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Abstract

Let M — N (resp. C — N) be the fibre bundle of pseudo-Riemannian
metrics of a given signature (resp. the bundle of linear connections) on
an orientable connected manifold IN. A geometrically defined class of
first-order Ehresmann connections on the product fibre bundle M X n C
is determined such that, for every connection « belonging to this class
and every Diff N-invariant Lagrangian density A on J*(M x n C), the
corresponding covariant Hamiltonian A? is also Diff N-invariant. The
case of Diff N-invariant second-order Lagrangian densities on J2M is
also studied and the results obtained are then applied to Palatini and
Einstein-Hilbert Lagrangians.
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1 Introduction

In Mechanics, the Hamiltonian function attached to a Lagrangian density
A = L(t,q",¢")dt on R x TQ is given by H = ¢'‘0L/0¢" — L, but—as it
was early observed in [16]—this is not an invariant definition if an arbitrary
fibred manifold ¢: E — R is considered (thus generalizing the notion of an
absolute time) instead of the direct product bundle R x @ — R; e.g., see [7],
[23], [25] for this point of view. In this case, an Ehresmann connection is
needed in order to lift the vector field 9/0t from R to E, and the Hamiltonian
is then defined by applying the Poincaré-Cartan form attached to A to the
horizontal lift of 9/0t.

In the field theory—where no distinguished vector field exists on the base
manifold—the need of an Ehresmann connection is even greater, in order
to attach a covariant Hamiltonian to each Lagrangian density; e.g., see [24,
4.1], [23], and the definitions below.

Let p: E — N be an arbitrary fibred manifold over a connected manifold
N, n =dim N, dim E = m+n, oriented by v,, = dz' A---Adz™. Throughout
this paper, Latin (resp. Greek) indices run from 1 to n (resp. m). An
Ehresmann connection on a fibred manifold p: £ — N is a differential 1-form
v on E taking values in the vertical sub-bundle V' (p) such that v(X) = X
for every X € V(p) (e.g., see [23], [24], [32], [34]). Once an Ehresmann
connection v is given, a decomposition of vector bundles holds T'(F) =
V(p) @ ker 7, where ker~ is called the horizontal sub-bundle determined by
7. In a fibred coordinate system (z7,y%) for p, an Ehresmann connection
can be written as

v = (dy* + Wfdznj) ® 7§ € C7(E).

9
oy’
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According to [24], the covariant Hamiltonian A7 associated to a Lagrangian
density on J'E, A = Lv,,, L € C*®(J'E), with respect to + is the Lagrangian
density defined by,

(1) AT = ((p§)*y — 0) Awa — A,

where, p}: J'E — J°E = E is the projection mapping, 8 = 6% ® 0/0y,
0 = dy® — yda’ is the V(p)-valued 1-form on J'E associated with the
contact structure, written on a fibred coordinate system (z',y®), and wp
is the Legendre form attached to A, i.e., the V*(p)-valued p'-horizontal
(n — 1)-form on J'E given by

4 OL

-1 .

wp = (1) @Za/amwn ® dy®,

where (z°,y%; y&) is the coordinate system induced from (z*,y“) on the 1-jet
bundle and p': J'E — N is the projection on the base manifold. Locally,

OL
7= o ol IR — Ta... n
(2) A ((% +y2)8y§x L)d:n A Ada".
From (1) we obtain the following decomposition of the Poincaré-Cartan form
attached to A (e.g., see [17], [23], [27]): On = OAwr+A = (ph)*yAwp —A7.

A diffeomorphism ®: E — FE is said to be an automorphism of p if there
exists ¢ € Diff N such that po® = ¢op. The set of such automorphisms is de-
noted by Aut(p) and its Lie algebra is identified to the space aut(p) C X(FE)
of p-projectable vector fields on E. Given a subgroup G C Aut(p), a La-
grangian density A is said to be G-invariant if (®())*A = A for every ® € G,
where @) : J'E — J'E denotes the 1-jet prolongation of ®. Infinitesi-
mally, the G-invariance equation can be reformulated as LyuA = 0 for
every X € Lie(G), X! denoting the 1-jet prolongation of the vector field
X.

When a group G of transformations of F is given, a natural question
arises:

e Determine a class—as small as possible— of Ehresmann connections
~ such that A7 is G-invariant for every G-invariant Lagrangian density

A.

Below we tackle this question in the framework of General Relativity, i.e.,
the group G is the group of all diffeomorphisms of the ground manifold N
acting in a natural way either on the bundle of pseudo-Riemannian metrics
pyv: M = M(N) — N of a given signature (n*,n~), n* +n~ = n, or on the
product bundle p: M xy C — N, where pc: C = C(N) — N is the bundle
of linear connections on N. Namely, we solve the following two problems:
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(P): Determine a class—as small as possible— of Ehresmann connec-
tions v such that for every Diff N-invariant first-order Lagrangian den-
sity A on the bundle J'(M x 5 C) , the corresponding covariant Hamil-
tonian A7 is also Diff N-invariant.

Similarly to the problem (P), we formulate the corresponding problem
on J2M as follows:

(P2): Determine a class of second-order Ehresmann connections 72 on M
such that for every Diff N-invariant second-order Lagrangian density

A on the bundle J?M, the corresponding covariant Hamiltonian A
defined in (42)—is also Diff N-invariant.

Essentially, a class of first-order Ehresmann connections on the bundle M X y
C' is obtained, defined by the conditions (Cjs) and (C¢) below (see Propo-
sitions 3.4 and 3.5), solving the problem (P). This class of connections also
helps to solve (P2) by means of a natural isomorphism between J!M and
M xn C™ where C™ denotes the sub-bundle of symmetric connections
on N (cf. Theorem 4.1). Finally, this approach is applied to Palatini and
Einstein-Hilbert Lagrangians ([3], [4]), obtaining results compatible with
their usual Hamiltonian formalisms.

2  Invariance under diffeomorphisms
2.1 Preliminaries

2.1.1 Jet-bundle notations

Let pF: JFE — N be the k-jet bundle of local sections of an arbitrary
fibred manifold p: F — N, with projections pf: J*E — J'E, pF(jks) = jLs,
for k > I, j*s denoting the k-jet at 2 of a section s of p defined on a
neighbourhood of = € N.

A fibred coordinate system (z’,y®) on V induces a coordinate system
(2%, y2), I = (i1,...,in) ENT, O |I| =41+ +iy <r,on (ph)~Y(V) =
JV as follows: y¢(jrs) = (9l(y* o 5)/0xT)(x), with y§ = y*.

Every morphism ®: E — E’ whose associated map ¢: N — N’ is a

diffeomorphism, induces a map

o). JE — JFE,
(3) O (irg) = 47 d -1
(Jz8) = Jgy(Posod™).
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If @, is the flow of a vector field X € aut(p), then @y) is the flow of a vector
field X(") € X(J"E), called the infinitesimal contact transformation of order
r associated to the vector field X. The mapping

aut(p) 3 X — X € X(J'E)
is an injection of Lie algebras, namely, one has

AX 4+ pY)) = AX0) 4y (™),

(X, Y](T) - [X(r)jy(r)L

VA p€eR, VXY € aut(p).

In particular, for r =1,

i 9 —|—v°‘i u' € C®(N),v* € C®(E),

X = .
Y By oy’
.0 0 0 ov® ov® ouF
XU o gf 2 2 %= P e
Y B v oy~ s oy’ Vi T By i oyP Ik oz

2.1.2  Coordinates on M(N), F(N), C(N)

Every coordinate system (z*) on an open domain U C N induces the fol-
lowing coordinate systems:

1) (z,yjx) on (pa)~'(U), where ppr: M — N is the bundle of metrics
of a given signature, and the functions y;i = yi; are defined by,

(4) 9o = Y Yij(9:)(da')y @ (da?)s, Vg € (par) ™ (V)
1<j
2) (xl,x;) on (pp)~Y(U), where pr: F(N) — N is the bundle of linear

frames on N, and the functions z*

u = ((G/Z?xl)x, e (a/ax”)x) . (a;;(u)) , = pp(u),Yu € (pr) 1(U),

or equivalently,

are defined by,

0
ot
3) (mi,A{Cl) on (pc) Y (U), where pc: C — N is the bundle of linear

connections on IV, and the functions Ail are defined as follows. We first
recall some basic facts. Connections on F'(NN) (i.e., linear connections
of N) are the splittings of the Atiyah sequence (cf. [2]),

(5) w=(Xy,...,Xn) € Fy(N), Xj:x§(u)< > , 1<j<n.

(pr)
0 = adF(N) = Tgynm F(N) —— TN — 0,

where
a) adF(N)=T*N ® TN is the adjoint bundle,
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b) Tam (F(N)) = T(F(N))/Gl(n, R), and
c) gauF'(N) =T'(N,adF(N)) is the gauge algebra of F(N).

We think of gauF'(IV) as the ‘Lie algebra’ of the gauge group GauF'(N).
Moreover, pc: C — N is an affine bundle modelled over the vector
bundle ®?T*N @ TN. The section of pc induced tautologically by the
linear connection I' is denoted by sp: N — C. Every B € gl(n,R) de-
fines a one-parameter group ¢ : U x Gl(n,R) — U x Gl(n,R) of gauge
transformations by setting (cf. [5]), P (z,A) = (x,exp(tB)-A). Let us
denote by B € gau(pr)~t(U) the corresponding infinitesimal genera-
tor. If (E}) is the standard basis of gl(n, R), then E} = >} 7,0/},
for i,5 = 1,...,n, is a basis of gau(pr) ' (U). Let E~; = E; mod G be
the class of E'; on adF'(N). Unique smooth functions Aé- won (pe)~H(U)
exist such that,

ON_ 0 i i
(6) ST (@) = o (Ajy, o I') B},
0 i g O
=5~ ko F)xha—%y

for every sr and A;k(Fx) = F; x(x), where F; ;. are the Christoffel sym-

bols of the linear connection I' in the coordinate system ('), see [20,
ITI, Poposition 7.4].

2.2 Natural lifts

Let far: M — M, cf. [30] (resp. f: F(N) — F(N), cf. [20, p. 226]) be the
natural lift of f € Diff N to the bundle of metrics (resp. linear frame bun-
dle); namely far(gz) = (f')*gz (vesp. f(X1,..., XN) = (fuX1,. .., fiXN),
where (X1,..., Xn) € Fi(N)); hence pyrofar = fopu (vesp. prof = fopr),
and far: M — M (resp. f: F(N) — F(N)) have a natural extension to jet
bundles fj(\;): J (M) — J"(M) (resp. f(): J"(FN) — J"(FN)) as defined
in the formula (3), i.e.,

£ (hg) = Fhw (farogo f7Y)  (xesp. F) (1) = fhay(Foso f71).

As f is an automorphism of the principal Gl (n,R)-bundle F(N), it acts on
linear connections by pulling back connection forms, i.e., I = f (") where
wrr = (f~Y)*wr (see [20, II, Proposition 6.2-(b)], [5, 3.3]). Hence, there
exists a unique diffeomorphism fC: C — C such that,

1) pc o fo = fopc, and
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2) fcosr=s 7 for every linear connection I'.

If f; is the flow of a vector field X € X(NN), then the infinitesimal gener-
ator of (fi)ar (vesp. fi, resp. (fi)c) in Diff M (resp. Diff F(N), resp. DiffC)
is denoted by X (resp. X, resp. Xc) and the following Lie-algebra homo-
morphisms are obtained:

X(N) = X(M), X — Xy
{ X(N) = X(F(N)), X—X
X(N) = x(0), X — Xo

If X =u'd/0z" € X(N) is the local expression for X, then

1) From [30, egs. (2)—(4)] we know that the natural lift of X to M is
given by,

; 0 oul oul 0
Ko =u oxt Z <8mi Ynj + OxJ yih) oy € X(M).

i<j *

and its 1-jet prolongation,

1) _ i 0 (0t 0wt N D
Xar = u oz’ Z (83:" Ynj + g Yhe 0yij

i<y

Z O*ul - O*uh .+8uh _ +8uh ' +8uh - 0
2) From [10, Proposition 3] (also see [20, VI, Proposition 21.1]) we know
that the natural lift of X to F(IV) is given by,

.0 oui D
X_u(‘)a:" 8xlxj£§’

and its 1-jet prolongation,

- -0 ou' ; 0 .0
XU = f o b — ol —
Y B + Dl o} + v]k(‘)x’»k’
-77
;o out oul 0*u
Uik = A Tik T ppkLil T kgt
3) Finally,
~ . 0 0’ ou' out . oub . 0
Xp=u2 (L8 G g G T )
O =Y B <8x38xk T L v s L lk) DAL,
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= (1) o, 0 i 0
X — : D era—
o =uaat wjkc‘)Al LAY

i 0! aui I out . oul
() k= ~garger + gar ik ~ gur i~ g A

(8) wi - aSui N 82 ) A 82ul P a2ul
gkh = 8:1:h8:17j8:17’f Oxhozl Ik Grhoxk I 9xhdzi
8 oul oul oul

—— A 0 — —— ——A% .
8l T L Y I AL Y D L2

Let p: M x5 C — N be the natural projection.

We denote by f = (far, fo) (resp. X = (Xur, X¢) € X(M xy C)) the
natural lift of f (resp. X) to M xy C. The prolongation to the bundle
JYM xn C) of X is as follows:

(9)
X(1)2<X](\}),X(1)>

19} . 0
+ Z 'Uzjk ]k ;‘khi' )
i<j i<j D OAZ 8‘4}1&}1
where
oul oul
(10) Uz’g:—%yhj - wyhia
A2uh 92l oul Aul oul

(11)  wvije= Dok I T Bpiagh it T pgiYhik = gy Yhik — 5o Yiih

and w§ ks w§ in are given in the formulas (7), (8), respectively.

2.3  Diff N- and X(N)-invariance

A differential form w, € Q"(JY (M xy C)), » € N, is said to be Diff N-
invariant— or invariant under diffeomorphisms— (resp. X(N)-invariant) if
the following equation holds: (f())*w, = w,, Vf € Diff N (resp. Lsoyw, =0,
VX € X(N)). Obviously, “Diff N-invariance” implies “X(N)-invariance”
and the converse is almost true (see [14], [28]). Because of this, below we
consider X(NN)-invariance only.

A linear frame (X7,..., X ) at z is said to be orthonormal with respect to
gz € My(N) (or simply g,-orthonormal) if g, (X;, X;) =0for 1 <i < j<mn,
g X, X;)=1for1 <i<nt g(X;,X;)=—-1fornT +1<i<n.
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As N is an oriented manifold, there exists a unique p-horizontal n-form v
on M xy C such that, v(g, ) (X1,...,Xn) = 1, for every g,-orthonormal
basis (Xi,...,Xuy) belonging to the orientation of N. Locally v = pu,,
where p = \/(—1)"7 det(y;;) and v, = dz! A--- Ada™. As proved in [30,
Proposition 7], the form v is Diff N-invariant and hence X(N)-invariant. A
Lagrangian density A on J'(M xy C) can be globally written as A = Lv
for a unique function £ € C®(J*(M x C)) and A is X(N)-invariant if and

only if the function £ is. Therefore, the invariance of Lagrangian densities
is reduced to that of scalar functions.

Proposition 2.1. A function £L € C®(JY (M xy O)) is X(N)-invariant if
and only if the following system of partial differential equations hold:

0= X"(L), Vi,

0=X; (L), Vh,i,

(12) 0=X*(L), Vhi<k,
ikh o
Ong (L), Vi,j<k<h,
where
, 0
X’L - )
ek Vi,
) 0 0 0
X5 = —Yni i = — Yin, sjh o
. ayu Yk ayl] Ytk 6yii,k 5%7 ; Yed, h Ysj,i
0 0 0
Al A, S pr, 9
T kgak, g, M gar
9 9 .0 0 .
+ A]k SaAh _]h raA?l . hk,r 9 1s 8"4?]@7 ]k haar 8A;k 17 Vhala
) 0 0 0 0 0 0
13) X% = e — yph——— — yn; — i - .
(13) h Y hayii,k Ykh Oy Yhj Dyisn Yhj By aAfk aAZi
0 0 0
k s s
T, e, Meaag
8 0 0
Al — A — A3 h,i <k
+ JsaAh ]haAs hTaAka Vvl_ P
(14) X/ = 9 , 90 , 90 [ 90 [ 9 . 9 vin<j<k

OAGyp OAG s OAyy; OAy;,  OAL;, 04y,

Moreover, the vector fields Xi,X,iL,X,iLk,kah are linearly independent and
they span an involutive distribution on JY(M x 5 C) of rank n("f’) Hence,
the number of functionally invariant Lagrangians on J'(M x C) is

% (5n4 +3n3 —5n? + 3n).
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Proof. According to the formula (9), £ is invariant if and only if,

DL L P S )
dui =17 Dy =R Sy R

Vul € C°(N),

and expanding on this equation by using the formulas (10), (11), (7), and
(8) we obtain

oL

0=u ox’

Lol (oL oL 9L 0L
Ozt Yhi 8y“ Yhj 5%3’ Yin,k 8yii,k Yhjk ayij,k
S 0L | 0L . 0L . 0L

=2 Ysing, — T4 S Ly e ey T
Sy oAl oAy, TR OAY,
~ oL oL oL oL

+ A% s — Al as— — Ak as Ar'k,h—r)
’ 8‘4?1678 ’ aAji,?“ 8Aik,r ! 8Ajk,i

R S /S )
oxtoxk ylh@yii,k Yhi OYiik 8A?k

oL oL oL

Ak — A8 AT

" jsaA?s,i JhaAik,i hTaAzr,i)

0Pul oL

Oxhoxkozi 8A§.k7h '

This equation is equivalent to the system of the statement as the values for
ul, oul )0zt 02ul )0z 0x? (i < §), and OPul/0xi02702* (i < j < k) at a
point © € N can be taken arbitrarily. Moreover, assume a linear combination
holds

A X+ N X0+ D b<e A X5+ 2 b<e<d Mg X0 =0,

(15) Aas A AL AL € C°(JHM xn O)).

By applying (15) to 2% (resp. yqu) we obtain A\, = 0 (resp. Ajf = 0); again by
applying (15) to Ag., b < c (resp. A, ¢ < b) and taking the expressions of
the vector fields (13) and (14) into account, we obtain Af, =0, b < ¢ (resp.
Af.=0,c<b). Hence, (15) reads ) ;. .<y4 /\gchSCd = 0, and by applying it
to AZ , and taking the expressions of the vector fields (14) into account, we
ﬁnally’ obtain Aj,; = 0. The distribution

Daisnc = {X(U

(§g,disr)

: X € X(N), (jug: jasr) € JH(M xn C)}
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in T (JY(M xn C)), where XV is defined in (9), is involutive as
[X@),Y(U} — Y, vx,Y € x(V),

and it is spanned by X i,X}iL,X,iLk,Xg kh, as proved by the formulas above.
The rest of the statement follows from the following identities:

#{ XX Xk <k X R < < kb k=1, 0}
:n+n2+n(n—2|—1) +n(n—3|—2) :n(n—gl—3)7

dim J' (M xn C) —n("5?) = L (5n* + 3n® — 5n? + 3n)..

3 Invariance of covariant Hamiltonians
3.1 Position of the problem

On the bundle ¥ = M xy C, an Ehresmann connection can locally be
written as follows:

v =i (dyij + vigeda®) ©
%’jky%"kl € C®(M xn C).

+ (dA;ik + W;kldxl> o2

(16) 0yij 8A§.k’

In particular, for a Lagrangian density A on J!'(M x y C) we obtain

oL ; , oL
AT = (’Yi'k + v k> — + (’Yz'kz + Ajp z) ——— — L |dz" A+ Ada",
g ! %) Oyijk J TS OAY,
or equivalently, LY = DY(L) — L, where
0 , - 0
Y — . I P ¢ L) ——.
7 ; <%]k " yw’k> FWij k i <7]kl " A]k’l> 043,

REMARK 3.1. The horizontal form (p})*y — 0 = (v + y&) dz’ ® 9/9y* can
also be viewed as the p(l]—vertical vector field

1 DY — (4@ 4 )
(17) (4 +yz)ay?,

taking the natural isomorphism V' (p}) = (p})*(p*T*N ® V (p)) into account
(cf. [23], [24], [32], [34]).
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According to the previous formulas, this means: If the system (12) holds
for a Lagrangian function £, then it also holds for the covariant Hamiltonian
L.

If X e {Xi,X}'L,X}'Lk,ngh}, then X (£7) = X (D7(L)), as L is assumed
to be invariant and hence X (£) = 0. Therefore
X(L7) = X (D7(£))
= [X, D] (£),

and we conclude the following:

Proposition 3.2. The property (P) holds for an Ehresmann connection
v on M xn C if and only if the vector field DY transforms the sections
of the distribution Dprx o into themselves, namely, [DY,T'(Darxyc)] C

F(DMXNC)'

The problem thus reduces to compute the brackets [X i,DV], [X,iL,DV],
[Xi¥, D], and [X/*", D7]. We have

0Yijk 871@1 0
18 X" D7 § : J J :
(18) [ ’ ] Oxh 8y2 &Th 8A;k’l’

[XCd“ D’Y] - nga, Vb, e < d < a,

(19)  [X4 D] =DV (Yark) Z Vi Z Thik
a<b bk ik
+ Z Thik + Z ik — T Z abh 75—
h<j j<h Yij k Yab,i
+ (Yfi (’chr) - 537;)07“ + 52'0756)th + 52%')7507“ + 5:7gch> HAY ’

be,r

) . b . .
(20) [ DV} = ZY (Yabe) T —— 4 Yk (73&) aA—d + Xk vk,
a<b an,e

where

i 8 8 8 r 8 T a
Vi = —Ynig— — Ynj oy T Al oAl ~ oA T AhkaAgk’

i

, 0 0
sz - <z __Z
U= oy
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and the following formula has been used:

ayrs,k

= ok 5r58 + 5T(5S AR
Oyijn " ( )

79rYs

3.2 The class of the Ehresmann connections defined

Let p: MxnyC — N,pri: MxnC — M, pry: M xnC — C be the natural
projections. By taking the differential of pr; and pry, a natural identification
is obtained T'(M xn C) =TM x7n TC. Hence

V(p) = V(pm) xn V(pc)
= pr1V(pa) © priVi(pe)

and two unique vector-bundle homomorphisms exist

yar: priTM — priVi(pa), ~e: praT’C — pryVi(pe),

such that,
( ) = ( (prl* ) Yc (pI‘2*X)), VX € T(M XN 0)7
Tm(Y) =Y, VY € priVipm),
'VC(Z) Z, VZ € pr3V(pc).

If v is given by the local expression of the formula (16), then

0 . .
Y™ = zigj (dyz'j + ’Yijkdﬂ?k) & , YO = <dA;'k + ’le'kldxl) ®

ayi 7 8A; L ’

%’jkﬁj’kl € C®(M xy C).

3.2.1 The first geometric condition on
Let q: F(N) — M be the projection given by
= Ehwh ® wh,
where (w',...,w") is the dual coframe of (X1,...,Xy) € Fy(N), i.e., g, is
the metric for which (Xy,..., Xy) is a g,-orthonormal basis and ¢, = 1 for

1<h<nt g =—-1fornt+1<h<mn. As readily seen, ¢ is a principal
G-bundle with G = O(n*,n™).

Given a linear connection I' and a tangent vector X € T, N, for every u
in p~!(x) there exists a unique I'-horizontal tangent vector X/ € T, (FN)
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such that, (pr)« X/ = X. The local expression for the horizontal lift is
known to be ([20, Chapter III, Proposition 7.4]),

oN"™ o , .0
(22) <a_> = o0 L g

Lemma 3.3. Given a metric g, € py/(z), let u € pp'(z) be a linear frame

such that q(u) = g,. The projection q*(XﬁFz)

frame u chosen over g,.

does not depend on the linear

Proof. In fact, any other linear frame projecting onto g, can be written
as u - A, A € G. As the horizontal distribution is invariant under right
translations (see [20, II, Proposition 1.2]), the following equation holds:
(Ra), (Xﬁf) = X;L_FA, Hence

qx <XZ~FA) = ¢x <(RA)* (XZLF))

= (g0 Ra), (X

= g« <X3F) .

N~——+~

O

Proposition 3.4. An Ehresmann connection v on M Xy C satisfies the
following condition:

(Cnr): 1 (9, T) X) = X = g (((pan)s (X))

VX € T,,M, u € q *(gz), (which does not depend on the linear frame
u € g '(gs) chosen, according to Lemma 3.3) if and only if the following
equations hold:

(23) Vet = — (Yar Ay, + Yar AS)

where the functions vy (resp. yij, resp. A;k) are defined in the formula (16)
(resp. (4), resp. (6)).

. , ~1
Proof. Letting (Xj)7;=1 = <(3:;)?]:1> , the dual coframe of the linear
frame u = (X1,...,Xn) € Fy(N) given in (5) is (w',...,w"), w" =
XZ(u) (d:nk)m, 1 < h < n, and the projection q is given by
q(u) = gu

=37 e (w (da) @ (dat) .
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Therefore the equations of the projection (21) are as follows:

z'oq =1’
_ n h. h
Ykl Oq =Y p_1 ERXEX] -

9\ _ O n, nOX] 9

k<l

Hence

Taking derlvatlves with respect to z{ on the identity thr = 5h multiplying
the outcome by ka and summing up over the index 7, the followmg formula
is obtained: axg /0xy = _XZXZ- Replacing this equation into the expression
for ¢. (0/0x%),, above, we have

e (8;)“ ==y {xi(u)yaz (92) + X7 (w)Yar (gx)} (&)gz

k<l

From (22), evaluated at u € ¢~ '(g,), we deduce

o\ 0 V. d
qx (@)u = (@)gx— ch(l")xb(u)% <f9—f€‘§>g,
_ (2
N ax] gz

+ Zkgl F?c( {Xk yal (gm) + Xl( )yak (gac)} <&>
gz

(ai> +zk<l{ ()t (92) + T3 (2)yar <9x>}<%>gx

The condition (Cys) holds automatically whenever X € V(pp). Hence,
(Cr) holds if and only if it holds for X = (9/027),, , namely,

0 0
Z’Ykly 9z, L'z < > =T™M <(gxarl‘)7 <—> >
= Y1 oxI g
o d \ e
~(gm), (&),

:_Z{F]k yal gm +F]l( )yak (gm)}<i> )

k<l Oyt

thus proving the formula (23) in the statement. O
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3.2.2 The canonical covariant derivative

As is known (e.g., see [20, III, section 1], [23, pp. 157-158]) every con-
nection I" on a principal G-bundle P — N induces a covariant derivative
VT on the vector bundle associated to P under a linear representation
p: G — Gl(m,R) with standard fibre R™. In particular, this applies to
the principal bundle of linear frames, thus proving that every linear con-
nection I" on N induces a covariant derivative V' on every tensorial vector
bundle £ — N.

The bundles (pc)*E, where E is a tensorial vector bundle, are endowed
with a canonical covariant derivative V¥ completely determined by the for-
mula:

(1) ((VF) (FO) (L) = (XN &) () + £ (T) (Vi) <€) (@),

for all X € Tr,C, f € C*(C), and every local section £ of E defined on a
neighbourhood of . The uniqueness of V¥ follows from (24) as the sections
of E span the sections of (pc)*E over C*°(C), see [8, 0.3.6]. Below, we are
specially concerned with the cases E = TN and E = A>T*N @ T'N.

3.2.3 The 2-form associated with ¢

As pc: C — N is an affine bundle modelled over ®2T*N ® TN, there is a
natural identification

V(pc) = (pe)” (@°T*N @ TN)

and consequently, an Ehresmann connection y¢ on C' can also be viewed as
a homomorphism v¢o: TC — ®@2T*N @ TN. If 4¢ is locally given by

(25) Yo = <dA§k + ’Y]i'kldxl) ® ’Y;-kz € C™(0),

9
8A}k’
then

Yo = (A%, + 7§k1d$l) ®dr! ® dz* @ 82:”
and v¢ induces a 2-form J¢ taking values in (po)*(T*N ® T'N) as follows:

Fo(X,Y) = ¢ ((pc)«(Y) ® v¢ (X)) — e1 ((pe)+(X) @ 7¢ (V) ,
vX,Y €T, C,

where
cl: TN@T*N@T*N®@TN — T*N @ TN,
C% (X1 ®@w ®@ws @ Xy) = wl(Xl)wg ® X,
X1,Xo €T, N, wy,wy € T;N.
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If ¢ is given by (25), then from the very definition of ¢ the following
local expression is obtained:

Fo = (dAf, + (Vina — Vom) da®) A da' @ da” ® R

3.2.4  The second geometric condition on -

Let altjo: @2T*N @ TN — A2°T*N ® TN be the operator alternating the
two covariant arguments.

The vector bundle (pc)* (A?T*N ® TN) admits a canonical section

w:C = NT*N @ TN,
() =T", VI, €C,

where 7" * is the torsion of I',. Locally,

™ = Z( ;k — %)d:Ej A dz* @
i<k

oxt’
From the previous formulas the next result follows:

Proposition 3.5. Let v be an Ehresmann connection on M x 5C', let V) =

VE with By = TN, let RYY be its curvature form, and finally, let V2
VE2 with By = N2T*N @ TN.

(Cc) Assume the component yo of 7y is defined on C. Then, the equations

(26) jo =RYY,
(27) altyz 0 yo = V@ 7y,
are locally equivalent to the following ones:
(28) 7?157‘ - ’77}}1&5 = AﬁmAgrtL - AgmAZL7
(29) ’er’lst - ’Ygrt = A?m (A;“ns - AQZ’) + A?; (AZW - Aﬁm)

+Ap (Ab, - Ab).

3.3  Solution to the problem (P)

Theorem 3.6. If the connection v on M x yC' satisfies the conditions (Cy)
and (C¢) introduced above, then the vector field DV satisfies the property
stated in Proposition 3.2 and, accordingly the covariant Hamiltonian with
respect to v of every X(N)-invariant Lagrangian is also X(N)-invariant.
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Proof. When ) satisfies the condition (C)s) the brackets (18), (19), and
(20) are respectively given by

a’ngl 0

ozh 8A;’k,l7

(30) [Xh, D“Y} -

. . 0
(31) [Xflw DPY] = (Yf: (/Vgcr) - 5(1 Wbcr + 56/7bh7’ + 5 thr + 5T’7bch> HA 5

be,r

[ 7] = (=St (st~ ot — o)

8Ah
87abc c [ sh 4i iad i ad 0
- A! + 0% <5d ab — OpAan — 5aAhb> aAgbc

In addition, if ¢ satisfies the condition (C¢), then taking derivatives with
respect to " in (28) and (29) we obtain

My B M Mg B Mg

oxh — oxh’  9xh  Oxh’
and renaming indices we deduce

Min _ Mg _ DNy

G O (G <k),

3’71ik j a’ﬁi ik 37@21% .

oeh ~ aah g U <P

87% 87111' 87{ ik a%if'z a%ik' 87% .

Jah = Buh = oeh ~ ooh ~ dwh — e U <k<D.

From (30) we obtain

[Xh,DV] Z Vykl ngl +1 Z 7JJkXJJl'f

j<k<l i<k
i
+1 Z Ok XFkki 4 1 87])] XJJJ
2La Pgh T T8 g
i<k

and consequently the values of [X h DV] belong to the distribution Dy« -
Moreover, as ¢ is assumed to be defined on C, we have

. . . . afyg
Yy (Vber) = (05 AG — 04 AJy, — 05 AR,) e
( J J J 8A]k

For the sake of simplicity, below we set

(Th)bcr_ Az a'.chr s 87bcr s 87bcr

h b
jk 8Ah jh OAS hk OAS -0, 7bcr+5 7hcr+567bhr+5rvgch
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Taking derivatives with respect to A$ 2k the equations (28) y (29) yield

M Ny j k j k j ok j ok
T 1D — §I5CAY — 615 A 0 OELAL — 5155 AL
8A§k 8A§k rYs4the bYs rc+ pYC4rrs rYC+*bs»

9 7ab 671[71 | Ak k Aj i Ak k
roc e 53 5“A 5“59 A 0a6y Al — 0307 A% +030) A —|—5“5]A
E?Aj.k E?Ajk rb C%r— Ts T Her s T cb

+ 6LOF AT —5LOF A% 46108 A2 — 5] 6K AT 451,68 AZ — 51,58 A2
From these expressions, the following symmetries of indices are obtained:
(T3) poe = (Th) ey = (Ti) gy (b <0,

(T5) e = (Th) e = (Th) ey (b <),
(Th)oea = (Th)pe = (T eap = (T)pae = (Th) gy = (Th) g (b < < d),

and from (31) we obtain

(X5 D7) = D (Th) e X 4 3 2 (Th) e X2

b<e<d b<c
ccb bbb
+3 Z Th X (Th)bbb Xa
b<c

Hence [Xg, DV] also takes values into the distribution Djsy ¢

The proof for the third bracket is similar to the previous two cases but
longer. Letting

(), = 3 ~ g+ 0 (2t~ ot — st

o, (O AL, — 5,A%, — 1A%, )

the following symmetries are obtained:

(T;;k) bbc (Tfik) beb (T;;k) cbb (b < C)’
(TZk)bcc (TZk) (TZk) (b < C)

(T bea = (M) e = (T cap = (T = (1) = (1) g (b < € < ).

Hence
ik ybed | 1 ik\ " yrbbe
= > (mh), xeta by (T X
bed bbe
b<e<d b<c
D
2
b<c

<T;'Lk)“ chb (Tzk> ngb7
ceb

cbe cecb

0]

and the proof is complete. O
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Theorem 3.7. The Ehresmann connections on C' satisfying the equations
(26) and (27) are the sections of an affine bundle over C modelled over
the vector bundle (pc)* (SgT*N RXTN ) Consequently, there always exist
Ehresmann connections on M X 5 C' fulfilling the conditions (Cpr) and (C¢)
introduced above.

Proof. If two Ehresmann connections ~¢, v satisfy the equations (26) and
(27), then the difference tensor field ¢t = ¢ — 7¢, which is a section of the
bundle (po)* (®*T*N ® TN), satisfies the following symmetries:

(32) t(X1, X2, X3) = t(X3, X2, X7),
(33) t(X1, Xo, X3) = t(X2, X1, X3),
according to (28), (29), respectively, for all X, Xy, X3 € T, N, I', € C,(N).

Hence
(32) (33)
H( X1, X3, X2) = (X2, X3, X1) =" #(X3, X3, X1) = (X1, X2, X3),
thus proving that t is totally symmetric. The second part of the statement
thus follows from the fact that an affine bundle always admits global sections,
e.g., see [20, I, Theorem 5.7]. O

(32)

REMARK 3.8. The results obtained above also hold if the bundle of linear
connections is replaced by the subbundle C%™ = C%™(N) C C of sym-
metric linear connections; the only difference to be observed between both
bundles is that in the symmetric cases the equation (27), or equivalently
(29), holds automatically.

4 The second-order formalism

In this section we consider the problem of invariance of covariant Hamilto-
nians for second-order Lagrangians defined on the bundle of metrics, i.e., for
functions £ € C*(J2M), where M denotes, as throughout this paper, the
bundle of pseudo-Riemannian metrics of a given signature (n™,n~) on N.

4.1 Second-order Ehresmann connections

A second-order Ehresmann connection on p: £ — N is a differential 1-
form 4% on J'E taking values in the vertical sub-bundle V(p') such that
72(X) = X for every X € V(p'). (We refer the reader to [29] for the basics
on Ehresmann connections of arbitrary order.) Once a connection 2 is
given, we have a decomposition of vector bundles T(J'E) = V (p') @ ker 42,
where ker~? is called the horizontal sub-bundle determined by v2. In the
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coordinate system on J'E induced from a fibred coordinate system (z7, y®)
for p, a connection form can be written as

- 0 » 0
2 @ @ « @
(34) 77 = (dy*+~5 dxj)®a—ya (dy; +’Yijdxj)®@a
As in the first-order case, the action of the group Aut(p) on the space of
second-order connections is defined by the formula

Vi € C®(J'E).

d.~% = <<I>(1)>* o~?o <<I>(1)>*_1 , V& e Aut(p).

As @M J'M — J'M is a morphism of fibred manifolds over N, (&),
transforms the vertical subbundle V' (p') into itself; hence the previous defi-
nition makes sense.

4.2 A remarkable isomorphism

Theorem 4.1. Let 'Y be the Levi-Civita connection of a pseudo-Riemannian
metric g on N. The mapping (n: J'M — M xn C¥™, (n(jlg) = (92, T%)
s a diffeomorphism. There is a natural one-to-one correspondence between
first-order Ehresmann connections on the bundle p: M X C™ — N and
second-order Ehresmann connections on the bundle pyy: M — N, which is
explicitly given by,

(35) 7= ((CR)) " oo (Cw),,
where v: T(M xn C™) — V(p) is a first-order Ehresmann connection,
(CN), : T(J'M) = T(M x5 C™™)

is the Jacobian mapping induced by (n, and (CX), : V(pys) — V(p) is its
restriction to the vertical bundles.

Proof. As a computation shows, the equations of ( in the coordinate sys-
tems introduced in the section 2.1.2, are as follows:

z' oy =2,
Yij © CN = Yijs
(36) Al o Cn = "™ (yin g + vini — vijn), 1< 4,

where (y% )ij=1 1s the inverse mapping of the matrix (y;;);';—; and the func-
tions y;; are defined in (4). Hence

i1

$OCN =,
1

Yij o Cn = ¥ij»

(37) Yijko (vt = yhz’A;Lk + AL, i <.
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As the diffeomorphism (n induces the identity on the ground manifold N,
it follows that the definition of 42 in (35) makes sense and the following
formulas are obtained:

,72 <ai7‘> = Z (’Vabr Z%]kr )

a<b 1<j Yij.k

_ S8y +0aid hi
Yijkr = 5 Z Cah STt (yop, 0 CN) Y (Yjt ke + Yktj — Yjk)

a<b
ahObi+0a0;
+ 3 Z . i”_H;hJ] P (Yabr © CN) Y™ (it + Yhti — Yik1)
a<b
+ Z 1+5 ” (’Y]ar © CN) Yni T+ Z 1+5 " <’Y(}1l]r © CN) Yhi
1<a
h
+ Z 1+5lk <’7zar CN) Yhj + Z 1_|_5 m <'7az'r © CN) Yhjs
i<a
where
k 9 i il 9
i<j Yis <k ik

or equivalently,

0 ; , 0
— _1 4~ daR 1 ! —
V=5 (dy” + Yijrdx > ® e + P (dA;-k —i—’y;-kldm) ® 8A;-k’
assuming Ypi = Yine for h > i, and ’y]hkr = ’ygjr for j > k. Taking the
symmetry A; = A?c ; into account, we obtain
Yijer = 5 (Ynar © C0) Y™ Wi + Yrij — Yjn)
+ 3 (ngr © ) ¥ Witk + Yhti — Yik )
+ <7§Lkr o CN) Yi + (’yﬁw 0 CN> Ynj-

N[

Hence
(38)  Yijkr 0 Cy' = Vnir Al + Wngr Alk + VrrUni + Vi tngs i < 5.

Permuting the indices i, j, k cyclically on the previous equation, we have

(39)  ir = — ke ALY — & (ijir 0 51 — Vikir © G5 — Wigr 0 Cy) Y™

thus proving that the mapping v + 72 defined in the statement, is bijective.
O
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4.3 Covariant Hamiltonians for second-order Lagrangians

The Legendre form of a second-order Lagrangian density A = Lw, on the
bundle p: E — N is the V*(p!)-valued p3-horizontal (n — 1)-form wy on
J3E locally given by (e.g., see [17], [26], [35]),

WA = ia/axiﬂn (= (Lf)?dya + Lgdy;x) s

where
oL
4 L”
( 0) zg 8ya7
oL
(41) a 8y2 Z 2— 623 (ay%> bl
and

0 . 0
Di=gt Y gy
IeNn |I|=0 1

denotes the total derivative with respect to the variable x7.

The Poincaré-Cartan form attached to A is then defined to be the ordinary
n-form on J3E given by, Oy = (p3)*0% A wp + A, where 62 is the second-
order structure form (cf. [33, (0.36)]) and the exterior product of (p3)*6?
and the Legendre form, is taken with respect to the pairing induced by
duality, V(p') x j15 V*(p') — R. The most outstanding difference with the
first-order case is that the Legendre and Poincaré-Cartan forms associated
with a second-order Lagrangian density are generally defined on J3E, thus
increasing by one the order of the density.

Similarly to the first-order case (see [11], [24]), given a second-order La-
grangian density A on p: E — N and a second-order connection 2 on
p: E — N, by subtracting (p3)*6? from (p$)*+? we obtain a p3-horizontal
form, and we can define the corresponding covariant Hamiltonian to be the
Lagrangian density A7 of third order,

2 * *
(42) A = (07 = (03)6%) Awa — A.
Expanding on the right-hand side of the previous equation, we obtain a de-
composition of O, that generalizes the classical formula for the Hamiltonian

in Mechanics; namely, Oy = (p})*y? Awp — AY*. With the same notations
as in the formulas (34), (40), (41) the following formula is deduced:

) . .
(43) L7 = (0 +y) Lo + (vfs + yho) Lo — L

Because of the equation (41), © and LY are generally defined on J3E.
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4.4 Invariant covariant Hamiltonians on J2M

Lemma 4.2. If v is a first-order Ehresmann connection on M x C%™
satisfying the conditions (Cyr), then the following equation holds for the
second-order Ehresmann connection v* on M given in the formula (35):

Yabr © CN = —Yab,r-

Proof. Actually, from the formulas (23) and (36) we obtain
Vabr © (N =— (ymb (A% © CN)“‘Z/ma (A;«Wl; © CN))

= % {ymbymk (yrk,a +yak,r - yra,k) + ymaymk (yrk,b +ybk,r - yrb,k) }

= —Yab,r-

O

Lemma 4.3. If a first-order connection v on M Xy C%™ satisfies the con-

dition (C¢) introduced above, then the following formulas for its components
hold:

(44) er’lts - 77}’lst = Ah i Ah AT

smAirt — “tmAirse

Proof. As the bundle under consideration is that of symmetric connections,
the following symmetry holds: 73170 = 7{}%, and we have

’77}111&5 = ’7?157‘ - (AQmA?% - AgmA%) [by virtue of (28)]
= (yh, + AR AT — AR A™)  [by virtue of (28)]
— (AN, A — AL AT

Proposition 4.4. Let
2 _ A1)
V=N oy

be the restriction to the closed submanifold J°M C JY(J'M) of the pro-
longation (1(\}): JYT'M) — JYM xny C™) of the mapping (n defined
in Theorem 4.1. For every (jlg,jiT) € JYM xy C¥™) there exzists a
unique j2g' € J2M such that, jlg' = jlg and jIT9 = jIT' and the map-
ping »: JH(M xn CY™) — J2M defined by (jlg, jiT) = j24' is a Diff N-
equivariant rectract of C]2V.

S JPM = JHM x y O™)




J. MUNOZ MASQUE, M. E. EUGENIA ROSADO 25

Proof. From the formulas (36) and (37) we obtain

dg. N AR
J / /
8£Ek hi ( jk + gh] i )

(3
<pg’>h _ Lk 99 n g _ 9gi;
i 2 oxI oxt  Ozk

for every non-singular metric ¢’ on N. Hence the second partial derivatives
of ggj are completely determined, namely

h
gy ~ O9hi ory,

orh,
= Th . ik
Ozkoxt — Ozl Ik + 9ni Ox! +

T oxl

39hj

h
axl sz + gn

Moreover, the Levi-Civita connection of a metric depends functorially on
the metric, i.e., ¢ -I'9 = I'?9 for every ¢ € Diff N. Hence, by transforming
the equations jl¢’ = jlg and j%Fgl = jlI'Y by ¢ we can conclude. O

Theorem 4.5. If a first-order Ehresmann connection v on M Xy C™
satisfies the conditions (Cpr) and (C¢) introduced above, then the covariant
Hamiltonian A attached to every Diff N -invariant second-order Lagrangian
density A on M with respect to the second-order Ehresmann connection v?
on M defined in the formula (35), is defined on J*M and it is also Diff N -
mvariant.

Proof. Given a Diff N-invariant second-order Lagrangian density A = Lv
on M, let A" = L'v be the first-order Lagrangian density on M xpy C®™
given by A’ = s»*A, which is also Diff N-invariant as s is a Diff N-equivariant
mapping according to Proposition 4.4. Moreover, as s is a retract of C?V,
we have (C?V)*A’ = (C?V)* A= (o (3)*A=A, ie, A= (C?V)* A’. This
formula is equivalent to saying £ = L' o 412\,, as the n-form v is Diff V-
invariant, and it is even equivalent to L = L’ o sz because C]2V induces the
identity on N.

We claim £7° = (L' )70(12\,. This formula will end the proof as the mapping
(% is Diff N-equivariant and (£’)? is Diff N-invariant by virtue of Theorem
3.6.

To start with, we observe that the formula (40) for A can be written, in
the present case, as follows:

Labij —
2—08;; )
* ayab,ij
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or equivalently, letting £ = p=1Lbi

45 abij __ 1 .
( ) L 2—0;j 8yab,ij

Taking the formula in Lemma 4.2 into account, the formula (43) for A reads
as L7 = zagb(%bij + yab’ij)L“bij — L, or even
) g
L7 = Z(’Yabij + Yapif ) L — L,
a<b

where £7° = p‘lLVz. Hence £ is defined over J2M. As Yab,ij = Yab,jis We
obtain

0 (L o(3
£”’2 :Z Z (% ('Vabij + 'Vabji) + yab,ij) M — Lo g?v
a<b i<j Yab,ij
oL’ a(AZl © szv)
1 2 9 / 2
- _(’7abi'+7ab'i)+yab,i' < o( > —L'o¢
; zz<; kz<:l (2 Gty ’ 2 oAl . N) Byans N

oL’
= Z iyhm (/Vkmql + Yemlg + Vimgk + Vimkq — Vklgm — ’Wclmq) <— o ]2V>
k<l

Ll
+ Z %yhm (ykm,ql + Yim,qgk — ykl,qm) <— o ]2V> - £/ © C]z\/
k<l

Moreover, we have

() =3 e+ o) 22 43 (g + Al) 25—
[le ’ ayab,c G,Sb ’ 8A;llb,l
Hence
oL’
(€ oG =3 (s ot 6n) (- ok ) - 2/o3
k<l kl,
= Z {_% (/ykqu — Yirkq — 77’qu) yrh
k<l
oL’
+3 Ykritg + Yirkg — Yktrg) Y <— o C12v) — L' o (R
2 q q q } aAQLq

Consequently, the proof reduces to state that the following equation
% (Ykrql + Yirig + Virgk + Virkq — Vrlgr — Viirq) = —% (Ykirg — Yirkg — Vrkiq)
holds true, or equivalently,

(46) 0 = (Vijkr — Yijrk) + Yirjk — Yirkj) + (Vrjki — Vrjik) -
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According to the formulas (38) and (23) we obtain
Yijkr © Cﬁl = <7]hkr - AﬁaA?k> Yni + <%’%~ - AﬁaA?k) Yhj
- (A:}jA(iIk + A?M?k) Yah-

The third term on the right-hand side of this equation is symmetric in the
indices k and r, as A7, = A% . Hence

(Yighr = Yigrk) © (' = (’Y?m — Vo, — AP Ay + AZZA?T) Yhi
h h h h
+ (%m — Virk — Ara Al + AkaA?r> Yhy-

By composing the right-hand side of the equation (46) and {;,1, and tak-
ing the previous formula and the formulas (28) and (44) into account, we
conclude that this expression vanishes indeed. O

5 Palatini and Einstein-Hilbert Lagrangians

Let us compute the covariant Hamiltonian density attached to the Palatini
Lagrangian. Following the notations in [20], the Ricci tensor field attached
to the symmetric connection I' is given by ST (X,Y) = tr(Z — R'(Z, X)Y),
where R! denotes the curvature tensor field of the covariant derivative V!
associated to I' on the tangent bundle; hence ST = (R") jldajl ® dx?, where

(Rr)jl = (Rr)ﬁz,
(R")iyy = Oy /0a® — 0% /0! + THTY,, — DRI,
The Lagrangian is the function on J*(M x y C™) thus given by,
Lp(jpg,j,T) = g7 (x)(R")ij ()
and local expression

Lp =y (Al — Al + AL AL, — ARAL,).

J
As a computation shows, for every first-order connection v on M x y C5™
satisfying (44) and taking the formula (2) into account, we obtain £}, = 0.
This result is essentially due to the fact that the P-C form of the P density
Ap = Lpv = Lpv, projects onto M xy C¥™. In fact, the following general
characterization holds:

Proposition 5.1. Letp: E — N be an arbitrary fibred manifold and let v be
a first-order Ehresmann connection on E. The equation L7 = 0 holds true
for a Lagrangian L € C*®(J'E) if and only if, i) the Poincaré-Cartan form

of the density A = Luv,, projects onto J°F and, ii) L = <(p(1))*’y -0, dL"/(p(l))>.
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Proof. The equation L7 = 0 is equivalent to the equation DL = L, where
D" is the pj-vertical vector field defined in the formula (17), and the general
solution to the latter is L = f(a%, y®, v + y%), f(z*,y%,y%) being a homo-
geneous smooth function of degree one in the variables (y$), 1 < a < m,
1 <i < n, according to Euler’s homogeneous function theorem. As f is de-
fined for all values of the variables (y$), 1 < a <m, 1 <i <mn, we conclude
that the functions LY, = OL/dy¢ must be defined on E. Hence L is written
as L = L (27,y%)ys + Lo(27,y”), but this is exactly the condition for the
P-C form of A to be projectable onto J°E = E, as follows from the local
expression of this form, namely,

oL
8 a
oL o OL

8 ady N1 /92i0n + <L—yi @> Vp,.

O = 0% Nig/geivn + Loy,

Moreover, by imposing the condition DYL = L we obtain Ly = L{ &,
in other words L = (v + y{*)OL/0y{*, which is equivalent to the equatlon
ii) in the statement. U

The corresponding result for the second-order formalism is similar but the
computations are more cumbersome. Let us compute the covariant Hamil-
tonian density attached to the Einstein-Hilbert Lagrangian. As a matter
of notation, we set S9(X,Y) = S (X, Y) for the metric g, I'V being its

Levi-Civita connection, and similarly, (R9)%,, = (RFQ); Kl

The E-H Lagrangian is thus given by Lgg 0529 = (y¥ og) (Rg)?hj. As the
Levi-Civita connection 'Y depends functorially on g, Lgg is readily seen
to be Diff N-invariant; it is in addition linear in the second-order variables
Yij k- By using the third formula in (36) the following local expression for
L gy is obtained:

Ly = ;y”y (Yaj,hi — Yij.dh — Ydh,ij + Ynidgi) + L,

o = 3y" {yhmymr,jyrd (Yid,h + Ynd,i — Yih,d)

~ " Y 0" Yid g + Yidi — Yij.d)

+ 29"y (i i + viai — Yis.d) Yneam + Ymeh — Yhmor)

lyhrymd (Yid.h + Ynd,i — Yind) Yjrm + Ymrj — yjm,r)} .
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According to (45), for every first-order connection form v on M xy C™
satisfying the conditions (Cjy) and (C¢) above, we have

2 OLEH
Lhy= Z %%(Vabij + yab,ij)r —LEgmH,
a<b Yab,ij

and as a computation shows,

2 ij hd

Lhy = 39" (Yiain + Yidin — Vigdh — Yidhj — Yndij + Vindj) Y

+ %yij {yhmymr,hyrd (Yidj + Yidi — Yij.d)
— 9" Y Y (Yiah + Yndi — Yin.d)

- %yhrymd (yid,j + Yijd,i — yij,d) (yhr,m + Ymr,h — yhm,r)

+ 39"y (Yiah + Ydi — Yina) Yjrm + Ymrj — yjm,r)}

=0,

where the formulas (39), (44), (36), and Lemma 4.3 have been used. In this
case, the P-C form of the E-H density Apg = LEgv = Lggv,,

(4T)  Orgy=>,_ (Lg";?,dykl + Lgﬁldykl,j) N igjouitn + Hun,

/ i,kl
H=Lgy— qu L};]{?Jkl,h

! 2
Lz’,kl _ aLEH 1 Yab.i 0°Lgn
EH = =5, Yab,j )
Oy 270 0YabOYki,ij
ik 1 OLgm
EH = =5,
2=0 aykl,u

(cf. (40), (41)) is not only projectable onto J2M but also on J'M (e.g.,
see [13]), although there is no first-order Lagrangian on J'M admitting
(47) as its P-C form. This fact is strongly related to a classical result by
Hermann Weyl ([39, Appendix II], also see [22], [18]) according to which
the only Diff N-invariant Lagrangians on J?M depending linearly on the
second-order coordinates y,p,; are of the form ALgy + p, for scalars A, p.
This also explains why a true first-order Hamiltonian formalism exists in the
Einstein-Cartan gravitation theory, e.g., see [37], [38]. In fact, if

; OLpn gkl OLY
oy = g~y | hence LYy = ——EH
EH = 2205 Oy is Ykl,j EH = Gy
and the momentum functions are defined as follows:
ikl oLy
Pkli = - )
COUERE T Oy

then
d@AEH = dpkl,i A dygr N ia/axivn + dH A vy,
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and from the Hamilton-Cartan equation (e.g., see [13, (1)]) we conclude
that a metric g is an extremal for Agy if and only if,

8(pab,i © jlg) oH

0= : — i1
oxt b °7 3
oz’ 8yab,i

On the other hand, it is no longer true that the covariant Hamiltonians of
the non-linear Lagrangians of the form f(Lggy), f” # 0, considered in some
cosmological models (e.g., see [1], [6], [9], [12], [19], [21], [31]) and those
in higher dimensions (e.g., see [15], [36]) vanish. In fact, as a computation

shows, one has f(ﬁEH)VQ = f'(Leu)Len — f(Len), Vf € C®(R).
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