
REMARKS ON METHODS FOR THE COMPUTATION OF 
BOUNDARY-ELEMENT INTEGRALS BY CO-ORDINATE 

TRANSFORMATION 

J. SANZ-SERNA 

M. DOBLARE 

E. ALARCON 

1. INTRODUCTION 

It is well known that the evaluation of the influence matrices in the boundary-element method 
requires the computation of singular integrals. 

Quadrature formulae exist which are especially tailored to the specific nature of the 
singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae 
vary with the location Xo of the singular point. 

A drawback of this approach is that a given problem usually includes different types of 
singularities, and therefore a general-purpose code would have to include many alternative 
formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type-
independent alternative technique based on the combination of standard Gaussian rules with 
non-linear co-ordinate transformations. The transformation approach is particularly appealing 
in connection with the p.adaptive version, where the location of the collocation points varies 
at each step of the refinement process. 

The purpose of this paper is to analyse the technique in Reference 3. We show that this 
technique is asymptotically correct as the number of Gauss points increases. However, the 
method possesses a 'hidden' source of error that is analysed and can easily be removed. 

2. BICUBIC TRANSFORMATION 

Let 

/= \ Av)dv (1) 

be the integral to be evaluated, where / is singular at the known point rj, - 1 < rj < 1. 
According to the method suggested in Reference 3, (1) may be rewritten as 

/ = \" f(vi)dVi+ j_ / (? 2 )d i ,2 (2) 
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and the co-ordinates 771 and 772 are replaced by new variables £1 and £2, - 1 < £i» £2 < 1, with 
2 

i?i = i? + v 4 « i - i r + fi«i i) 
3 

2 
l?2 = T? + C ( £ 2 + l r + Z>(£2+D 

3 (3) 

After replacing 171 and 772 by £1 and £2, respectively, in (2) the resulting integrals are computed 
by the standard Gaussian rule, with n nodes (n should be the same for the £1 and the £2 
integrals). 

In (3) the coefficients A9 B, C and D are determined by the following conditions: 

(i) The value £1 1 is mapped into 771 1. 
(ii) The value £2=1 is mapped into 772 1. 
(iii) If fin is the nth largest abscissa of the Gauss formula being employed, then n„ is mapped 

into 771 = 77 - £, where e is a small positive number, chosen by the user. 
(iv) £ 2 V-n is mapped into 7/2 = rj + e. 

Note that the form of the expressions in (3) implies that 77 
£ 

1 It V2 1 are mapped into £ 1 V 

2 = rj, respectively, and that the Jacobian of the transformation 771 (£1): 7/2(£2) vanishes at the 
singularity. The latter feature results in a smoothing of some types of singularities.2 

The conditions (iii) and (iv) are imposed to mimic the symmetry implied in the definition of 
Cauchy principal-value integrals. 

Owing to the combination of local smoothing and symmetry, this method can be applied to 
integrate many types of singularity, thus fulfilling the versatility requirement mentioned in the 
introduction, as shown by the numerical examples reported in Reference 3. 

3. ANALYSIS 

We study the case where the integrand /(TJ) is of the form #0?)/0f ~ y)9 with g regular. Clearly 
it is sufficient to consider the case where g = 1.3 When /(rj) = 1/(77-77), the change of variables 
(3) in (2) leads formally to 
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where R\ and Ri are regular functions. When / is computed numerically by the procedure 
outlined above, the approximations corresponding to the first two formal integrals in S cancel 
by symmetry. Therefore the numerical result is given by 

/ * = Qn 
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(6) 

where Q„ denotes application of the Gaussian quadrature. 
On the other hand, by definition of the Cauchy principal value 
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The last limit can be easily evaluated to arrive at 

/ = l n 
C 
A 

+ | * i t f i )d$ i+ j /?2(fc)dfc (7) 

Therefore there is a term In | CI A \ in the true value of (7) which has no numerical counterpart 
in (6). The presence of this term introduces a source of error in addition to the errors stemming 
from using Q„. Since 

A 
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if we let /? -* oo (implying n„ -* 1), then 

In | C\A In e/G*» 1) 
2 

f/0*« 1) 2 0 (8) 

so that the source of error tends to vanish. However, for n moderate, the error In | CjA \ can 
be substantial. 

It is obvious that the 'hidden' source of error can be removed by choosing the co-ordinate 
transformation to ensure that A = C rather than to satisfy the interpolation condition (iii)-(iv). 
A new transformation that guarantees A = C has been successfully implemented by the present 
authors. A full description of the new transformation as well as detailed numerical comparison 
with existing techniques will be given elsewhere. 


