
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Circuital model for the spherical geodesic waveguide
perfect drain
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Abstract. The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic
dissipative region placed in the focal point to absorb all the incident radiation
without reflection or scattering. The perfect drain was recently designed as a
material with complex permittivity that depends on frequency. However, this
material is only a theoretical material, so it cannot be used in practical devices.
The perfect drain has been claimed as necessary for achieving super-resolution
(Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in
practical perfect drains suitable for manufacturing. Here, we present a practical
perfect drain that is designed using a simple circuit (made of a resistance and
a capacitor) connected to the coaxial line. Moreover, we analyze the super-
resolution properties of a device equivalent to the MFE, known as a spherical
geodesic waveguide, loaded with this perfect drain. The super-resolution analysis
for this device is carried out using COMSOL Multiphysics. The results of
simulations predict a super-resolution of up to λ/3000.
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1. Introduction

The term ‘super-resolution’ refers to the capacity of an optical system to produce images with
details below the classic Abbe diffraction limit. Over the last decade, super-resolution has been
demonstrated experimentally with devices made of left-handed materials [1, 2] (i.e. materials
with negative dielectric and magnetic constants) [3, 4]. Super-resolution has also been achieved
using devices made of microstructured magnetic materials (see, for example, [5] where RF
flux has been guided for a remote object to the receiver coil in a magnetic resonance imaging
machine).

An alternative device for perfect imaging has recently been proposed [7, 8]: the Maxwell
fish eye (MFE) lens. Unlike previous perfect imaging devices, the MFE uses materials with
a positive, isotropic refractive index distribution. This device is very well known within the
framework of geometrical optics because it is an absolute instrument [6], so every object point
has a stigmatic image point.

Leonhardt [7] analyzed the Helmholtz wave fields in the MFE lens in two dimensions
(2D). These Helmholtz wave fields describe TE-polarized modes in a cylindrical MFE, i.e.
modes in which the electric field vector points orthogonally to the cross-section of the cylinder.
Leonhardt found a family of Helmholtz wave fields which have monopole asymptotic behavior
at an object point as well as at its stigmatic image point. Each one of these solutions describes
a wave propagating from the object point to the image point. It coincides asymptotically with
an outward (monopole) Helmholtz wave at the object point, as generated by a point source,
and with an inward (monopole) wave at the image point, as it was sunk by an ‘infinitely well
localized drain’ (which we call a ‘perfect point drain’). This perfect point drain absorbs the
incident wave, with no reflection or scattering. This result has also been confirmed via a different
approach [9].

The physical significance of a passive perfect point drain has been controversial [10–19].
In [7] and [6] the perfect point drain was not physically described, but only considered as a
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mathematical entity (a point drain is represented by Dirac-delta as the point source). However, a
rigorous example of a passive perfect point drain for the MFE has recently been found, clarifying
the controversy [20]. It consists of a dissipative region whose diameter tends toward zero and
whose complex permittivity ε takes a specific value depending on the operation frequency.

One experiment has recently been carried out to support the super-resolution capability
in the MFE. Super-resolution with positive refraction has been demonstrated for the very first
time at a microwave frequency (λ = 3 cm) [21, 22]. The experimental results showed that two
sources at a distance of λ/5 from each other (where λ denotes the local wavelength λ = λ0/n)
could be resolved with an array made up of ten drains spaced λ/20. The distance between the
sources (λ/5) is smaller than the classic diffraction limit (∼λ/2.5).

Although the perfect drain has not been used in these experiments, i.e. there was a
reflected wave from the drain to the source, the MFE has shown super-resolution at microwave
frequencies. This means that the perfect drain is not necessary for achieving super-resolution
(see also [23]).

Recently, a device equivalent to the MFE, the spherical geodesic waveguide (SGW) made
for microwave frequencies, has been presented [23, 24]. The SGW is a spherical waveguide
filled with a non-magnetic material and isotropic refractive index distribution proportional to
1/r(ε = (r0/r)2 and µ = 1), r being the distance to the center of the spheres. Transformation
optics theory [25] proves that the TE-polarized electric modes of the cylindrical MFE are
transformed into radial-polarized modes in the SGW, so both have the same imaging properties.
When the waveguide thickness is small enough, the variation in the refractive index within
the two spherical shells can be ignored, resulting in a constant refractive index within the
waveguide. In [23], the SGW has been analyzed using two coaxial ports (source and drain)
loaded with the characteristic impedances. The results have shown a super-resolution up to
λ/500 for a discrete number of frequencies, called notch frequencies, which are close to the
well-known Schumann resonance frequencies of spherical systems. For other frequencies the
system did not present a resolution below the diffraction limit. In this analysis, the perfect drain
has not been used; thus, in addition to the incident wave, there is also a reflected wave in the
SGW. However, super-resolution properties have been shown.

In this paper, we present an improvement in super-resolution achieved using the SGW with
the perfect drain. The perfect drain is implemented using a circuit (made of a resistor and a
capacitor) connected to the drain coaxial port. The difference between the presented drain and
the perfect drain proposed in [20] lies in the practical implementation. Whereas in [20] the
perfect drain is made of a material with complex permittivity ε, here it is only a coaxial port
loaded with a resistor and a capacitor of conventional values (e.g. R = 2.57 � and C = 55.05 pF
for f = 0.25 GHz). Using the circuital model for the perfect drain, the COMSOL simulations
have shown the following two results that improve the super-resolution properties of the device
analyzed in [23].

1. A super-resolution of up to λ/3000 for the same discrete frequencies as in [23], which is
much higher than the λ/500 obtained without the perfect drain.

2. A bandwidth of super-resolution that is 20 times higher than in the case reported in [23].

In section 2, the microwave circuit, the concept of perfect drain and its circuital model are
described. In section 3, we present a simulation of the SGW loaded with the perfect drain. The
discussion and conclusions are presented in section 4. The complete modal analysis of the SGW,
including the rigorous procedure used to find the perfect drain and the analysis of the transmitted
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Figure 1. Microwave circuit analyzed in this paper. It comprises the following:
the source (Vg and Z g) connected to a coaxial transmission line of length L, the
load (Z l) connected to the other identical transmission line and the spherical
waveguide. RM and Rm are the radii of the external and internal metallic spheres.

and evanescent modes, is described in appendix A. Finally, in appendix B the voltage and current
waves are defined in the same manner as in classical transmission lines theory.

2. Microwave circuit and parameters of the simulation

The SGW is bounded by two metallic spherical shells. The medium between the shells is air.
Two coaxial ports have been used to simulate the source and the drain in the SGW. Consider
that the microwave circuit consists of the voltage generator Vg with the impedance Z g (on the
source port side), coaxial ports, the SGW and the load with the impedance Z l (on the drain port
side), as shown in figure 1.

Let us define the merit function M as

M =
Pload

Pmax
, (1)

where P load is the power delivered to the load Z l and Pmax is the maximum power that can
be delivered by the generator [26]. This circuit coincides with the one analyzed in [23] with
the condition Z l = Z g = Z0, where Z0 is the characteristic impedance of the coaxial lines. In
this case, it can be easily proven that M = |S21|

2 where S21 is the scattering parameter of the
circuit [26].

In this paper, we are going to analyze the circuit in figure 1 with Z l and Z g different from
Z0 (and then M is different from |S21|

2). The reason for this is that we are going to use a specific
value of impedance Zpd that simulates the perfect drain introduced by Leonhardt in [7], which
is described next. In order to make a comparison with the results in [23], we have used the
impedances Z l = Z g = Zpd (instead of Z l = Z g = Z0 of [23]).
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Figure 2. Ideal structure (a) and structure formed by the SGW, coaxial port and
impedances (b). The incident and reflected modes are the same in both structures.
In (a), the perfect drain is the material of complex permittivity ε, and in (b), the
impedance Z l does not produce any reflected wave.

2.1. Incident and reflected modes in the spherical geodesic waveguide (SGW)

In order to calculate the perfect drain impedance Zpd, let us consider now the drain port centered
at the source’s image point (i.e. θ = π in figure 1), a situation in which the electromagnetic fields
will have rotational symmetry with respect to the source–drain line axis.

Figure 2(a) shows an idealized physical model of the SGW in which we can consider that
the source is a line current in between the two metallic spheres at θ = 0, and the drain is made
up of a non-magnetic dissipative material placed in the region θ > π − θ1, where θ1 → 0. In
figure 2(a), incident and reflected modes are shown, which correspond to the general case for
an arbitrary dissipative material. For a specific complex value ε, the incident mode is totally
absorbed (so there is no reflected mode), which is the perfect drain discussed in [23]. The
incident and reflected modes are given by [23]

E(r, θ) = k2
0

[
A0 Fv0

(cos(θ) + B0 Rν0(cos(θ))
]

r,

H(r, θ) = −iωε0

[
A0 F ′

v0
(cos(θ) + B0 R′

ν0(cos(θ))
] 1

r
φ,

(2)

Fv0(x) = Pv0(x) + i
2

π
Qν0(x), Rv0(x) = Pv0(x) − i

2

π
Qν0(x),

ν0 = −0.5 + 0.5
√

1 + 4(RMk0)2, k0 =
2π

λ
,
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Figure 3. Real (in red) and imaginary (in blue) parts of the perfect drain
impedance for different frequencies.

where A0 and B0 are complex constants, RM is the outer sphere radius, Pv0 and Qv0 are the
Legendre function of the first and second kind and Fν0 and Rν0 are the running-wave Legendre
functions [27]. The power transmitted through a surface θ = constant is

P = Re

[ ∫∫
Rm<r<RM
0<ϕ<2π

1

2
(E × H∗)r sin(θ)dr dϕ

]
= 2k2

0ωε(RM − Rm)(|A0|
2
− |B0|

2), (3)

which shows clearly that Fν0 and Rν0 are the incident and reflected modes.
Figure 2(b) shows the physical model described in figure 1 for the case θ = π , which is

the one to be analyzed in section 3. According to the modal analysis shown in appendix A,
only the same two modes Fν0 and Rν0 are transmitted inside the SGW, although there are other
evanescent modes in the vicinity of the source and drain ports.

2.2. Perfect drain impedance Zpd

The perfect drain must produce B0 = 0 in (3), that is, no reflected mode inside the SGW. The
procedure used to find the load Z l = Zpd that simulates the perfect drain is described in detail
in appendix A. Figure 3 shows both the real and imaginary parts of Zpd calculated for the
physical characteristics of the device and the band of frequencies simulated here (0.2–0.4 GHz,
RM = 1005 mm, Rm = 1000 mm, a = 5 mm, b = 10 mm and L = 20 mm; see figures 1 and
A.1). The results show some oscillation resulting from numerical errors in the calculation,
but linear approximations can be used. That impedance can be identified with an R–C circuit,
Zpd = R − i/ωC , in which R and C vary with ω.

3. Super-resolution analysis of the spherical geodesic waveguide matched
with the perfect drain

The SGW with the perfect drain is designed and analyzed in COMSOL. In order to show
super-resolution properties of the SGW, we have carried out several simulations for different
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Figure 4. Mesh structure. (a) SGW with a coaxial port, (b) close-up of a piece of
the spherical shells, (c) close-up of one coaxial port from outside the sphere.

displacements of the drain port, and for different frequency values. Special care has been taken
to define the mesh of the system. In order to mesh the guide properly, the geometry has been
divided into a few domains. Each domain is meshed separately according to its geometric and
physical properties. Since the guide thickness is very low (RM − Rm)/Rm = 1, the SGW is
meshed using a swept mesh (2D triangular mesh from the outer surface is swept to the inner
surface, see figure 4(b)). On the other hand, the coaxial line is meshed with higher density using
3D tetrahedra. The mesh density is increased since the change in the electric field is significant
in the vicinity of the coaxial port.

The dimensions of the structure analyzed here are (figures 1 and A.1)

• RM = 1005 mm,

• Rm = 1000 mm,

• a = 5 mm (θa = 0.285◦),

• b = 10 mm (θb = 0.57◦),

• L = 20 mm.

3.1. M as a function of frequencies for different positions of the drain

We have computed M using COMSOL for a frequency range between 0.2 and 0.4 GHz for
different positions of the drain port. The source port is fixed at θ = 0, whereas the drain port
is shifted λ/N (for λ = 1 m corresponding to 0.3 GHz and N >100) from the source’s image
point θ = π (see figure 1). When the drain port is placed in the image point, all the power is
delivered perfectly. This can be achieved for all the frequencies using the corresponding perfect
drain impedance. However, when the drain is moved from the image point, some of the power
gets reflected, so the power delivered to the drain decreases. This power drop is extremely
abrupt for some frequencies very close to the Schumann frequencies, called notch frequencies
(see also [23]). Figure 5 shows M for different drain port positions in a very narrow band in
the neighborhood of the notch frequency close to ν0 = 5. The curves correspond to different
shifts in the drain port. The shifts are, in all cases, much smaller than wavelength (from λ/100
to λ/3000 with λ = 1.150 840 47 m that corresponds to f = 0.260 687 4 GHz, see figure 5).
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0.260 866 09 GHz (ν = 5), which is outside the range of this figure.
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Figure 6. M as function of the drain port shift for a frequency near a notch one
(red curve) and for a frequency far from the notch one (blue curve).

These results are quite surprising, since close to a specific frequency the power transmitted to
the drain port suddenly reduces to a value near zero.

3.2. M as a function of the drain port shift for different frequencies

Since M is proportional to the transmitted power, the graph representing M versus the drain
port shift (figure 6) is equivalent to the point spread function (PSF) commonly used in optics.
This equivalence may seem surprising since the PSF is defined as the square of the electric field
amplitude calculated in the absence of absorbers in the image space, and M is defined in terms
of the power transmitted to an absorber. However, the equivalence comes from the fact that, in
optics, the detection at the image is assumed to be made with a sensor that does not perturb the
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corresponding to a super-resolution range between λ/3000 and λ/140.

free-space fields; or that even if it does perturb the fields, it is assumed that the sensor signal
is still proportional to the field amplitude (or its square, which is the PSF). Figure 6 shows M
versus the drain port shifts for two frequencies. The blue curve corresponds to f = 0.2847 GHz
(ν0 = 5.5), i.e. far from a notch frequency.

Let us define ‘resolution’ as the arc length (in wavelength units) that a drain port needs
to be shifted, so M drops to 10% (not far from the Rayleigh criteria in optics, which refers to
the first null). With this definition, the diffraction-limited resolution given by the blue curve is
λ/3. The red curve corresponds to notch frequency f = 0.260 687 41 GHz (ν0 = 4.996), which
clearly shows a much better resolution (λ/3000).

Figure 7 is a blow-up of figure 6 in the upper neighborhood of a notch frequency. The
graph for frequencies slightly below the notch frequency is similar. Note that figure 7 shows the
same information as figure 5 but plotting M versus the drain port shift (expressed in units of
λ) and using the frequency as a parameter. Increasing resolutions are achieved from the orange
to the red curves: λ/140 for the orange to λ/3000 for the red. The latter, whose frequency
f = 0.260 687 41 GHz corresponds to ν = 4.996 36, is the highest resolution that we have
obtained. Computations for frequencies near the notch frequency show essentially null M values
for shifts >λ/3000 (as in the red line in the picture). M values for shifts below λ/3000 (except
null shift or shifts very close to zero) and frequencies near a notch frequency are inconsistent (the
solver did not converge to a single solution due to numerical errors). It seems that Leonhardt’s
assertion of infinite resolution (i.e. perfect imaging) may occur for the discrete notch frequencies
in the SGW, although the aforementioned inconsistencies have prevented us from numerically
predicting resolutions beyond λ/3000.

The λ/3000 resolution is achieved only for a narrow bandwidth (≈ 10 Hz, which is much
smaller than the notch frequency ≈0.3 GHz). If larger bandwidths are needed, lower resolutions
(but still sub-wavelength) may be achieved. Figure 8 shows a plot of the bandwidth versus
N, meaning that the resolution is better than λ/N . The bandwidth has been calculated as
f max − f min with f max and f min fulfilling M( f max) = M( f min) = 0.1, using the information
of the curves in figure 5 and similar curves. The linear dependence shown in figure 8 (slope −2)
reveals that the product N 2

× bandwidth is constant within the range analyzed here.
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meaning that the resolution is better than λ/N . The blue curve represents the
results obtained using the perfect drain designed here, while the red curve
represents the results obtained in the SGW loaded with the characteristic
impedance which is the case analyzed in [23].

4. Discussion

Leonhardt [7, 8] has suggested that the MFE should produce perfect imaging for any frequency
using perfect drains. However, the experiments in [21, 22] and simulations from [23] have
shown super-resolution properties of the MFE, although the perfect drain has not been used.
In these references, the coaxial ports were loaded with their characteristic impedances, so the
absorption of the incident wave was not perfect. Leonhardt assumed that the ability of the MFE
to propagate the wave, generated by a point source, toward to a perfect point drain was enough
to guarantee perfect imaging. This does not seem to be sufficient, since it does not provide
information on how much power the drain will absorb when it is displaced outside the image
point. The simulations presented here show that super-resolution only takes place for a particular
set of frequencies known as notch frequencies, the same as in [23]. The presented results have
shown a maximum super-resolution of λ/3000, which is much higher than that in the case when
there were no perfect drains (λ/500; see [23]). The frequency bandwidth has also increased
20 times, e.g. for λ/500 the bandwidth is about 400 Hz (figure 8), while in [23] it was only
20 Hz.
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Figure A.1. Three regions of the junction used for the analysis. The coaxial is
indicated by the white region, the SGW by the blue region and the common
region by the red region. θa and θb are the angles in spherical coordinates covered
by the inner and outer conductors of the coaxial.

Appendix A. Modal analysis of the structure and numerical procedure for finding the
perfect drain

The perfect drain Zpd absorbs all the incident radiation without reflection inside the SWG when
the source and the drain are placed at opposite poles (θ = π). In this section, we present a
rigorous procedure to find this impedance for a wide band of frequencies.

A.1. Symmetry of the structure

The structure does not depend on the cylindrical (coaxial) and spherical (SWG) coordinate φ;
thus:

• The only modes of the coaxial guide without φ dependence are the TEM modes, so in the
interface between the coaxial and the sphere there are only the incident and reflected TEM
modes [26].

• Inside the SGW, electric and magnetic fields are necessary of the form

E(r, θ) = Er(r, θ)r + Eθ(r, θ)θ,

H(r, θ) = Hφ(r, θ)φ.
(A.1)

A complete analysis of the modes is carried out using the same procedure as that explained
by Wu and Ruan [28] on a radial-line/coaxial-line junction. Figure A.1 shows the complete
region of the junction separated into three smaller regions: the coaxial (region 1), the SGW
(region 2) and the common region (region 3). The electronic field is calculated in each of these
three regions using the procedure described below.

New Journal of Physics 14 (2012) 083033 (http://www.njp.org/)

http://www.njp.org/


12

A.2. The field in the coaxial line (region 1)

Because of the symmetry of the structure, the field of the coaxial port is completely described
by the TEM modes of the line [26]:

E =

(
V +

e

ρLn(b/a)
e−jk0 z +

V −

e

ρLn(b/a)
ejk0z

)
ρ,

(A.2)

H =
1

√
µ/ε

(
V +

e

ρLn(b/a)
e−jk0z

−
V −

e

ρLn(b/a)
ejkoz

)
φ,

where a and b are the diameters of the internal and the external coaxial (figure A.1), ρ and
z the cylindrical coordinates, k0 the propagation constant and V +

e and V −

e constants. With the
condition b = RM, on the surface z = 0 (figures 1 and A.1), the fields can be approximated to

E =

(
V +

e

RM sin(θ)Ln(b/a)
+

V −

e

RM sin(θ)Ln(b/a)

)
θ,

(A.3)

H =
1

√
µ/ε

(
V +

e

RM sin(θ)Ln(b/a)
−

V −

e

RM sin(θ)Ln(b/a)

)
ϕ,

where θ and ϕ are the spherical coordinates.

A.3. The field in the spherical geodesic waveguide (region 2)

With the condition RM − Rm = RM, one complete set of solutions inside the SWG fulfilling the
boundary condition of metallic surfaces is [29]

Er(r, θ) =

∑
n

[
An Fνn(cos(θ) + Bn Rνn(cos(θ))

] (( nπ

RM − Rm

)2

+ k2
0

)(
− cos

(
(r − Rm)nπ

RM − Rm

))
,

Eθ(r, θ) =

∑
n

1

r

[
An F ′

νn
(cos(θ) + Bn R′

νn
(cos(θ))

] −nπ

RM − Rm
sin

(
(r − Rm)nπ

RM − Rm

)
,

(A.4)

Hϕ(r, θ) = −iωε0

∑
n

[
An F ′

νn
(cos(θ) + Bn R′

νn
(cos(θ))

] 1

r
cos

(
(r − Rm)nπ

RM − Rm

)
,

νn ≈ −0.5 + 0.5

√√√√1 + 4

(
(RMk0)2 −

(
RMnπ

RM − Rm

)2
)

,

where An and Bn are constants and Fνn and Rνn are called the forward and reverse functions
defined as

Fνn(x) = Pνn(x) + i
2

π
Qνn(x),

(A.5)

Rνn(x) = Pνn(x) − i
2

π
Qνn(x),

and Pνn and Qνn are the Legendre functions of the first and second kind.
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A.4. The field in the common region of coaxial and spherical geodesic waveguide (region 3)

The solution in this region has the same form as the solution expressed in (A.4), but now having
an additional term, one particular solution, necessary for fulfilling the boundary conditions on
the common surfaces.

Er(r, θ) =

∑
n

[
Dn Fνn(cos(θ) + En Rνn(cos(θ))

] (( nπ

RM − Rm

)2

+ k2
0

)(
− cos

(
(r − Rm)nπ

RM − Rm

))
,

Eθ(r, θ) = E p(r, θ) +
∑

n

1

r

[
Dn F ′

νn
(cos(θ) + En R′

νn
(cos(θ))

] −nπ

RM − Rm
sin

(
(r − Rm)nπ

RM − Rm

)
,

Hϕ(r, θ) = Hp(r, θ)− iωε0

∑
n

[
Dn F ′

νn
(cos(θ) + En R′

νn
(cos(θ))

] 1

r
cos

(
(r − Rm)nπ

RM − Rm

)
, (A.6)

where the particular solutions for Ep and H p have to fulfil the Maxwell equations and the
boundary conditions at r = RM and r = Rm.

Ep = E p(r, θ)θ, ∇ × Ep =
1

r

∂

∂r
(r E p(r, θ))ϕ = −iωµHp(r, θ),

∇ × Hp =
−1

iωµ

1

r 2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂r
(r E p(r, θ))

)
r +

1

iωµ

1

r

∂

∂r

(
∂

∂r
(r E p(r, θ))

)
θ

= iωεE p(r, θ)θ. (A.7)

From the second equation in (A.7), it is necessary that

E p(r, θ) = f (r)
1

sin(θ)
,

d2

dr 2
(rf(r)) = −k2

0 rf(r), (A.8)

k2
0 = ω2µε.

Solving the differential equation from (A.8), the particular solutions for the fields E p and
Hp are obtained:

E p(r, θ) =
a1

eik0r

r + a2
e−ik0r

r

sin(θ)
, Hp(r, θ) =

−ik0

iωµ

a1
eik0r

r − a2
eik0r

r

sin(θ)
, (A.9)

where a1 and a2 are two integration constants. These constants are obtained by using the
boundary conditions for E p at r = RM (A.3) and r = Rm (E p = 0 for the metallic surface):

a1 = (V +
e + V −

e )
1

Ln(b/a)

(
1

eik0 RM − eik0(2Rm−RM)

)
,

(A.10)

a2 = (V +
e + V −

e )
1

Ln(b/a)

(
−eik02Rm

eik0 RM − eik0(2Rm−RM)

)
.
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The fields defined in (A.9) and (A.10) can be expanded as a series:

E p(r, θ) =
V +

e + V −

e

r sin(θ)

∑
n

dn
−nπ

RM − Rm
sin

[
(r − Rm)nπ

RM − Rm

]
,

(A.11)

Hp(r, θ) =
V +

e + V −

e

r sin(θ)

∑
n

en cos

[
(r − Rm)nπ

RM − Rm

]
,

where dn and en are the expansion constants satisfying jωεdn = −en. The complete field in this
region is then

Er(r, θ) =

∑
n

[
Dn Fνn(cos(θ) + En Rνn(cos(θ))

] (( nπ

RM − Rm

)2

+ k2
0

)(
− cos

(
(r − Rm)nπ

RM − Rm

))
,

Eθ(r, θ) =

∑
n

1

r

[
Dn F ′

νn
(cos(θ) + En R′

νn
(cos(θ)) +

V +
e + V −

e

sin(θ)

en

−iωε0

]
×

−nπ

RM − Rm
sin

(
(r − Rm)nπ

RM − Rm

)
, (A.12)

Hϕ(r, θ) = − jωε0

∑
n

[
Dn F ′

νn
(cos(θ) + En R′

νn
(cos(θ)) +

V +
e + V −

e

sin(θ)

en

−iωε0

]
×

1

r
cos

(
(r − Rm)nπ

RM − Rm

)
.

In the coaxial–SGW junction on the drain side, the same development can be made with
the results:

Er(r, θ) =

∑
n

[
Gn Fνn(cos(π − θ) + In Rνn(cos(π − θ))

]
×

((
nπ

RM − Rm

)2

+ k2
0

)(
− cos

(
(r − Rm)nπ

RM − Rm

))
,

Eθ(r, θ) =

∑
n

1

r

[
Gn F ′

νn
(cos(π − θ) + In R′

νn
(cos(π − θ)) +

V +
s + V −

s

sin(θ)

en

−iωε0

]
(A.13)

×
−nπ

RM − Rm
sin

(
(r − Rm)nπ

RM − Rm

)
,

Hϕ(r, θ) = − jωε0

∑
n

[
Gn F ′

νn
(cos(π − θ) + In R′

νn
(cos(π − θ)) +

V +
s + V −

s

sin(θ)

en

−iωε0

]
×

1

r
cos

(
(r − Rm)nπ

RM − Rm

)
.

A.5. Transmitted and non-transmitted modes

Different modes inside the sphere (region 2 of figure A.1) are defined by νn = αn + iβn (see
(A.4)), which is, in general, a complex number. In accordance with the asymptotic expression
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Figure A.2. Graphs for Log(|Fνn(cos(θ))/Fνn(cos(θb))|) and Log(|Rνn(cos(θ))/

Rνn(cos(π − θb)|) as a function of θ for νn = −0.5 + 4.0 j . Fνn(cos(θ)) and
Rνn(cos(θ)) have a near-exponential attenuation similar to the evanescent waves
in conventional waveguides. The modes with complex νn are not transmitted.
The only modes that exist inside the SWG far from the interface are the modes
having real νn. For the band of frequencies and dimensions analyzed here, only
ν0 is real and the guide works as single-mode.

of Legendre functions Pνn(x) and Qνn(x) for x close to 1 and −1, the following results are
obtained [30]: ∣∣∣∣∣Fνn

(cos(π − θ))

Fνn
(cos(θ))

∣∣∣∣∣→ e−βn ,

∣∣∣∣∣ Rνn
(cos(θ))

Rνn
(cos(π − θ))

∣∣∣∣∣→ e−βn , for θ → 0,

βn = Im[νn]. (A.14)

Bearing in mind the SGW dimension and the frequencies of interest (the microwave
frequencies from 0.2 to 0.4 GHz), the parameter νn is real only for n = 0. For example, for
f = 300 MHz, ν0 = 4.98, ν1 = −0.5 + 631.4i, ν2 = −0.5 + 1262.9i and so on. Figure A.2 shows
the graphs for Log(|Fνn(cos(θ))/Fνn(cos(θb))|) and Log(|Rνn(cos(θ))/Rνn(cos(π − θb))/|) with
respect to θ for a complex value νn = −0.5 + 4.0i (θb is defined in figure A.1). Clearly
|Fνn(cos(θ))| suffers a near-exponential attenuation between θ = θb and θ = π − θb as shown in
(A.14). The same thing occurs for |Rνn(cos(θ))| between θ = π − θb and θ = θb. Similar results
are found for every complex permittivity νn, so Fνn(cos(θ)) and Rνn(cos(θ)) can be considered
as evanescent waves. The SWG works as a single mode with the fields and transmitted power
far from the interface region given by the equations (2) and (3).

A.6. Boundary conditions

The coefficients An and Bn from (A.4), Dn and En from (A.6) and Gn and In from (A.13) are
obtained using the following boundary conditions (figure A.1):

• The tangent electric field in the inner conductor surface is null.

• The electric and magnetic fields are the same in the common surface between regions 2
and 3.

• The same conditions in the coaxial on the drain side.
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Dn Fνn(cos(θa) + En Rνn(cos(θa)) = 0,

Dn Fνn(cos(θb) + En Rνn(cos(θb)) = An Fνn(cos(θb) + Bn Rνn(cos(θb)),

Dn F ′

νn
(cos(θb) + En R′

νn
(cos(θb)) +

V +
e + V −

e

sin(θb)

en

−iωε0
= An F ′(cos(θb) + Bn R′

νn
(cos(θb)),

Gn Fνn(cos(π − θa) + In Rνn(cos(π − θa)) = 0 (A.15)

Gn Fνn(cos(π − θb) + In Rνn(cos(π − θb)) = An Fνn(cos(π − θb) + Bn Rνn(cos(π − θb)),

Gn F ′

νn
(cos(π − θb) + In R′

νn
(cos(π − θb)) +

V +
s + V −

s

sin(π − θb)

en

−iωε0
= An F ′

νn
(cos(π − θb)

+Bn R′

νn
(cos(π − θb)),

where θa and θb are as defined in figure A.1. When the voltages in the two coaxial lines
(Ve = V +

e + V −

e and Vs = V +
s + V −

s ) are known, the system (A.15) can be solved for each n.

A.7. Perfect drain

In accordance with the previous analysis, the SGW works as a single-mode guide, so the
condition for the perfect drain (no reflected wave in the guide) is satisfied when B0 = 0 in
(A.4). The procedure to obtain the perfect drain consists of the following steps:

• In (A.15) for n = 0, the condition B0 = 0 is imposed. Then A0, D0, E0, G0, I0 and V +
s + V −

s
are calculated. V +

s + V −

s is the necessary voltage (on the coaxial drain side) for perfect wave
absorption in the load.

• The coefficients An, Bn, Dn, En, Gn and In are obtained using (A.15) and the voltage
V +

s + V −

s calculated in the previous step.
• The field Hϕ for r = RM and θa < θ < θb is computed using (A.12).
• For the sake of uniqueness of the solution, this field has to depend on θ as in (A.3). The

voltage V +
s − V −

s is then obtained.
• The impedance of the coaxial line at r = RM and the load are

ZS = Z0
V +

s + V −

s

V +
s − V −

s

, Zpd = Z0
V +

s eik0 L + V −

s e−ik0 L

V +
s eik0 L−V −

s e−ik0 L
. (A.16)

The results of the calculation of the real and imaginary parts of the perfect drain impedance
for the band of frequencies of interest are shown in figure 3. Figure A.3 shows a comparison
between the modulus of the theoretical electric field (in the case of the perfect drain, only
the forward wave exists there, given by the function Fνn(θ)) and the modulus of the electric
field simulated in COMSOL. Figure A.3 shows excellent matching between the theoretical
and simulated fields for f = 0.25 GHz. For this simulation, the circuit parameters have been
calculated using the linear approximations presented in figure 3 (R = 2.57� and C = 55.05 pF).
Table A.1 shows the values of the constant νn (see (A.4)) and the electric field En for the first
reflected modes in θ = π − θb, that is, the value

En = Bn Rνn(cos(π − θb))

((
nπ

RM − Rm

)2

+ k2
0

)
(V/m). (A.17)
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Table A.1. The reflected electric field En and the constant νn for the first ten
modes in θ = π − θb. When n = 0, En is zero because the load has been designed
with the condition B0 = 0. These modes given by n = 1, 2, . . . , 9 are evanescent,
so they have quasi-exponential decay from receptor θ = π − θb toward emitter
θ = θb. The electric field is approximately attenuated as e−βn

θ
2π ; see

equation (A.14) and figure A.2.

n νn = αn + iβn En n νn = αn + iβn En

0 4.7598 0.0 + 0.0i 1 −0.5 + 631i 4.161 65 − 0.628 369i
2 −0.5 + 1263i −3.491 57 + 0.525 264i 3 −0.5 + 1894i −1.769 05 + 0.251 193i
4 −0.5 + 2526i −1.756 42 + 0.259 907i 5 −0.5 + 3157i 0.659 417 − 0.096 345i
6 −0.5 + 3789i −0.346 259 + 0.050 4032i 7 −0.5 + 4420i 0.470 42 − 0.068 5852i
8 −0.5 + 5052i 0.380 658 − 0.054 9126i 9 −0.5 + 5683i 0.380 658 − 0.054 9126i

Figure A.3. Left: the modulus of the theoretic electric field (in red) and the
modulus of the electric field simulated in COMSOL (in blue) for the SGW with
the perfect drain. Right: close-up of the same graphs.

Appendix B. Voltage and current waves inside the spherical geodesic waveguide

When the drain port is centered at the source’s image point, from the fields of the incident and
reflected modes we can define the incident and reflected voltage and current waves, similarly to
classical microwave transmission lines. They are defined as follows:

Vi(θ) =

∫ RM

Rm

k2
0 AFν(cos(θ)) dr = k2

0 A(RM − Rm)Fν(cos(θ)),

Vr(θ) =

∫ RM

Rm

k2
0 ARν(cos(θ)) dr = k2

0 B(RM − Rm)Rν(cos(θ)),

(B.1)

Ii(θ) =

∫ 2π

0

− jωε0

r
A

dFν(cos(θ))

dθ
r sin(θ) dϕ = − jωε02π A

dFν(cos(θ))

dθ
sin(θ),

Ir(θ) =

∫ 2π

0

− jωε0

r
A

dRν(cos(θ))

dθ
r sin(θ) dϕ = − jωε02π B

dRν(cos(θ))

dθ
sin(θ).
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Then, the transmitted power expressed in (3) can be obtained from (B.1) as

P =
1
2Re[V I ∗] =

1
2Re[(Vi(θ) + Vr(θ))(Ii(θ) + Ir(θ))∗]. (B.2)
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