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Compact, high-efficiency
sunlight harvesting
Fabian Duerr, Pablo Benı́tez, Juan Carlos Miñano,
Youri Meuret, and Hugo Thienpont

A new free-form optics design method could unleash the full potential
of tracking integrated solar concentrators

Concentrating photovoltaic (CPV) systems use optics to concen-
trate sunlight onto solar cells. By increasing the concentration
of light that reaches the solar cell, CPV systems allow the area
of the solar cell to be reduced. Solar cells are made of expen-
sive semiconductor material, and CPV systems consist of inex-
pensive mirrors or lenses. Thus, a CPV module—consisting of
the CPV system, and the cell—can be cheaper than the solar
cell alone, but equally efficient. High-efficiency multi-junction
solar cells can boost the conversion efficiency of CPV modules
beyond 30%, but their expense means they require a high con-
centration of light (>400�) to be economically viable. Achieving
this level of concentration normally requires dual-axis tracking
of the sun’s diurnal and seasonal movements.

Most CPV manufacturers work with very large modules and
pedestal-mounted dual-axis trackers: see Figure 1. These sys-
tems are suitable for utility-scale power plants, but are less ad-
equate for providing power to mid-scale or smaller operations.
In contrast, photovoltaic (PV) modules with single-axis trackers
are already in use on flat rooftops. Currently, CPV systems de-
signed for single-axis trackers are limited to a concentration of
about 300� for polar alignment, where the tracker axis equals
the Earth’s axis of rotation.1 This concentration is not sufficient
for economic use of multi-junction solar cells.

Existing CPV system designs vary, but almost all treat the CPV
modules and the external trackers separately: see Figure 2(a). In
contrast, our approach integrates part of the external solar track-
ing functionality into the CPV module:2 see Figure 2(b). The
laterally-moving optics arrays are mounted on a polar-aligned
single-axis tracker, and combine the concentration and steering
of the incident sun light. Tracking integration can be used to re-
duce the external tracking effort in favor of compact installation
size,3–5 or to fine-tune the total tracking functionality, allowing
coarse external solar tracking.6

Figure 1. Concentrating photovoltaic installations marketed by (a)
Amonix and (b) Soitec Concentrix. (Amonix photo by Jeff Aubin. Con-
cectrix photo reprinted with permission from Concentrix.)

Figure 2. (a) Schematic assembly of a conventional concentrating pho-
tovoltaic (CPV) module for pedestal-mounted dual-axis trackers, and
(b) our tracking integrated CPV module for polar-aligned single-axis
trackers (b).

While a benefit of dual-axis trackers over fixed installations—
which allow for the modules to always be pointed at the sun—is
the increased yearly insolation, comparing the potential annual
energy yield for polar-aligned single-axis trackers with dual axis
trackers shows only moderate differences.7 The tracking integra-
tion of our single-axis system covers an angular range of ˙24

◦

for incident direction vectors (pointing at the sun) within a sin-
gle plane. If symmetry is considered, it is evident that rotational
symmetric lenses are not an optimal solution. We developed
a new design algorithm,8 based on the simultaneous multiple
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surface (SMS) design method in 3D.9 This algorithm allows the
simultaneous calculation of two optical surfaces, focusing two
off-axis ray sets. The free-form lenses designed from this method
have rectangular apertures. Our free-form lens design outper-
forms its rotational symmetric counterpart, exceeding the de-
sired 400� concentration for a polar-aligned single-axis tracker:
see Figure 3.

Figure 4 shows our optical design has two distinct features: a
wide field of view, and a clear separation between the two op-
tical surfaces. We have demonstrated with the new analytic de-
sign algorithm that it is possible to couple more than two ray
sets with only two lens surfaces for such configurations.10 This
can only be achieved if different ray sets use different portions of
the lens surfaces. The convergence points, which are character-
ized by on- and off-axis rays sharing identical points and normal
vectors on each lens profile, are key in our design method: see
Figure 4. These were first introduced in the design of aspheric

Figure 3. (a) Laterally moving free-form lens design based on the si-
multaneous multiple surface (SMS) design method. (b) Concentration
ratio against incident angle for free-form (upper curve), and rotational
symmetric lens design (lower curve), both with rectangular lenses, and
receiver apertures.

Figure 4. Simplified 2D SMS reference design illustrating the wide
field view, and separation of optical surfaces of our design. (a)–(c) Steps
in coupling an additional on-axis ray set. (d) Final ray paths.

Figure 5. Ray tracing results for two exemplary solutions for calculated
free-form lenses: (a) a meniscus and (b) a biconvex lens.

V-groove reflectors.11, 12 We used Fermat’s principle to deduce a
set of functional differential equations fully describing the entire
optical system. Our presented general analytic solution makes
it possible to calculate the lens profiles up to 20th order Taylor
series about the convergence points.13

We generalized the 2D analytic optics design method to the 3D
case.14 We used Fermat’s principle to derive additional sets of
functional differential equations, which made it possible to cal-
culate the Taylor series functions describing the free-form lens
surfaces with more than 100 coefficients. Two exemplary calcu-
lated solutions are a meniscus and a biconvex lens: see Figure 5.
We have previously demonstrated the potential use of this new
free-form optics design method for imaging applications with a
high aspect ratio.15

In summary, we have presented the concept of tracking in-
tegration and indicated its potential to open small to mid-scale
installation markets for CPV due to the strong reduction of the
external solar tracking effort. Our new free-form design method
shows a way to realize the full potential of the optical system.
Next, we intend to apply the analytic design method to our
tracking integration optics and work on a first demonstrator.
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