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Abstract: In this work, a new two-dimensional optics design method is
proposed that enables the coupling of three ray sets with two lens surfaces.
The method is especially important for optical systems designed for wide
field of view and with clearly separated optical surfaces. Fermat’s principle
is used to deduce a set of functional differential equations fully describing
the entire optical system. The presented general analytic solution makes it
possible to calculate the lens profiles. Ray tracing results for calculated 15th

order Taylor polynomials describing the lens profiles demonstrate excellent
imaging performance and the versatility of this new analytic design method.
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1. Introduction

In geometrical optics, the modern formulation of Fermat’s principle states that rays of light
traverse the path of stationary optical length

S =

B∫

A

nds (1)

between two points A and B through media with refractive index distribution n. As done in most
textbooks on optics, it can be used to describe the properties of light rays refracted through dif-
ferent media, reflected off mirrors or undergoing total internal reflection. Indeed, all known
laws of geometrical optics, lens design and aberrations will be consequences of the analytic
properties of solutions to Fermat’s principle [1]. However, its mathematical complexity could
give rise to the impression that it is impractical to be used for optics design. In fact, conventional
optics design is based on minimizing a chosen merit function which quantifies the system’s per-
formance for a defined sets of rays. In case of imaging applications, this can be merit functions
such as the sum of the squares of certain aberrations or the RMS blur spot at the image plane
[2]. In case of nonimaging optics, different merit functions such as the contrast ratio at a re-
ceiver plane or the optical collection efficiency could be chosen.

For many optical design problems, perfect solutions normally do not exist. Therefore, the
design strategy begins with a parameterized description of the (refractive or reflective) optical
surfaces. By using multi-parametric optimization (a common tool of any optical design soft-
ware), these optimization algorithms normally start from an initial set of parameters and end
with a final optimized set of parameters that minimizes a defined merit function. Since this is
often a non-convex optimization problem, it cannot be guaranteed that these algorithms find the
global minimum.

In contrast, direct optics design methods do not necessarily follow this design strategy. Usu-
ally, a key objective is to find a set of unrestricted free-form surfaces designed to have specific
predefined characteristics. Where unrestricted means that the optical surfaces can have any
shape to fulfill all imposed requirements. Such an approach can help to reduce the needed num-
ber of optical elements to a minimum or offer a way to design very compact optical systems. A
basic example of such a design task is to focus light coming from a point in object space onto a
point in the image space which can be achieved by using a Cartesian oval [3]. In order to focus
light coming from an additional object point, one surface is no longer sufficient, two surfaces
are needed. In general, an optical system consisting of N optical surfaces can couple N sets of
rays for which specific conditions are imposed.

In case of optical systems designed for wide field of view and with at least one surface far
from the aperture stop, it will be shown in this paper that it is possible to couple more than two
ray sets with only two lens surfaces. However, this can only be achieved if different ray sets
use different portions of the lens surfaces. Optical systems, where different incident directions
use different portions of lens’ surfaces, are widely known. Field-flattener lenses are used in
binocular designs and in astronomic telescopes to improve edge sharpness and lower distor-
tion. Aperture stops in imaging systems often target the same objective. Based on a very basic
example of a single thick lens, the Simultaneous Multiple Surfaces (SMS) design method will
serve as a starting point in Sec. 2. It will help to provide a better understanding of the practical
implications on the design process of an increased lens thickness and a wider field of view.
This foundation will lead to an irreducible design representation in Sec. 3, based on the local
coupling of two ray sets with two surface parts to achieve global coupling of three ray sets with
two smooth surfaces. A first implemented numerical algorithm demonstrates the existence of
solutions and it is used to introduce and establish the concept of convergence points which were
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first introduced to design aspheric V-groove reflectors [4]. Fermat’s principle is then used to de-
duce a system of functional differential equations in Sec. 4, fully describing the lens’ profiles.
The transformation of these functional differential equations into an algebraic linear system of
equations allows the successive calculation of the Taylor series coefficients up to an arbitrary
order. Ray tracing analysis in Sec. 5 is then used to demonstrate the versatility of this analytic
design approach by explicitly evaluating Taylor polynomials of 15th order.

2. Initial degrees of freedom for SMS2D designs

The Simultaneous Multiple Surfaces (SMS) method has proven to be very versatile in various
applications. SMS surfaces are piecewise curves made of several portions of generalized Carte-
sian ovals that map initial ray sets to final ray sets. It involves the simultaneous calculation of
N optical surfaces using N one-parameter ray sets for which specific conditions connect the
initial with the final ray sets [3]. A particular formulation of the SMS2D method for imaging
systems comprises perfect imaging of N ray sets at the correspondent N image points. The
SMS2D method offers the flexibility to choose the ray sets and their associated image points
[5]. SMS optics are calculated by applying a constant optical path length for each coupled ray
set. For two design angles of opposite sign the overall symmetry implies an identical optical
path length for both ray sets. The optical path length can be determined by choosing one initial
point on each lens profile. Figure 1(a)-(c) show different SMS2D designs for θ = ±5◦ design
angle and increasing lens thicknesses from left to right. Similarly, Fig. 1(d)-(f) shows designs
with increasing lens thicknesses for θ =±10◦ design angle.

(a)

(d)

(b) (c)

(e) (f)

Fig. 1. Impact of increasing design angles and lens thicknesses on the relative importance
of the initial segment

The bold light rays highlight the initial points used to determine the optical path length. Ad-
ditional rays alternately construct the final lens profiles by applying the constant optical path
length condition. This design process only provides a set of discrete points and correspondent
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normal vectors. An SMS skinning process can finally be used to fill the gaps between the sep-
arated points, fully defining both optical surfaces. A segment can be interpolated between the
two symmetric adjacent points of the bottom surface, as indicated as solid lens profile in Fig. 1.
As a boundary condition, the segment has to match point coordinates and normal vectors at the
initial points, which requires at least a 2nd order polynomial function. However, in principle,
any analytical function satisfying this boundary condition can be applied - which correspon-
dents to an infinite parameter space for the initial segment problem. For small design angles
and moderate lens thicknesses, the initial segment represents only a small fraction of the en-
tire lens profiles. However, with increasing design angles and/or distances between the optical
surfaces the relative importance of the initial segment increases as well. In extreme cases, the
initial segment can completely define the full lens profiles as shown in Fig. 1(f). A selected 2nd

order polynomial segment may guarantee coupling of two ray sets with chosen design angles
of opposite sign, but it does not make any further use of the full potential offered by an unre-
stricted initial segment satisfying the boundary condition. Therefore, the main objective of this
work is to find ways to construct initial segments which ensure maximum benefit from these
infinite degrees of freedom.

3. Optimum utilization of the initial segment

It is shown in this section that the degrees of freedom of the initial segment can be used to
couple an additional on-axis ray set. Consider the curve segments S1 and Ŝ2 of the two surfaces
shown in Fig. 2(a). They are designed to couple a tilted parallel ray set onto a point. Because of
the symmetry applied with respect to the optical axis of the lens, the lens segments Ŝ1 and S2

will couple the parallel ray set with opposite sign. That means that only one ray set is actually

(a) (d)(b) (c)

Ŝ1
S1

Ŝ2S2

Fig. 2. Shown steps of the design concept illustrate how to make use of symmetry about
the optical axis to couple an additional on-axis ray set

coupled using these two surface segments. This offers the opportunity to couple an additional
ray set. One of these two identical off-axis ray sets is now replaced in Fig. 2(b) by an on-axis
ray set. The constant optical path length condition can then be used to calculate the final lens
portion on the second lens profile by tracing off-axis rays through Ŝ1, which is illustrated in
Fig. 2(c). Finally, the full set of rays on the completed lens is shown in Fig. 2(d) - coupling
three ray sets with two lens profiles.

A simple optimization approach is used to establish the concept of convergence points and
find them. These convergence points form the basis for the analytical solution given in Sec-
tion 4. The implemented design algorithm starts with a central on-axis ray along the optical
axis. By choosing points P1, P2 and R1 the central lens thickness and the related optical path
length are determined. Both normal vectors in P1 and P2 point in the direction of the optical
axis due to the overall lens’ symmetry. This initial step is shown in Fig. 3(a). In the next step
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(a) (d)(b) (c)
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Fig. 3. Algorithmic implementation: shown figures (a)-(e) explain the design steps towards
the final lens profiles shown in (f)

in Fig. 3(b), the focus position R2 of the off-axis ray set is chosen. A ray coming from R2 is
refracted at P2. A chosen optical path length is then used to determine the edge P3 on the first
lens surface. At this point, all necessary information is provided - the focus positions and opti-
cal path lengths for on- and off-axis ray sets.

Figure 3(c) consists of two steps. First P3 and its correspondent normal vector are mirrored
along the optical axis resulting in Q3 and its associated normal vector. An on-axis ray is re-
fracted at Q3, P4 is calculated using the constant optical path length condition. The correspon-
dent normal vector is calculated to refract the ray towards the focus position R1. A ray coming
from R2 is refracted at P4, P5 is calculated using the constant optical path length condition, as
shown in Fig. 3(d). Figure 3(e) shows the next step in analogy to (c). These two steps in (c) and
(d) are now alternately repeated until a stop criterion is reached.

For chosen initial values, steps (c) and (d) typically fail to close the lens profiles. The initial
parameters, namely P1, P2, P3, R1 and R2 are varied using unconstrained nonlinear optimization
in MATLAB until the algorithm converges and results in the final point clouds with correspon-
dent ray paths, which are shown in Fig. 3(f). An additional zoomed in view of one convergence
point is shown to better see this behavior. The repeated design steps (c) and (d) successively
construct the lens profiles from center and edge simultaneously until they asymptotically close
the remaining gaps in the profiles. The optimization procedure is used to minimize the remain-
ing gap sizes. As a consequence, in the limiting case of infinitesimal profile gaps, the design
process results in two convergence points taking the axial symmetry on the first lens profile into
account. The convergence points are thus characterized by the special case that on- and off-axis
rays passing through the lens share identical points and normal vectors on each surface.

4. Analytic solution of initial segments starting from convergence points

The numerical algorithm introduced in the previous subsection provides already a comprehen-
sive solution to the stated initial segment problem. However, multi-parametric optimization is
still needed which has several disadvantages. The guess of an initial parameter set may decide
whether the algorithm will converge or not, furthermore the optimization process can be fairly
time consuming, to name just two.

The reverse case forms the starting point for all further considerations: determine the conver-
gence points first and derive the full lens profiles from these initial convergence points for one
on-axis and one off-axis ray set. All necessary initial values are defined as shown in Fig. 4(a).

The point coordinates (x0,z0) of the convergence point on the first lens profile can be freely
chosen without loss of generality. The slope m0 at the convergence point represents a first vari-
able. The intersection of the refracted on-axis ray through (x0,z0) and the refracted off-axis ray
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(a)

(x0, z0), m0

(x1, z1), m1

(-x0, z0), -m0

(0, d) (r, d) (b)

(x, f(x))

(s(x), g(s(x)))

d1

d2

d3

(c)

(-x, f(x))

(u(x), g(u(x)))

d1
^

d2
^

d3
^

w0 w0

Fig. 4. Introduction of all necessary initial values and functions to derive the conditional
equations from Fermat’s principle

through the mirrored convergence point (−x0,z0) determines the coordinates (x1,z1) of the con-
vergence point on the 2nd lens profile. The slope m1 at this second convergence point represents
a second variable. The intersection of the refracted on-axis ray through (x1,z1) and the opti-
cal axis determines the first focus position d. Finally, the refracted off-axis ray and the known
lateral detector position determine the x-coordinate r of the second focus position. This formu-
lation provides a compact representation of all initial values depending upon the two variables
m0 and m1 only. In addition, it provides the permissible range of values for these two variables
for which the convergence point construction is possible. For example, a given value m0 limits
the possible range of values of m1 for which an on-axis ray can be refracted towards the optical
axis.

Next, two analytic functions f (x) and g(x) are introduced to describe the two lens profiles.
To analytically describe the optical paths of rays passing through the lens it is necessary to
introduce two additional mapping functions s(x) and u(x). Figure 4(b) shows an on-axis ray
passing through an arbitrary point �p = (x, f (x)) on the first lens profile which is then refracted
in (s(x),g(s(x))) towards the focal point (0,d). The auxiliary function s(x) thus defines the
mapping in x-coordinate. Similarly, function u(x) defines the mapping in x-coordinate for off-
axis rays through an arbitrary point �̂p = (−x, f (x)) on the first, and through (u(x),g(u(x))) on
the second lens profile, as shown in Fig. 4(c). All optical path lengths can then be expressed in
sections using vector geometry as

d1 =�n0 · (�p−�w0)

d2 =n2

√
(x− s(x))2 +( f (x)−g(s(x)))2

d3 =
√

s(x)2 +(d−g(s(x)))2

(2)

for on-axis rays, and as

d̂1 =�n1 · (�̂p−�w0)

d̂2 =n2

√
(−x−u(x))2 +( f (x)−g(u(x)))2

d̂3 =
√
(r−u(x))2 +(d−g(u(x)))2

(3)

for off-axis rays. The vectors �n0 and �n1 denote the directional vectors for on- and off-axis ray
sets, respectively. The position vector �w0 denotes a fixed point on both plane wave fronts and
n2 denotes the refractive index of the lens.
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Fermat’s principle states that the optical path length between two fixed points is an extremum
along a light ray. Consider a fixed point on the on-axis wave front defined by �w0 and�n0, and the
fixed point (s(x), f (s(x)) on the second lens profile: an on-axis ray coming from the wave front
and passing through (s(x), f (s(x)) must be such that the combined optical path length d1 + d2

is an extremum. With point (s(x), f (s(x)) kept fixed, the only remaining variable to achieve an
extremum for D1 = d1 + d2 is the point (x, f (x)) on the upper lens profile. Fermat’s principle
thus implies that

D1 =
∂
∂x

(d1 +d2) = 0 (4)

where the partial derivative indicates that (s,g(s)) is kept fixed. Similarly, an on-axis ray be-
tween fixed points (x, f (x)) and (0,d) must satisfy equation

D2 =
∂
∂ s

(d2 +d3) = 0. (5)

These two functional differential equations arising from Fermat’s principle describe all on-axis
ray paths through the lens profiles f (x) and g(x). In analogy, f (x) and g(x) must also satisfy
the functional differential equations

D3 =
∂
∂x

(d̂1 + d̂2) = 0 (6)

D4 =
∂

∂u
(d̂2 + d̂3) = 0 (7)

for off-axis rays, using the same arguments as before. The lens design shown in Fig. 4 is thus
fully described by four functional differential equations (Eqs. (4)-(7)) for four unknown func-
tions f (x), g(x), s(x) and u(x). The fundamental analysis of a similar system of functional
differential equations has been discussed [6–10]. The results on existence, uniqueness and an-
alyticity were all based on fixed point theorems in functional analysis. These arguments break
down when there are off-axis foci. However, the results presented in this work will provide
strong evidence that the solutions for off-axis foci are analytic and smooth as well.

Suppose that ( f ,g,s,u) is an analytic and smooth solution to the functional differential equa-
tions (4)-(7), Taylor’s theorem implies that the functions must be infinitely differentiable and
have a power-series representation. Thus the four functions can be given by power-series

f (x) =
∞

∑
i=0

fi(x− x0)
i g(x) =

∞

∑
i=0

gi(x− x1)
i (8)

s(x) =
∞

∑
i=0

si(x− x0)
i u(x) =

∞

∑
i=0

ui(x− x0)
i (9)

centered at convergence points (x0,z0) and (x1,z1), respectively. The initial conditions

f (x0) = z0 f ′(x0) = m0

g(x1) = z1 g′(x1) = m1 (10)

s(x0) = x1 u(x0) = x1

as introduced in Fig. 4(a) then satisfy the conditional equations Di = 0 for i = 1..4 and provide
general solutions for the initial Taylor coefficients f0, f1, g0, g1, s0 and u0 depending upon
variables m0 and m1. In ascending order it is now possible to calculate (n+1)th order Taylor
series coefficients in f (x) and g(x) and nth order in s(x) and u(x) by solving equations

lim
x→x0

∂ n

∂xn Di = 0 (i = 1..4), {n ∈ N1}. (11)

#159702 - $15.00 USD Received 9 Dec 2011; revised 9 Feb 2012; accepted 15 Feb 2012; published 22 Feb 2012
(C) 2012 OSA 27 February 2012 / Vol. 20,  No. 5 / OPTICS EXPRESS  5582



The case for n = 0 corresponds to the just solved equations for initial Taylor coefficients. There
are two further cases needed to be solved:

1. For n = 1, the set of Eq. (11) results in nonlinear algebraic equations for Taylor series
coefficients f2, g2, s1 and u1. These equations have two general solutions, where one so-
lution can be discarded as non-physical. The remaining unique solution can be expressed
as functions of the initial, already known Taylor coefficients for n = 0.

2. For n > 1, the set of Eq. (11) results in linear algebraic equations for particular Taylor se-
ries coefficients. By sorting and combining terms, the equations (11) can be transformed
and expressed as a compact matrix equation

M

⎛
⎜⎜⎝

fn+1

gn+1

sn

un

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

b(n)1

b(n)2

b(n)3

b(n)4

⎞
⎟⎟⎟⎠ (12)

for arbitrary n > 1. The matrix elements Mi j consist of mathematical expressions which
depend on Taylor series coefficients obtained for n = 0,1. The vector elements of�b(n) on
the right hand side of Eq. (12) are mathematical expressions only dependent on previous
Taylor series coefficients fi, gi, si−1 and ui−1 for i = 0..n. Finally, the vector elements
of�b(n) can be calculated for each n = 2,3,4, .. (in this order) from Eq. (11). For known
matrix M and vectors�b(2)..�b(n), the Taylor series coefficients fn+1, gn+1, sn and un can
then be calculated by solving the linear system of Eq. (12).

So far, no approximations have been made. The general solutions for n = 0 and n = 1 and
the introduced algebraic system of linear equations (12) allow to calculate all Taylor series
coefficients of f (x), g(x), s(x) and u(x) up to an arbitrary order. However, a Taylor series is
a representation of an analytic function as an infinite sum of terms. Indeed, it is only possible
to calculate a finite number of initial terms of the Taylor series. Such a function is called a
Taylor polynomial and will be the only approximation made. Furthermore, Taylor’s remainder
theorem provides quantitative estimates on convergence and the approximation error of the
function by its Taylor polynomial. The radii of convergence for the expansions f (x) and g(x)
are very important, as they indicate the maximum aperture that can be achieved for a given set
of initial values. In the examples considered, the radius of convergence is larger than the range
of 0 < x < xmax of the lenses. The algebraic steps of calculation presented in the this section are
fully implemented and calculated in Wolfram Mathematica.

5. Ray tracing results for calculated 15th order Taylor polynomials

In a first step, the general solutions for Taylor polynomial coefficients for n= 0,1 are calculated
which also determines the matrix M of Eq. (12). The general solution of the matrix equation
M�x =�b is then calculated to obtain the general solution vector �x. The vector elements of�b(n)

are calculated within a loop from n = 2 up to n = 14. It is possible to calculate even higher
orders. However, the error made in this approximation is already extremely small.

All calculated mathematical expressions, sorted in the right order, are then exported as C++
compatible code and embedded in a MATLAB-compatible mex file library. Once compiled,
this library returns the Taylor polynomial coefficients for the lens profiles f (x) and g(x) up to
15th order, and the mapping functions s(x) and u(x) up to 14th order as output arguments. The
off-axis design angle θ , the refractive index n2 and the derivatives at the convergence points m1

and m2 are passed as input arguments.
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By fixing the design angle and refractive index (here: θ = 12◦, n2 = 1.5), the only remaining
free parameters to vary are m0 and m1. Furthermore, the intended real focus of the lens suggest
to choose a negative value for m0. The sign of m1 then determines the global lens shape - which
can be either meniscus like (negative m1) or biconvex (positive m1). Local smooth and analytic
solutions exist for any values within the permissible range of values for these two variables.
However, the lens’ smoothness and symmetry additionally requires f ′(0) = g′(0) = 0 at the
optical axis. This boundary condition introduces an additional correlation between m0 and m1,
meaning that for a specific value m1 the correspondent value m0 can be obtained by making sure
f ′(0) = g′(0) = 0 is fulfilled. Even though it is not possible to deduce this correlation m1(m0)
as a closed form solution, the numerical calculation of roots of f ′(0) and g′(0) is very accurate
and fast.

A ray tracing animation video (Media 1) helps to better illustrate the correlation between m0

and m1. For m1 ranging from −0.065 to 0.065 the correspondent m0, satisfying the boundary
condition, is directly calculated each time. Figure 5 shows two single-frame excerpts from this
ray tracing animation video for m1 = −0.065 which is equivalent to a meniscus lens (a), and
m1 = 0.065 which is equivalent to a biconvex lens (b). The two arrows indicate the directions
of the normal vectors at the convergence points.

(a) (b)

Fig. 5. Exemplary single-frame excerpts from a ray tracing animation video ranging from
meniscus lenses (a) to biconvex lenses (b) (Media 1)

The ray tracing simulations for this animation video (240 frames) are done using the
MATLAB-based ray tracer OPS (by courtesy of Prof. Dr. Udo Rohlfing, Hochschule Darm-
stadt, Germany). The ray tracer is only used for visualization purposes - the entire optics design
is based on the derived general analytical solution. In addition, the two mapping functions s(x)
and u(x) are used to directly calculate the semi-diameters of the lens profiles. For example,
solving equation u(r1) = 0 provides the semi-diameter r1 of the upper lens profile. Lens spe-
cific parameters such as the effective focal length and magnification can be directly calculated
for each correspondent m0 and m1.

Some fundamental aspects of this new analytic design method deserve to be particularly
emphasized at the end of this section. The fixed parameters θ = 12◦ and n2 = 1.5 have been
selected arbitrarily to provide clear evidence that it is possible to calculate analytical high order
Taylor polynomials for various values m0 and m1. However, this calculated general solution
provides much more. It solves the stated initial segment problem for any given (physically
meaningful) initial parameter set (θ ,m0,m1,n2). This also means that it could be used in a
hybrid technique: first calculate a highly accurate initial segment and finish the overall lens
design using the SMS2D design method. This particular convergence point design was chosen
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to demonstrate the possibility of coupling an additional on-axis ray set, meaning that three ray
sets can be coupled with two surfaces. In addition, the imposed axial symmetry of the lens
is not explicitly needed by this design method. Other wave fronts besides plane and spherical
wave fronts could be coupled as well. A further important step will be a solution and imple-
mentation of this new method in three dimensions and for more than two surfaces. This would
allow calculating free-form optics targeting applications with wide and even asymmetric field
of view.

6. Conclusion

Within the scope of this work, it has been shown that it is possible to couple three ray sets
with two refractive surfaces forming a lens of minimum thickness. The established conver-
gence point formalism provided the basis for an analytical description of the entire lens using
Fermat’s principle. The derived set of functional differential equations led to algebraic systems
of equations which have been solved up to an arbitrary order of all Taylor series coefficients
needed to describe the lens profiles. Exemplary ray tracing results for analytic lens profiles
given as Taylor polynomials of 15th order demonstrated the capabilities and versatility of this
new analytic optics design method. Future work will focus on its non-rotational symmetric
three-dimensional generalization and target applications where this new design method can
help to further increase the overall optical system’s performance.
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