Grade 

6.63 
7.31 
5.88 
9.40 
8.70 
10 
2.45 
7.44 

Table 6 
Validity degrees and informativeness of the linguistic summaries for the set of 
simulations described in Table 5. 

TQS Sat Very sat 7<jS Unsat Sat Very sat 

Few 0.8750 0 0 Few 0.1 0.1576 0.0995 
Some 0.1250 1 0.1769 Some 0.0306 0.1931 0.0519 
Most 0 0 0.8231 Most 0.0714 0.1774 0.2048 

The resulting grade in simulation 7 shown in Table 5 is 2.45, be­
cause it exceeded the maximum permitted number of errors in 
adjacent check and selection (1-CP6), (see Fig. 4(c)), which means 
that the adjacent management (2-CP9) error is high. As there are also 
active node selection (1-CP^) errors, which is the most penalized er­
ror, the output of the GLMP returns a very low numerical grade. 

Grade 10 is reserved for exercises where there are only a very 
few non-critical errors. In this case, time is not taken into account 
(see simulation 6 in Table 5). In other cases, time only has an influ­
ence when it is greater than 85% of the maximum permitted limit 
(see Fig. 4(d)). For example, if the time taken in simulation 3 in Ta­
ble 5 had been 99%, the result would have dropped from 5.88 to 5. 

As mentioned beforehand, the most penalized error is ci_i, 
which corresponds to the selection of the nearest unfixed vertex 
as new active vertex. This error is important because of Dijkstra's 
algorithm strategy, where each subpath of the minimum path is 
also a minimum path. In other words, if V is a vertex situated in 
the minimum path from 0 to G, then the subpath from 0 to V is also 
a minimum path. Therefore, the vertex that is fixed in each itera­
tion is the one for which the minimum path has just been found. 
The grading of simulations 4 and 5 (see Table 5), for example, illus­
trates the implementation of this criterion. Simulation 4 contains 
two errors compared with 10 correct actions in £2-3 and 0 errors 
in £}_!, whereas simulation 5 has one error compared with 11 cor­
rect responses in E^ and 0 errors in £2-3- However, simulation 4 is 
graded higher than simulation 5. 

The examples described in this section clearly illustrate that 
automatic assessment using the proposed method is able to imple­
ment complex instructor-specific criteria (in this case specified by 
the designer) using exclusively objective and easily calculated 
data. 

7. Conclusions 

In this paper we have designed a granular linguistic model of 
the computer-assisted learning assessment process. This model is 
able to automate complex assessment criteria based on objective 
data, relieving human assessors of a laborious and repetitive task. 
The model uses fuzzy inference systems mainly based on linguistic 
rules. This is the feature that makes it most suitable for imple­
menting instructor knowledge- and experience-based criteria, 
where learning goals are usually expressed in natural language. 
Additionally, the model is geared up to output a detailed natural 

language report on the whole learning process for the purpose of 
formative assessment. 

We designed an expert system that uses this model to assess 
the Dijkstra's algorithm learning process through visual simulation 
in the GRAPHS e-learning environment. This application was 
implemented and tested on real data as shown in Section 6. This 
application shows the capabilities of the model described in Sec­
tion 3. As demonstrated, the model implements complex criteria 
that aggregate errors, which it discriminates by type and number. 

Additionally, we propose a method for calculating how informa­
tive a summary containing importance-discriminated data is, and 
we use this informativeness to choose the summary to generate 
the learning progress report. 

This paper outlines the first contribution of its kind in the field 
of automatic e-learning assessment. The ideas explained can be 
developed using other aggregation functions and other types of re­
port, meaning that its scope of application is easily extendible. 
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