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Abstract

Let M → N (resp. C → N) be the fibre bundle of pseudo-Riemannian
metrics of a given signature (resp. the bundle of linear connections) on
an orientable connected manifold N . A geometrically defined class of
first-order Ehresmann connections on the product fibre bundle M ×N C

is determined such that, for every connection γ belonging to this class
and every DiffN -invariant Lagrangian density Λ on J1(M ×N C), the
corresponding covariant Hamiltonian Λγ is also DiffN -invariant. The
case of DiffN -invariant second-order Lagrangian densities on J2M is
also studied and the results obtained are then applied to Palatini and
Einstein-Hilbert Lagrangians.
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caré-Cartan form.

Acknowledgements: Supported by Ministerio de Ciencia e Innovación of
Spain, under grant #MTM2008–01386.

1 Introduction

In Mechanics, the Hamiltonian function attached to a Lagrangian density
Λ = L(t, qi, q̇i)dt on R × TQ is given by H = q̇i∂L/∂q̇i − L, but—as it
was early observed in [16]—this is not an invariant definition if an arbitrary
fibred manifold t : E → R is considered (thus generalizing the notion of an
absolute time) instead of the direct product bundle R×Q → R; e.g., see [7],
[23], [25] for this point of view. In this case, an Ehresmann connection is
needed in order to lift the vector field ∂/∂t from R to E, and the Hamiltonian
is then defined by applying the Poincaré-Cartan form attached to Λ to the
horizontal lift of ∂/∂t.

In the field theory—where no distinguished vector field exists on the base
manifold—the need of an Ehresmann connection is even greater, in order
to attach a covariant Hamiltonian to each Lagrangian density; e.g., see [24,
4.1], [23], and the definitions below.

Let p : E → N be an arbitrary fibred manifold over a connected manifold
N , n = dimN , dimE = m+n, oriented by vn = dx1∧· · ·∧dxn. Throughout
this paper, Latin (resp. Greek) indices run from 1 to n (resp. m). An
Ehresmann connection on a fibred manifold p : E → N is a differential 1-form
γ on E taking values in the vertical sub-bundle V (p) such that γ(X) = X
for every X ∈ V (p) (e.g., see [23], [24], [32], [34]). Once an Ehresmann
connection γ is given, a decomposition of vector bundles holds T (E) =
V (p) ⊕ ker γ, where ker γ is called the horizontal sub-bundle determined by
γ. In a fibred coordinate system (xj , yα) for p, an Ehresmann connection
can be written as

γ = (dyα + γαj dx
j) ⊗

∂

∂yα
, γαj ∈ C∞(E).
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According to [24], the covariant Hamiltonian Λγ associated to a Lagrangian
density on J1E, Λ = Lvn, L ∈ C∞(J1E), with respect to γ is the Lagrangian
density defined by,

(1) Λγ =
(

(p10)∗γ − θ
)

∧ ωΛ − Λ,

where, p10 : J1E → J0E = E is the projection mapping, θ = θα ⊗ ∂/∂yα,
θα = dyα − yαi dx

i is the V (p)-valued 1-form on J1E associated with the
contact structure, written on a fibred coordinate system (xi, yα), and ωΛ

is the Legendre form attached to Λ, i.e., the V ∗(p)-valued p1-horizontal
(n− 1)-form on J1E given by

ωΛ = (−1)i−1 ∂L

∂yαi
i∂/∂xivn ⊗ dyα,

where (xi, yα; yαi ) is the coordinate system induced from (xi, yα) on the 1-jet
bundle and p1 : J1E → N is the projection on the base manifold. Locally,

(2) Λγ =
(

(γαi + yαi )
∂L

∂yαi
− L

)

dx1 ∧ · · · ∧ dxn.

From (1) we obtain the following decomposition of the Poincaré-Cartan form
attached to Λ (e.g., see [17], [23], [27]): ΘΛ = θ∧ωΛ+Λ = (p10)∗γ∧ωΛ−Λγ .

A diffeomorphism Φ: E → E is said to be an automorphism of p if there
exists φ ∈ DiffN such that p◦Φ = φ◦p. The set of such automorphisms is de-
noted by Aut(p) and its Lie algebra is identified to the space aut(p) ⊂ X(E)
of p-projectable vector fields on E. Given a subgroup G ⊆ Aut(p), a La-

grangian density Λ is said to be G-invariant if (Φ(1))∗Λ = Λ for every Φ ∈ G,

where Φ(1) : J1E → J1E denotes the 1-jet prolongation of Φ. Infinitesi-
mally, the G-invariance equation can be reformulated as LX(1)Λ = 0 for

every X ∈ Lie(G), X(1) denoting the 1-jet prolongation of the vector field
X.

When a group G of transformations of E is given, a natural question
arises:

• Determine a class—as small as possible— of Ehresmann connections
γ such that Λγ is G-invariant for every G-invariant Lagrangian density
Λ.

Below we tackle this question in the framework of General Relativity, i.e.,
the group G is the group of all diffeomorphisms of the ground manifold N
acting in a natural way either on the bundle of pseudo-Riemannian metrics
pM : M = M(N) → N of a given signature (n+, n−), n++n− = n, or on the
product bundle p : M ×N C → N , where pC : C = C(N) → N is the bundle
of linear connections on N . Namely, we solve the following two problems:
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(P): Determine a class—as small as possible— of Ehresmann connec-
tions γ such that for every DiffN -invariant first-order Lagrangian den-
sity Λ on the bundle J1(M×NC) , the corresponding covariant Hamil-
tonian Λγ is also DiffN -invariant.

Similarly to the problem (P), we formulate the corresponding problem
on J2M as follows:

(P2): Determine a class of second-order Ehresmann connections γ2 on M
such that for every DiffN -invariant second-order Lagrangian density

Λ on the bundle J2M , the corresponding covariant Hamiltonian Λγ2
—

defined in (42)—is also DiffN -invariant.

Essentially, a class of first-order Ehresmann connections on the bundle M×N

C is obtained, defined by the conditions (CM ) and (CC) below (see Propo-
sitions 3.4 and 3.5), solving the problem (P). This class of connections also
helps to solve (P2) by means of a natural isomorphism between J1M and
M ×N Csym, where Csym denotes the sub-bundle of symmetric connections
on N (cf. Theorem 4.1). Finally, this approach is applied to Palatini and
Einstein-Hilbert Lagrangians ([3], [4]), obtaining results compatible with
their usual Hamiltonian formalisms.

2 Invariance under diffeomorphisms

2.1 Preliminaries

2.1.1 Jet-bundle notations

Let pk : JkE → N be the k-jet bundle of local sections of an arbitrary
fibred manifold p : E → N , with projections pkl : JkE → J lE, pkl (jkxs) = jlxs,

for k ≥ l, jkxs denoting the k-jet at x of a section s of p defined on a
neighbourhood of x ∈ N .

A fibred coordinate system (xi, yα) on V induces a coordinate system
(xi, yαI ), I = (i1, . . . , iN ) ∈ N

n, 0 ≤ |I| = i1 + · · · + iN ≤ r, on (pr0)−1(V ) =

JrV as follows: yαI (jrxs) = (∂|I|(yα ◦ s)/∂xI)(x), with yα0 = yα.

Every morphism Φ: E → E′ whose associated map φ : N → N ′ is a
diffeomorphism, induces a map

(3)
Φ(r) : JrE → JrE′,

Φ(r)(jrxs) = jrφ(x)(Φ ◦ s ◦ φ−1).
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If Φt is the flow of a vector field X ∈ aut(p), then Φ
(r)
t is the flow of a vector

field X(r) ∈ X(JrE), called the infinitesimal contact transformation of order
r associated to the vector field X. The mapping

aut(p) ∋ X 7→ X(r) ∈ X(JrE)

is an injection of Lie algebras, namely, one has

(λX + µY )(r) = λX(r) + µY (r),

[X,Y ](r) = [X(r), Y (r)],

∀λ, µ ∈ R, ∀X,Y ∈ aut(p).

In particular, for r = 1,

X = ui
∂

∂xi
+ vα

∂

∂yα
, ui ∈ C∞(N), vα ∈ C∞(E),

X(1) = ui
∂

∂xi
+ vα

∂

∂yα
+ vαi

∂

∂yαi
, vαi =

∂vα

∂xi
+ yβi

∂vα

∂yβ
− yαk

∂uk

∂xi
.

2.1.2 Coordinates on M(N), F (N), C(N)

Every coordinate system (xi) on an open domain U ⊆ N induces the fol-
lowing coordinate systems:

1) (xi, yjk) on (pM )−1(U), where pM : M → N is the bundle of metrics
of a given signature, and the functions yjk = ykj are defined by,

(4) gx =
∑

i≤j

yij(gx)(dxi)x ⊗ (dxj)x, ∀gx ∈ (pM )−1(U).

2) (xi, xij) on (pF )−1(U), where pF : F (N) → N is the bundle of linear

frames on N , and the functions xij are defined by,

u =
(

(∂/∂x1)x, . . . , (∂/∂x
n)x
)

·
(

xij(u)
)

, x = pF (u),∀u ∈ (pF )−1(U),

or equivalently,

(5) u = (X1, . . . ,XN ) ∈ Fx(N), Xj = xij(u)

(

∂

∂xi

)

x

, 1 ≤ j ≤ n.

3) (xi, Aj
kl) on (pC)−1(U), where pC : C → N is the bundle of linear

connections on N , and the functions Aj
kl are defined as follows. We first

recall some basic facts. Connections on F (N) (i.e., linear connections
of N) are the splittings of the Atiyah sequence (cf. [2]),

0 → adF (N) → TGl(n,R)F (N)
(pF )∗
−−−→ TN → 0,

where
a) adF (N) = T ∗N ⊗ TN is the adjoint bundle,
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b) TGl(n,R)(F (N)) = T (F (N))/Gl(n,R), and
c) gauF (N) = Γ(N, adF (N)) is the gauge algebra of F (N).
We think of gauF (N) as the ‘Lie algebra’ of the gauge group GauF (N).
Moreover, pC : C → N is an affine bundle modelled over the vector
bundle ⊗2T ∗N ⊗TN . The section of pC induced tautologically by the
linear connection Γ is denoted by sΓ : N → C. Every B ∈ gl(n,R) de-
fines a one-parameter group ϕB

t : U×Gl(n,R) → U×Gl(n,R) of gauge
transformations by setting (cf. [5]), ϕB

t (x,Λ) = (x, exp(tB) ·Λ). Let us
denote by B̄ ∈ gau(pF )−1(U) the corresponding infinitesimal genera-

tor. If (Ei
j) is the standard basis of gl(n,R), then Ēi

j =
∑n

h=1 x
j
h∂/∂x

i
h,

for i, j = 1, . . . , n, is a basis of gau(pF )−1(U). Let Ẽi
j = Ēi

j modG be

the class of Ēi
j on adF (N). Unique smooth functions Ai

jk on (pC)−1(U)
exist such that,

sΓ

(

∂

∂xj

)

=
∂

∂xj
− (Ai

jk ◦ Γ)Ẽi
k(6)

=
∂

∂xj
− (Ai

jk ◦ Γ)xkh
∂

∂xih
,

for every sΓ and Ai
jk(Γx) = Γi

jk(x), where Γi
jk are the Christoffel sym-

bols of the linear connection Γ in the coordinate system (xi), see [20,
III, Poposition 7.4].

2.2 Natural lifts

Let fM : M → M , cf. [30] (resp. f̃ : F (N) → F (N), cf. [20, p. 226]) be the
natural lift of f ∈ DiffN to the bundle of metrics (resp. linear frame bun-

dle); namely fM (gx) = (f−1)∗gx (resp. f̃(X1, . . . ,XN ) = (f∗X1, . . . , f∗XN ),

where (X1, . . . ,XN ) ∈ Fx(N)); hence pM◦fM = f◦pM (resp. pF ◦f̃ = f◦pF ),

and fM : M → M (resp. f̃ : F (N) → F (N)) have a natural extension to jet

bundles f
(r)
M : Jr(M) → Jr(M) (resp. f̃ (r) : Jr(FN) → Jr(FN)) as defined

in the formula (3), i.e.,

f
(r)
M (jrxg) = jrf(x)(fM ◦ g ◦ f−1) (resp. f̃ (r) (jrxs) = jrf(x)(f̃ ◦ s ◦ f−1)).

As f̃ is an automorphism of the principal Gl(n,R)-bundle F (N), it acts on

linear connections by pulling back connection forms, i.e., Γ′ = f̃ (Γ) where

ωΓ′ = (f̃−1)∗ωΓ (see [20, II, Proposition 6.2-(b)], [5, 3.3]). Hence, there

exists a unique diffeomorphism f̃C : C → C such that,

1) pC ◦ f̃C = f ◦ pC , and
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2) f̃C ◦ sΓ = sf̃(Γ) for every linear connection Γ.

If ft is the flow of a vector field X ∈ X(N), then the infinitesimal gener-

ator of (ft)M (resp. f̃t, resp. (f̃t)C) in DiffM (resp. DiffF (N), resp. DiffC)

is denoted by XM (resp. X̃, resp. X̃C) and the following Lie-algebra homo-
morphisms are obtained:







X(N) → X(M), X 7→ XM

X(N) → X(F (N)), X 7→ X̃

X(N) → X(C), X 7→ X̃C

If X = ui∂/∂xi ∈ X(N) is the local expression for X, then

1) From [30, eqs. (2)–(4)] we know that the natural lift of X to M is
given by,

XM = ui
∂

∂xi
−
∑

i≤j

(

∂uh

∂xi
yhj +

∂uh

∂xj
yih

)

∂

∂yij
∈ X(M).

and its 1-jet prolongation,

X
(1)
M = ui

∂

∂xi
−
∑

i≤j

(

∂uh

∂xi
yhj +

∂uh

∂xj
yhi

)

∂

∂yij

−
∑

i≤j

(

∂2uh

∂xi∂xk
yhj +

∂2uh

∂xj∂xk
yhi +

∂uh

∂xi
yhj,k +

∂uh

∂xj
yhi,k +

∂uh

∂xk
yij,h

)

∂

∂yij,k
.

2) From [10, Proposition 3] (also see [20, VI, Proposition 21.1]) we know
that the natural lift of X to F (N) is given by,

X̃ = ui
∂

∂xi
+

∂ui

∂xl
xlj

∂

∂xij
,

and its 1-jet prolongation,

X̃(1) = ui
∂

∂xi
+

∂ui

∂xl
xlj

∂

∂xij
+ vijk

∂

∂xij,k
,

vijk =
∂ui

∂xl
xlj,k −

∂ul

∂xk
xij,l +

∂2ui

∂xk∂xl
xlj.

3) Finally,

X̃C = ui
∂

∂xi
−

(

∂2ui

∂xj∂xk
−

∂ui

∂xl
Al

jk +
∂ul

∂xk
Ai

jl +
∂ul

∂xj
Ai

lk

)

∂

∂Ai
jk

,
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X̃
(1)
C = ui

∂

∂xi
+ wi

jk

∂

∂Ai
jk

+ wi
jkh

∂

∂Ai
jk,h

,

wi
jk = −

∂2ui

∂xj∂xk
+

∂ui

∂xl
Al

jk −
∂ul

∂xk
Ai

jl −
∂ul

∂xj
Ai

lk,(7)

wi
jkh = −

∂3ui

∂xh∂xj∂xk
+

∂2ui

∂xh∂xl
Al

jk −
∂2ul

∂xh∂xk
Ai

jl −
∂2ul

∂xh∂xj
Ai

lk(8)

+
∂ui

∂xl
Al

jk,h −
∂ul

∂xk
Ai

jl,h −
∂ul

∂xj
Ai

lk,h −
∂ul

∂xh
Ai

jk,l.

Let p : M ×N C → N be the natural projection.

We denote by f̄ = (fM , f̃C) (resp. X̄ = (XM , X̃C) ∈ X(M ×N C)) the
natural lift of f (resp. X) to M ×N C. The prolongation to the bundle
J1(M ×N C) of X̄ is as follows:

X̄(1)=
(

X
(1)
M , X̃

(1)
C

)

(9)

=ui
∂

∂xi
+
∑

i≤j

vij
∂

∂yij
+
∑

i≤j

vijk
∂

∂yij,k
+ wi

jk

∂

∂Ai
jk

+ wi
jkh

∂

∂Ai
jk,h

,

where

vij=−
∂uh

∂xi
yhj −

∂uh

∂xj
yhi,(10)

vijk=−
∂2uh

∂xi∂xk
yhj −

∂2uh

∂xj∂xk
yhi −

∂uh

∂xi
yhj,k −

∂uh

∂xj
yhi,k −

∂uh

∂xk
yij,h,(11)

and wi
jk, w

i
jkh are given in the formulas (7), (8), respectively.

2.3 DiffN- and X(N)-invariance

A differential form ωr ∈ Ωr(J1(M ×N C)), r ∈ N, is said to be DiffN -
invariant— or invariant under diffeomorphisms— (resp. X(N)-invariant) if

the following equation holds: (f̄ (1))∗ωr = ωr, ∀f ∈ DiffN (resp. LX̄(1)ωr = 0,
∀X ∈ X(N)). Obviously, “DiffN -invariance” implies “X(N)-invariance”
and the converse is almost true (see [14], [28]). Because of this, below we
consider X(N)-invariance only.

A linear frame (X1, . . . ,XN ) at x is said to be orthonormal with respect to
gx ∈ Mx(N) (or simply gx-orthonormal) if gx(Xi,Xj) = 0 for 1 ≤ i < j ≤ n,
g(Xi,Xi) = 1 for 1 ≤ i ≤ n+, g(Xi,Xi) = −1 for n+ + 1 ≤ i ≤ n.
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As N is an oriented manifold, there exists a unique p-horizontal n-form v
on M ×N C such that, v(gx,Γx) (X1, . . . ,XN ) = 1, for every gx-orthonormal
basis (X1, . . . ,XN ) belonging to the orientation of N . Locally v = ρvn,

where ρ =
√

(−1)n− det(yij) and vn = dx1 ∧ · · · ∧ dxn. As proved in [30,

Proposition 7], the form v is DiffN -invariant and hence X(N)-invariant. A
Lagrangian density Λ on J1(M ×N C) can be globally written as Λ = Lv
for a unique function L ∈ C∞(J1(M ×N C)) and Λ is X(N)-invariant if and
only if the function L is. Therefore, the invariance of Lagrangian densities
is reduced to that of scalar functions.

Proposition 2.1. A function L ∈ C∞(J1(M ×N C)) is X(N)-invariant if
and only if the following system of partial differential equations hold:

(12)

0 = Xi(L), ∀i,
0 = Xi

h (L) , ∀h, i,
0 = Xik

h (L) , ∀h, i ≤ k,

0 = Xjkh
i (L) , ∀i, j ≤ k ≤ h,

where

X i =
∂

∂xi
, ∀i,

X i
h = −yhi

∂

∂yii
− yhj

∂

∂yij
− yih,k

∂

∂yii,k
− yhj,k

∂

∂yij,k
−
∑

s≤j

ysj,h
∂

∂ysj,i

+ Ai
jk

∂

∂Ah
jk

−Ar
jh

∂

∂Ar
ji

−Ar
hk

∂

∂Ar
ik

+ Ai
jk,s

∂

∂Ah
jk,s

−As
jh,r

∂

∂As
ji,r

−As
hk,r

∂

∂As
ik,r

−Ar
jk,h

∂

∂Ar
jk,i

, ∀h, i,

X ik
h = −yih

∂

∂yii,k
− ykh

∂

∂ykk,i
− yhj

∂

∂yij,k
− yhj

∂

∂ykj,i
−

∂

∂Ah
ik

−
∂

∂Ah
ki

(13)

+ Ak
js

∂

∂Ah
js,i

−As
jh

∂

∂As
jk,i

−As
hr

∂

∂As
kr,i

+ Ai
js

∂

∂Ah
js,k

−As
jh

∂

∂As
ji,k

−As
hr

∂

∂As
ir,k

, ∀h, i ≤ k,

(14) Xjkh
i =

∂

∂Ai
jk,h

+
∂

∂Ai
jh,k

+
∂

∂Ai
hk,j

+
∂

∂Ai
hj,k

+
∂

∂Ai
kj,h

+
∂

∂Ai
kh,j

, ∀i, h ≤ j ≤ k.

Moreover, the vector fields Xi,Xi
h,X

ik
h ,Xjkh

i are linearly independent and

they span an involutive distribution on J1(M ×N C) of rank n
(

n+3
3

)

. Hence,

the number of functionally invariant Lagrangians on J1(M ×N C) is

1
6

(

5n4 + 3n3 − 5n2 + 3n
)

.
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Proof. According to the formula (9), L is invariant if and only if,

ui
∂L

∂xi
+
∑

i≤j vij
∂L

∂yij
+
∑

i≤j vijk
∂L

∂yij,k
+ wi

jk

∂L

∂Ai
jk

+ wi
jkh

∂L

∂Ai
jk,h

= 0,

∀ui ∈ C∞(N),

and expanding on this equation by using the formulas (10), (11), (7), and
(8) we obtain

0 = ui
∂L

∂xi

+
∂uh

∂xi

(

−yhi
∂L

∂yii
− yhj

∂L

∂yij
− yih,k

∂L

∂yii,k
− yhj,k

∂L

∂yij,k

−
∑

s≤j

ysj,h
∂L

∂ysj,i
+ Ai

jk

∂L

∂Ah
jk

−Ar
jh

∂L

∂Ar
ji

−Ar
hk

∂L

∂Ar
ik

+Ai
jk,s

∂L

∂Ah
jk,s

−As
jh,r

∂L

∂As
ji,r

−As
hk,r

∂L

∂As
ik,r

−Ar
jk,h

∂L

∂Ar
jk,i

)

+
∂2uh

∂xi∂xk

(

−yih
∂L

∂yii,k
− yhj

∂L

∂yij,k
−

∂L

∂Ah
ik

+Ak
js

∂L

∂Ah
js,i

−As
jh

∂L

∂As
jk,i

−Ar
hr

∂L

∂Ar
kr,i

)

−
∂3ui

∂xh∂xk∂xj
∂L

∂Ai
jk,h

.

This equation is equivalent to the system of the statement as the values for
uh, ∂uh/∂xi, ∂2uh/∂xi∂xj (i ≤ j), and ∂3uh/∂xi∂xj∂xk (i ≤ j ≤ k) at a
point x ∈ N can be taken arbitrarily. Moreover, assume a linear combination
holds

(15)
λaX

a + λa
bX

b
a +

∑

b≤c λ
a
bcX

bc
a +

∑

b≤c≤d λ
a
bcdX

bcd
a = 0,

λa, λ
a
b , λ

a
bc, λ

a
bcd ∈ C∞(J1(M ×N C)).

By applying (15) to xa (resp. yab) we obtain λa = 0 (resp. λa
b = 0); again by

applying (15) to Aa
bc, b ≤ c (resp. Aa

bc, c ≤ b) and taking the expressions of
the vector fields (13) and (14) into account, we obtain λa

bc = 0, b ≤ c (resp.

λa
bc = 0, c ≤ b). Hence, (15) reads

∑

b≤c≤d λ
a
bcdX

bcd
a = 0, and by applying it

to Aa
bc,d and taking the expressions of the vector fields (14) into account, we

finally obtain λa
bcd = 0. The distribution

DM×NC =
{

X̄
(1)
(j1xg,j

1
xsΓ)

: X ∈ X(N),
(

j1xg, j
1
xsΓ
)

∈ J1(M ×N C)
}
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in T
(

J1(M ×N C)
)

, where X̄(1) is defined in (9), is involutive as
[

X̄(1), Ȳ (1)
]

= [X,Y ]
(1)

, ∀X,Y ∈ X(N),

and it is spanned by Xi,Xi
h,X

ik
h ,Xjkh

i , as proved by the formulas above.
The rest of the statement follows from the following identities:

#
{

Xi;Xi
h;Xik

h , i ≤ k;Xjkh
i , h ≤ j ≤ k : h, i, j, k = 1, . . . , n

}

= n + n2 + n
(n+1

2

)

+ n
(n+2

3

)

= n
(n+3

3

)

,

dim J1 (M ×N C) − n
(

n+3
3

)

= 1
6

(

5n4 + 3n3 − 5n2 + 3n
)

.

�

3 Invariance of covariant Hamiltonians

3.1 Position of the problem

On the bundle E = M ×N C, an Ehresmann connection can locally be
written as follows:

(16)
γ =

∑

i≤j

(

dyij + γijkdx
k
)

⊗
∂

∂yij
+
(

dAi
jk + γijkldx

l
)

⊗
∂

∂Ai
jk

,

γijk, γ
i
jkl ∈ C∞(M ×N C).

In particular, for a Lagrangian density Λ on J1(M ×N C) we obtain

Λγ =





∑

i≤j

(

γijk + yij,k

) ∂L

∂yij,k
+
(

γijkl + Ai
jk,l

) ∂L

∂Ai
jk,l

− L



 dx1 ∧ · · · ∧ dxn,

or equivalently, Lγ = Dγ(L) − L, where

Dγ =
∑

i≤j

(

γijk + yij,k

) ∂

∂yij,k
+
(

γijkl + Ai
jk,l

) ∂

∂Ai
jk,l

.

Remark 3.1. The horizontal form (p10)
∗γ − θ = (γαi + yαi ) dxi ⊗ ∂/∂yα can

also be viewed as the p10-vertical vector field

(17) Dγ = (γαi + yαi )
∂

∂yαi
,

taking the natural isomorphism V (p10) ∼= (p10)∗(p∗T ∗N ⊗ V (p)) into account
(cf. [23], [24], [32], [34]).
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According to the previous formulas, this means: If the system (12) holds
for a Lagrangian function L, then it also holds for the covariant Hamiltonian
Lγ .

If X ∈ {Xi,Xi
h,X

ik
h ,Xjkh

i }, then X (Lγ) = X (Dγ(L)), as L is assumed
to be invariant and hence X(L) = 0. Therefore

X (Lγ) = X (Dγ(L))

= [X,Dγ ] (L),

and we conclude the following:

Proposition 3.2. The property (P) holds for an Ehresmann connection
γ on M ×N C if and only if the vector field Dγ transforms the sections
of the distribution DM×NC into themselves, namely, [Dγ ,Γ(DM×NC)] ⊆
Γ(DM×NC).

The problem thus reduces to compute the brackets
[

Xi,Dγ
]

,
[

Xi
h,D

γ
]

,
[

Xik
h ,Dγ

]

, and [Xjkh
i ,Dγ ]. We have

[

Xh,Dγ
]

=
∑

i≤j

∂γijk
∂xh

∂

∂yij,k
+

∂γijkl
∂xh

∂

∂Ai
jk,l

,(18)

[

Xcda
b ,Dγ

]

= Xcda
b , ∀b, c ≤ d ≤ a,

[

Xi
h,D

γ
]

=
∑

a≤b

Y i
h (γabk)

∂

∂yab,k
+
∑

i≤h

γihk
∂

∂yii,k
+
∑

h<i

γhik
∂

∂yii,k
(19)

+
∑

h≤j

γhjk
∂

∂yij,k
+
∑

j<h

γjhk
∂

∂yij,k
+
∑

a≤b

γabh
∂

∂yab,i

+
(

Y i
h (γabcr) − δhaγ

i
bcr + δci γ

a
bhr + δbiγ

a
hcr + δri γ

a
bch

) ∂

∂Aa
bc,r

,

(20)
[

Xik
h ,Dγ

]

=
∑

a≤b

Y ik
h (γabc)

∂

∂yab,c
+ Y ik

h

(

γdabc

) ∂

∂Ad
ab,c

+ Xik
h − Y ik

h ,

where

Y i
h = −yhi

∂

∂yii
− yhj

∂

∂yij
+ Ai

jk

∂

∂Ah
jk

−Ar
jh

∂

∂Ar
ji

−Ar
hk

∂

∂Ar
ik

,

Y ik
h = −

∂

∂Ah
ik

−
∂

∂Ah
ki

,
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and the following formula has been used:

∂yrs,k
∂yij,h

= δkh
(

δri δ
s
j + δrj δ

s
i − δijδ

i
rδ

j
s

)

.

3.2 The class of the Ehresmann connections defined

Let p : M×N C → N , pr1 : M×N C → M , pr2 : M×N C → C be the natural
projections. By taking the differential of pr1 and pr2, a natural identification
is obtained T (M ×N C) = TM ×TN TC. Hence

V (p) = V (pM ) ×N V (pC)

= pr∗1V (pM ) ⊕ pr∗2V (pC)

and two unique vector-bundle homomorphisms exist

γM : pr∗1TM → pr∗1V (pM ), γC : pr∗2TC → pr∗2V (pC),

such that,

γ(X) = (γM (pr1∗X) , γC (pr2∗X)) , ∀X ∈ T (M ×N C),
γM (Y ) = Y, ∀Y ∈ pr∗1V (pM ),
γC(Z) = Z, ∀Z ∈ pr∗2V (pC).

If γ is given by the local expression of the formula (16), then

γM =
∑

i≤j

(

dyij + γijkdx
k
)

⊗
∂

∂yij
, γC =

(

dAi
jk + γijkldx

l
)

⊗
∂

∂Ai
jk

,

γijk, γ
i
jkl ∈ C∞(M ×N C).

3.2.1 The first geometric condition on γ

Let q : F (N) → M be the projection given by

q(X1, . . . ,XN ) = gx(21)

= εhw
h ⊗ wh,

where (w1, . . . , wn) is the dual coframe of (X1, . . . ,XN ) ∈ Fx(N), i.e., gx is
the metric for which (X1, . . . ,XN ) is a gx-orthonormal basis and εh = 1 for
1 ≤ h ≤ n+, εh = −1 for n+ + 1 ≤ h ≤ n. As readily seen, q is a principal
G-bundle with G = O(n+, n−).

Given a linear connection Γ and a tangent vector X ∈ TxN , for every u
in p−1(x) there exists a unique Γ-horizontal tangent vector XhΓ

u ∈ Tu(FN)
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such that, (pF )∗X
hΓ
u = X. The local expression for the horizontal lift is

known to be ([20, Chapter III, Proposition 7.4]),

(22)

(

∂

∂xj

)hΓ

=
∂

∂xj
− Γi

jkx
k
l

∂

∂xil
.

Lemma 3.3. Given a metric gx ∈ p−1
M (x), let u ∈ p−1

F (x) be a linear frame

such that q(u) = gx. The projection q∗(X
hΓx
u ) does not depend on the linear

frame u chosen over gx.

Proof. In fact, any other linear frame projecting onto gx can be written
as u · A, A ∈ G. As the horizontal distribution is invariant under right
translations (see [20, II, Proposition 1.2]), the following equation holds:

(RA)∗
(

XhΓ
u

)

= XhΓ
u·A. Hence

q∗

(

XhΓ
u·A

)

= q∗

(

(RA)∗

(

XhΓ
u

))

= (q ◦RA)∗

(

XhΓ
u

)

= q∗

(

XhΓ
u

)

.

�

Proposition 3.4. An Ehresmann connection γ on M ×N C satisfies the
following condition:

(CM ): γM ((gx,Γx) ,X) = X − q∗

(

((pM )∗(X))hΓx
u

)

,

∀X ∈ TgxM, u ∈ q−1(gx), (which does not depend on the linear frame
u ∈ q−1(gx) chosen, according to Lemma 3.3) if and only if the following
equations hold:

(23) γklj = −
(

yalA
a
jk + yakA

a
jl

)

,

where the functions γklj (resp. yij, resp. A
i
jk) are defined in the formula (16)

(resp. (4), resp. (6)).

Proof. Letting (χi
j)

n
i,j=1 =

(

(xij)
n
i,j=1

)−1
, the dual coframe of the linear

frame u = (X1, . . . ,XN ) ∈ Fx(N) given in (5) is (w1, . . . , wn), wh =
χh
k(u)

(

dxk
)

x
, 1 ≤ h ≤ n, and the projection q is given by

q(u) = gx

=
∑n

h=1
εhχ

h
k(u)χh

l (u)
(

dxk
)

x
⊗
(

dxl
)

x
.
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Therefore the equations of the projection (21) are as follows:

xi ◦ q = xi,
ykl ◦ q =

∑n
h=1 εhχ

h
kχ

h
l .

Hence

q∗

(

∂

∂xab

)

u

=
∑

k≤l

εh

{

∂χh
k

∂xab
χh
l + χh

k

∂χh
l

∂xab

}

(u)

(

∂

∂ykl

)

gx

.

Taking derivatives with respect to xab on the identity χh
rx

r
i = δhi , multiplying

the outcome by χi
k, and summing up over the index i, the following formula

is obtained: ∂χh
k/∂x

a
b = −χh

aχ
b
k. Replacing this equation into the expression

for q∗ (∂/∂xab )u above, we have

q∗

(

∂

∂xab

)

u

= −
∑

k≤l

{

χb
k(u)yal (gx) + χb

l (u)yak (gx)
}

(

∂

∂ykl

)

gx

.

From (22), evaluated at u ∈ q−1(gx), we deduce

q∗

(

∂

∂xj

)hΓ

u

=

(

∂

∂xj

)

gx

− Γa
jc(x)xcb(u)q∗

(

∂

∂xab

)

gx

=

(

∂

∂xj

)

gx

+
∑

k≤l Γa
jc(x)xcb(u)

{

χb
k(u)yal (gx) + χb

l (u)yak (gx)
}

(

∂

∂ykl

)

gx

=

(

∂

∂xj

)

gx

+
∑

k≤l

{

Γa
jk(x)yal (gx) + Γa

jl(x)yak (gx)
}

(

∂

∂ykl

)

gx

.

The condition (CM ) holds automatically whenever X ∈ V (pM ). Hence,
(CM ) holds if and only if it holds for X = (∂/∂xj)gx , namely,

∑

k≤l

γklj(gx,Γx)

(

∂

∂ykl

)

gx

= γM

(

(gx,Γx) ,

(

∂

∂xj

)

gx

)

=

(

∂

∂xj

)

gx

− q∗

(

∂

∂xj

)hΓx

u

= −
∑

k≤l

{

Γa
jk(x)yal (gx) + Γa

jl(x)yak (gx)
}

(

∂

∂ykl

)

gx

,

thus proving the formula (23) in the statement. �
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3.2.2 The canonical covariant derivative

As is known (e.g., see [20, III, section 1], [23, pp. 157–158]) every con-
nection Γ on a principal G-bundle P → N induces a covariant derivative
∇Γ on the vector bundle associated to P under a linear representation
ρ : G → Gl(m,R) with standard fibre R

m. In particular, this applies to
the principal bundle of linear frames, thus proving that every linear con-
nection Γ on N induces a covariant derivative ∇Γ on every tensorial vector
bundle E → N .

The bundles (pC)∗E, where E is a tensorial vector bundle, are endowed
with a canonical covariant derivative ∇E completely determined by the for-
mula:

(24)
((

∇E
)

X
(fξ)

)

(Γx) = ((Xf) ξ) (Γx) + f (Γx)
(

∇Γx

(pC)∗X
ξ
)

(x),

for all X ∈ TΓxC, f ∈ C∞(C), and every local section ξ of E defined on a
neighbourhood of x. The uniqueness of ∇E follows from (24) as the sections
of E span the sections of (pC)∗E over C∞(C), see [8, 0.3.6]. Below, we are
specially concerned with the cases E = TN and E = ∧2T ∗N ⊗ TN .

3.2.3 The 2-form associated with γC

As pC : C → N is an affine bundle modelled over ⊗2T ∗N ⊗ TN , there is a
natural identification

V (pC) ∼= (pC)∗
(

⊗2T ∗N ⊗ TN
)

and consequently, an Ehresmann connection γC on C can also be viewed as
a homomorphism γC : TC → ⊗2T ∗N ⊗ TN . If γC is locally given by

(25) γC =
(

dAi
jk + γijkldx

l
)

⊗
∂

∂Ai
jk

, γijkl ∈ C∞(C),

then

γC = (dAi
jk + γijkldx

l) ⊗ dxj ⊗ dxk ⊗
∂

∂xi
,

and γC induces a 2-form γ̃C taking values in (pC)∗(T ∗N ⊗ TN) as follows:

γ̃C(X,Y ) = c11 ((pC)∗(Y ) ⊗ γC (X)) − c11 ((pC)∗(X) ⊗ γC (Y )) ,

∀X,Y ∈ TΓxC,

where
c11 : TN ⊗ T ∗N ⊗ T ∗N ⊗ TN → T ∗N ⊗ TN,
c11 (X1 ⊗ w1 ⊗ w2 ⊗X2) = w1(X1)w2 ⊗X2,
X1,X2 ∈ TxN, w1, w2 ∈ T ∗

xN.
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If γC is given by (25), then from the very definition of γ̃C the following
local expression is obtained:

γ̃C = (dAc
lh + (γclha − γcahl) dx

a) ∧ dxl ⊗ dxh ⊗
∂

∂xc
.

3.2.4 The second geometric condition on γ

Let alt12 : ⊗2 T ∗N ⊗ TN → ∧2T ∗N ⊗ TN be the operator alternating the
two covariant arguments.

The vector bundle (pC)∗
(

∧2T ∗N ⊗ TN
)

admits a canonical section

τN : C → ∧2T ∗N ⊗ TN,

τN (Γx) = T
Γx
, ∀Γx ∈ C,

where T
Γx

is the torsion of Γx. Locally,

τN =
∑

j<k

(Ai
jk −Ai

kj)dx
j ∧ dxk ⊗

∂

∂xi
.

From the previous formulas the next result follows:

Proposition 3.5. Let γ be an Ehresmann connection on M×NC, let ∇(1) =

∇E1 with E1 = TN , let R∇(1)
be its curvature form, and finally, let ∇(2) =

∇E2 with E2 = ∧2T ∗N ⊗ TN .

(CC) Assume the component γC of γ is defined on C. Then, the equations

(26) γ̃C = R∇(1)
,

(27) alt12 ◦ γC = ∇(2)τN ,

are locally equivalent to the following ones:

(28) γhstr − γhrts = Ah
rmAm

st −Ah
smAm

rt ,

γhrst − γhsrt = Ah
tm (Am

rs −Am
sr) + Am

ts

(

Ah
mr −Ah

rm

)

(29)

+ Am
tr

(

Ah
sm −Ah

ms

)

.

3.3 Solution to the problem (P)

Theorem 3.6. If the connection γ on M×NC satisfies the conditions (CM )
and (CC) introduced above, then the vector field Dγ satisfies the property
stated in Proposition 3.2 and, accordingly the covariant Hamiltonian with
respect to γ of every X(N)-invariant Lagrangian is also X(N)-invariant.



18 COVARIANT HAMILTONIANS

Proof. When γM satisfies the condition (CM ) the brackets (18), (19), and
(20) are respectively given by

(30)
[

Xh,Dγ
]

=
∂γijkl
∂xh

∂

∂Ai
jk,l

,

(31)
[

Xi
h,D

γ
]

=
(

Y i
h (γabcr) − δhaγ

i
bcr + δciγ

a
bhr + δbiγ

a
hcr + δri γ

a
bch

) ∂

∂Aa
bc,r

,

[

Xik
h ,Dγ

]

=

(

−
∂γdabc
∂Ah

ik

+ δci

(

δhdA
k
ab − δkbA

d
ah − δkaA

d
hb

)

−
∂γdabc
∂Ah

ki

+ δck

(

δhdA
i
ab − δibA

d
ah − δiaA

d
hb

)

)

∂

∂Ad
ab,c

.

In addition, if γC satisfies the condition (CC), then taking derivatives with
respect to xh in (28) and (29) we obtain

∂γiklj
∂xh

=
∂γijlk
∂xh

,
∂γijkl
∂xh

=
∂γikjl
∂xh

,

and renaming indices we deduce

∂γijjk
∂xh

=
∂γijkj
∂xh

=
∂γikjj
∂xh

(j < k),

∂γikkj
∂xh

=
∂γikjk
∂xh

=
∂γijkk
∂xh

(j < k),

∂γijkl
∂xh

=
∂γiklj
∂xh

=
∂γiljk
∂xh

=
∂γikjl
∂xh

=
∂γilkj
∂xh

=
∂γijlk
∂xh

(j < k < l).

From (30) we obtain

[

Xh,Dγ
]

=
∑

j<k<l

∂γijkl
∂xh

Xjkl
i + 1

2

∑

j<k

∂γijjk
∂xh

Xjjk
i

+ 1
2

∑

j<k

∂γikkj
∂xh

Xkkj
i + 1

6

∂γijjj
∂xh

Xjjj
i ,

and consequently the values of
[

Xh,Dγ
]

belong to the distribution DM×NC .

Moreover, as γC is assumed to be defined on C, we have

Y i
h (γabcr) =

(

δshA
i
jk − δikA

s
jh − δijA

s
hk

) ∂γabcr
∂As

jk

.

For the sake of simplicity, below we set

(

T i
h

)a

bcr
=Ai

jk

∂γabcr
∂Ah

jk

−As
jh

∂γabcr
∂As

ji

−As
hk

∂γabcr
∂As

ik

−δhaγ
i
bcr+δbiγ

a
hcr+δci γ

a
bhr+δri γ

a
bch.
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Taking derivatives with respect to As
jk, the equations (28) y (29) yield

∂γabcr
∂As

jk

−
∂γarcb
∂As

jk

= δjrδ
a
sA

k
bc − δjbδ

a
sA

k
rc + δjbδ

k
CA

a
rs − δjrδ

k
CA

a
bs,

∂γarbc
∂As

jk

−
∂γabrc
∂As

jk

=δjCδ
a
sA

k
rb−δas δ

j
CA

k
br−δas δ

k
bA

j
cr−δas δ

j
rA

k
cb+δas δ

k
rA

j
cb+δas δ

j
bA

k
cr

+ δjCδ
k
bA

a
sr−δjCδ

k
rA

a
sb+δjrδ

k
bA

a
cs−δjbδ

k
rA

a
cs+δjCδ

k
rA

a
bs−δjCδ

k
bA

a
rs.

From these expressions, the following symmetries of indices are obtained:
(

T i
h

)a

bbc
=
(

T i
h

)a

bcb
=
(

T i
h

)a

cbb
(b < c),

(

T i
h

)a

bcc
=
(

T i
h

)a

cbc
=
(

T i
h

)a

ccb
(b < c),

(

T i
h

)a

bcd
=
(

T i
h

)a

dbc
=
(

T i
h

)a

cdb
=
(

T i
h

)a

bdc
=
(

T i
h

)a

dcb
=
(

T i
h

)a

cbd
(b < c < d),

and from (31) we obtain
[

Xi
h,D

γ
]

=
∑

b<c<d

(

T i
h

)a

bcd
Xbcd

a + 1
2

∑

b<c

(

T i
h

)a

bbc
Xbbc

a

+ 1
2

∑

b<c

(

T i
h

)a

ccb
Xccb

a + 1
6

(

T i
h

)a

bbb
Xbbb

a .

Hence
[

Xi
h,D

γ
]

also takes values into the distribution DM×NC .

The proof for the third bracket is similar to the previous two cases but
longer. Letting

(

T ik
h

)a

rbc
= −

∂γarbc
∂Ah

ik

−
∂γarbc
∂Ah

ki

+ δci

(

δhaA
k
rb − δkbA

a
rh − δkrA

a
hb

)

+ δck

(

δhaA
i
rb − δibA

a
rh − δirA

a
hb

)

,

the following symmetries are obtained:
(

T ik
h

)a

bbc
=
(

T ik
h

)a

bcb
=
(

T ik
h

)a

cbb
(b < c),

(

T ik
h

)a

bcc
=
(

T ik
h

)a

cbc
=
(

T ik
h

)a

ccb
(b < c),

(

T ik
h

)a

bcd
=
(

T ik
h

)a

dbc
=
(

T ik
h

)a

cdb
=
(

T ik
h

)a

bdc
=
(

T ik
h

)a

dcb
=
(

T ik
h

)a

cbd
(b < c < d).

Hence
[

Xik
h ,Dγ

]

=
∑

b<c<d

(

T ik
h

)a

bcd
Xbcd

a + 1
2

∑

b<c

(

T ik
h

)a

bbc
Xbbc

a

+ 1
2

∑

b<c

(

T ik
h

)a

ccb
Xccb

a + 1
6

(

T ik
h

)a

bbb
Xbbb

a ,

and the proof is complete. �
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Theorem 3.7. The Ehresmann connections on C satisfying the equations
(26) and (27) are the sections of an affine bundle over C modelled over
the vector bundle (pC)∗

(

S3T ∗N ⊗ TN
)

. Consequently, there always exist
Ehresmann connections on M ×N C fulfilling the conditions (CM ) and (CC)
introduced above.

Proof. If two Ehresmann connections γC , γ
′
C satisfy the equations (26) and

(27), then the difference tensor field t = γ′C − γC , which is a section of the
bundle (pC)∗

(

⊗3T ∗N ⊗ TN
)

, satisfies the following symmetries:

t(X1,X2,X3) = t(X3,X2,X1),(32)

t(X1,X2,X3) = t(X2,X1,X3),(33)

according to (28), (29), respectively, for all X1,X2,X3 ∈ TxN , Γx ∈ Cx(N).
Hence

t(X1,X3,X2)
(32)
= t(X2,X3,X1)

(33)
= t(X3,X2,X1)

(32)
= t(X1,X2,X3),

thus proving that t is totally symmetric. The second part of the statement
thus follows from the fact that an affine bundle always admits global sections,
e.g., see [20, I, Theorem 5.7]. �

Remark 3.8. The results obtained above also hold if the bundle of linear
connections is replaced by the subbundle Csym = Csym(N) ⊂ C of sym-
metric linear connections; the only difference to be observed between both
bundles is that in the symmetric cases the equation (27), or equivalently
(29), holds automatically.

4 The second-order formalism

In this section we consider the problem of invariance of covariant Hamilto-
nians for second-order Lagrangians defined on the bundle of metrics, i.e., for
functions L ∈ C∞(J2M), where M denotes, as throughout this paper, the
bundle of pseudo-Riemannian metrics of a given signature (n+, n−) on N .

4.1 Second-order Ehresmann connections

A second-order Ehresmann connection on p : E → N is a differential 1-
form γ2 on J1E taking values in the vertical sub-bundle V (p1) such that
γ2(X) = X for every X ∈ V (p1). (We refer the reader to [29] for the basics
on Ehresmann connections of arbitrary order.) Once a connection γ2 is
given, we have a decomposition of vector bundles T (J1E) = V (p1)⊕ ker γ2,
where ker γ2 is called the horizontal sub-bundle determined by γ2. In the
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coordinate system on J1E induced from a fibred coordinate system (xj, yα)
for p, a connection form can be written as

(34) γ2 = (dyα+γαj dx
j)⊗

∂

∂yα
+(dyαi +γαijdx

j)⊗
∂

∂yαi
, γαj , γ

α
ij ∈ C∞(J1E).

As in the first-order case, the action of the group Aut(p) on the space of
second-order connections is defined by the formula

Φ · γ2 =
(

Φ(1)
)

∗
◦ γ2 ◦

(

Φ(1)
)−1

∗
, ∀Φ ∈ Aut(p).

As Φ(1) : J1M → J1M is a morphism of fibred manifolds over N , (Φ(1))∗
transforms the vertical subbundle V (p1) into itself; hence the previous defi-
nition makes sense.

4.2 A remarkable isomorphism

Theorem 4.1. Let Γg be the Levi-Civita connection of a pseudo-Riemannian
metric g on N . The mapping ζN : J1M → M ×N Csym, ζN (j1xg) = (gx,Γ

g
x)

is a diffeomorphism. There is a natural one-to-one correspondence between
first-order Ehresmann connections on the bundle p : M ×N Csym → N and
second-order Ehresmann connections on the bundle pM : M → N , which is
explicitly given by,

(35) γ2 = ((ζvN )∗)
−1 ◦ γ ◦ (ζN )∗ ,

where γ : T (M ×N Csym) → V (p) is a first-order Ehresmann connection,

(ζN )∗ : T (J1M) → T (M ×N Csym)

is the Jacobian mapping induced by ζN , and (ζvN )∗ : V (p1M ) → V (p) is its
restriction to the vertical bundles.

Proof. As a computation shows, the equations of ζN in the coordinate sys-
tems introduced in the section 2.1.2, are as follows:

xi ◦ ζN = xi,

yij ◦ ζN = yij,

Ah
ij ◦ ζN = 1

2y
hk(yik,j + yjk,i − yij,k), i ≤ j,(36)

where (yij)ni,j=1 is the inverse mapping of the matrix (yij)
n
i,j=1 and the func-

tions yij are defined in (4). Hence

xi ◦ ζ−1
N = xi,

yij ◦ ζ
−1
N = yij,

yij,k ◦ ζ
−1
N = yhiA

h
jk + yhjA

h
ik, i ≤ j.(37)
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As the diffeomorphism ζN induces the identity on the ground manifold N ,
it follows that the definition of γ2 in (35) makes sense and the following
formulas are obtained:

γ2
(

∂

∂xr

)

=
∑

a≤b

(γabr ◦ ζN )
∂

∂yab
+
∑

i≤j

γijkr
∂

∂yij,k
,

γijkr = 1
2

∑

a≤b

δahδbi+δaiδbh
1+δhi

(γabr ◦ ζN ) yhl(yjl,k + ykl,j − yjk,l)

+ 1
2

∑

a≤b

δahδbj+δajδbh
1+δhj

(γabr ◦ ζN ) yhl(yil,k + ykl,i − yik,l)

+
∑

j≤a

δak
1+δjk

(

γhjar ◦ ζN

)

yhi +
∑

a≤j

δak
1+δjk

(

γhajr ◦ ζN

)

yhi

+
∑

i≤a

δak
1+δik

(

γhiar ◦ ζN

)

yhj +
∑

a≤i

δak
1+δik

(

γhair ◦ ζN

)

yhj,

where

γ =
∑

i≤j

(

dyij + γijkdx
k
)

⊗
∂

∂yij
+
∑

j≤k

(

dAi
jk + γijkldx

l
)

⊗
∂

∂Ai
jk

,

or equivalently,

γ = 1
2−δij

(

dyij + γijkdx
k
)

⊗
∂

∂yij
+ 1

2−δjk

(

dAi
jk + γijkldx

l
)

⊗
∂

∂Ai
jk

,

assuming γhir = γihr for h > i, and γhjkr = γhkjr for j > k. Taking the

symmetry Ai
jk = Ai

kj into account, we obtain

γijkr = 1
2 (γhir ◦ ζN ) yhl(yjl,k + ykl,j − yjk,l)

+ 1
2 (γhjr ◦ ζN ) yhl(yil,k + ykl,i − yik,l)

+
(

γhjkr ◦ ζN

)

yhi +
(

γhikr ◦ ζN

)

yhj.

Hence

(38) γijkr ◦ ζ
−1
N = γhirA

h
jk + γhjrA

h
ik + γhjkryhi + γhikryhj, i ≤ j.

Permuting the indices i, j, k cyclically on the previous equation, we have

(39) γsijr = −γhkrA
h
ijy

ks − 1
2

(

γijkr ◦ ζ
−1
N − γjkir ◦ ζ

−1
N − γkijr ◦ ζ

−1
N

)

yks,

thus proving that the mapping γ 7→ γ2 defined in the statement, is bijective.
�
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4.3 Covariant Hamiltonians for second-order Lagrangians

The Legendre form of a second-order Lagrangian density Λ = Lvn on the
bundle p : E → N is the V ∗(p1)-valued p3-horizontal (n − 1)-form ωΛ on
J3E locally given by (e.g., see [17], [26], [35]),

ωΛ = i∂/∂xivn ⊗
(

Li0
α dy

α + Lij
α dy

α
j

)

,

where

Lij
α = 1

2−δij

∂L

∂yαij
,(40)

Li
α =

∂L

∂yαi
−
∑

j

1
2−δij

Dj

(

∂L

∂yαij

)

,(41)

and

Dj =
∂

∂xj
+

∞
∑

I∈Nn,|I|=0

yαI+(j)

∂

∂yαI

denotes the total derivative with respect to the variable xj .

The Poincaré-Cartan form attached to Λ is then defined to be the ordinary
n-form on J3E given by, ΘΛ = (p32)

∗θ2 ∧ ωΛ + Λ, where θ2 is the second-
order structure form (cf. [33, (0.36)]) and the exterior product of (p32)∗θ2

and the Legendre form, is taken with respect to the pairing induced by
duality, V (p1) ×J1E V ∗(p1) → R. The most outstanding difference with the
first-order case is that the Legendre and Poincaré-Cartan forms associated
with a second-order Lagrangian density are generally defined on J3E, thus
increasing by one the order of the density.

Similarly to the first-order case (see [11], [24]), given a second-order La-
grangian density Λ on p : E → N and a second-order connection γ2 on
p : E → N , by subtracting (p32)∗θ2 from (p31)

∗γ2 we obtain a p3-horizontal
form, and we can define the corresponding covariant Hamiltonian to be the

Lagrangian density Λγ2
of third order,

(42) Λγ2
=
(

(p31)
∗γ2 − (p32)

∗θ2
)

∧ ωΛ − Λ.

Expanding on the right-hand side of the previous equation, we obtain a de-
composition of ΘΛ that generalizes the classical formula for the Hamiltonian

in Mechanics; namely, ΘΛ = (p31)
∗γ2 ∧ ωΛ − Λγ2

. With the same notations
as in the formulas (34), (40), (41) the following formula is deduced:

(43) Lγ2
= (γαi + yαi )Li0

α + (γαhi + yαhi)L
ih
α − L.

Because of the equation (41), ΘΛ and Lγ2
are generally defined on J3E.
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4.4 Invariant covariant Hamiltonians on J2M

Lemma 4.2. If γ is a first-order Ehresmann connection on M ×N Csym

satisfying the conditions (CM ), then the following equation holds for the
second-order Ehresmann connection γ2 on M given in the formula (35):

γabr ◦ ζN = −yab,r.

Proof. Actually, from the formulas (23) and (36) we obtain

γabr ◦ ζN =− (ymb (Am
ra ◦ ζN )+yma (Am

rb ◦ ζN ))

=−1
2

{

ymby
mk(yrk,a+yak,r−yra,k)+ymay

mk(yrk,b+ybk,r−yrb,k)
}

=−yab,r.

�

Lemma 4.3. If a first-order connection γ on M ×N Csym satisfies the con-
dition (CC) introduced above, then the following formulas for its components
hold:

(44) γhrts − γhrst = Ah
smAm

rt −Ah
tmAm

rs.

Proof. As the bundle under consideration is that of symmetric connections,
the following symmetry holds: γhabc = γhbac, and we have

γhrts = γhstr −
(

Ah
rmAm

st −Ah
smAm

rt

)

[by virtue of (28)]
= γhtsr −

(

Ah
rmAm

st −Ah
smAm

rt

)

=
(

γhrst + Ah
rmAm

st −Ah
tmAm

rs

)

[by virtue of (28)]
−
(

Ah
rmAm

st −Ah
smAm

rt

)

= γhrst +
(

Ah
smAm

rt −Ah
tmAm

rs

)

�

Proposition 4.4. Let

ζ2N = ζ
(1)
N

∣

∣

∣

J2M
: J2M → J1(M ×N Csym)

be the restriction to the closed submanifold J2M ⊂ J1(J1M) of the pro-

longation ζ
(1)
N : J1(J1M) → J1(M ×N Csym) of the mapping ζN defined

in Theorem 4.1. For every (j1xg, j
1
xΓ) ∈ J1(M ×N Csym) there exists a

unique j2xg
′ ∈ J2

xM such that, j1xg
′ = j1xg and j1xΓg′ = j1xΓ and the map-

ping κ : J1(M ×N Csym) → J2M defined by κ(j1xg, j
1
xΓ) = j2xg

′ is a DiffN -
equivariant rectract of ζ2N .
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Proof. From the formulas (36) and (37) we obtain

∂g′ij
∂xk

= g′hi

(

Γg′
)h

jk
+ g′hj

(

Γg′
)h

ik
,

(

Γg′
)h

ij
= 1

2g
′hk

(

∂g′ik
∂xj

+
∂g′jk
∂xi

−
∂g′ij
∂xk

)

for every non-singular metric g′ on N . Hence the second partial derivatives
of g′ij are completely determined, namely

∂2g′ij
∂xk∂xl

=
∂ghi
∂xl

Γh
jk + ghi

∂Γh
jk

∂xl
+

∂ghj
∂xl

Γh
ik + ghj

∂Γh
ik

∂xl
.

Moreover, the Levi-Civita connection of a metric depends functorially on
the metric, i.e., φ · Γg = Γφ·g for every φ ∈ DiffN . Hence, by transforming
the equations j1xg

′ = j1xg and j1xΓg′ = j1xΓg by φ we can conclude. �

Theorem 4.5. If a first-order Ehresmann connection γ on M ×N Csym

satisfies the conditions (CM ) and (CC) introduced above, then the covariant

Hamiltonian Λγ2
attached to every DiffN -invariant second-order Lagrangian

density Λ on M with respect to the second-order Ehresmann connection γ2

on M defined in the formula (35), is defined on J2M and it is also DiffN -
invariant.

Proof. Given a DiffN -invariant second-order Lagrangian density Λ = Lv
on M , let Λ′ = L′v be the first-order Lagrangian density on M ×N Csym

given by Λ′ = κ
∗Λ, which is also DiffN -invariant as κ is a DiffN -equivariant

mapping according to Proposition 4.4. Moreover, as κ is a retract of ζ2N ,

we have
(

ζ2N
)∗

Λ′ =
(

ζ2N
)∗

κ
∗Λ = (κ ◦ ζ2N )∗Λ = Λ, i.e., Λ =

(

ζ2N
)∗

Λ′. This

formula is equivalent to saying L = L′ ◦ ζ2N , as the n-form v is DiffN -
invariant, and it is even equivalent to L = L′ ◦ ζ2N because ζ2N induces the
identity on N .

We claim Lγ2
= (L′)γ◦ζ2N . This formula will end the proof as the mapping

ζ2N is DiffN -equivariant and (L′)γ is DiffN -invariant by virtue of Theorem
3.6.

To start with, we observe that the formula (40) for Λ can be written, in
the present case, as follows:

Labij = 1
2−δij

∂L

∂yab,ij
,
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or equivalently, letting Labij = ρ−1Labij ,

(45) Labij = 1
2−δij

∂L

∂yab,ij
.

Taking the formula in Lemma 4.2 into account, the formula (43) for Λ reads

as Lγ2
=
∑

a≤b(γabij + yab,ij)L
abij − L, or even

Lγ2
=
∑

a≤b

(γabij + yab,ij)L
abij − L,

where Lγ2
= ρ−1Lγ2

. Hence Lγ2
is defined over J2M . As yab,ij = yab,ji, we

obtain

Lγ2
=
∑

a≤b

∑

i≤j

(

1
2 (γabij + γabji) + yab,ij

) ∂
(

L′ ◦ ζ2N
)

∂yab,ij
− L′ ◦ ζ2N

=
∑

a≤b

∑

i≤j

∑

k≤l

(

1
2 (γabij + γabji) + yab,ij

)

(

∂L′

∂Ah
kl,q

◦ ζ2N

)

∂(Ah
kl,q ◦ ζ

2
N )

∂yab,ij
−L′ ◦ζ2N

=
∑

k≤l

1
4y

hm (γkmql + γkmlq + γlmqk + γlmkq − γklqm − γklmq)

(

∂L′

∂Ah
kl,q

◦ ζ2N

)

+
∑

k≤l

1
2y

hm (ykm,ql + ylm,qk − ykl,qm)

(

∂L′

∂Ah
kl,q

◦ ζ2N

)

− L′ ◦ ζ2N .

Moreover, we have

(

L′
)γ

=
∑

a≤b

(γabc + yab,c)
∂L′

∂yab,c
+
∑

a≤b

(

γiabl + Ai
ab,l

) ∂L′

∂Ai
ab,l

− L′.

Hence

(

L′
)γ

◦ ζ2N =
∑

k≤l

(

γhklq ◦ ζN + Ah
kl,q ◦ ζN

)

(

∂L′

∂Ah
kl,q

◦ ζ2N

)

− L′ ◦ ζ2N

=
∑

k≤l

{

−1
2 (γklrq − γlrkq − γrklq) y

rh

+1
2 (ykr,lq + ylr,kq − ykl,rq) y

hr
}

(

∂L′

∂Ah
kl,q

◦ ζ2N

)

− L′ ◦ ζ2N .

Consequently, the proof reduces to state that the following equation
1
4 (γkrql + γkrlq + γlrqk + γlrkq − γklqr − γklrq) = −1

2 (γklrq − γlrkq − γrklq)

holds true, or equivalently,

(46) 0 = (γijkr − γijrk) + (γirjk − γirkj) + (γrjki − γrjik) .
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According to the formulas (38) and (23) we obtain

γijkr ◦ ζ
−1
N =

(

γhjkr −Ah
raA

a
jk

)

yhi +
(

γhikr −Ah
raA

a
ik

)

yhj

−
(

Ah
rjA

a
ik + Ah

riA
a
jk

)

yah.

The third term on the right-hand side of this equation is symmetric in the
indices k and r, as Aa

bc = Aa
cb. Hence

(γijkr − γijrk) ◦ ζ−1
N =

(

γhjkr − γhjrk −Ah
raA

a
jk + Ah

kaA
a
jr

)

yhi

+
(

γhikr − γhirk −Ah
raA

a
ik + Ah

kaA
a
ir

)

yhj.

By composing the right-hand side of the equation (46) and ζ−1
N , and tak-

ing the previous formula and the formulas (28) and (44) into account, we
conclude that this expression vanishes indeed. �

5 Palatini and Einstein-Hilbert Lagrangians

Let us compute the covariant Hamiltonian density attached to the Palatini
Lagrangian. Following the notations in [20], the Ricci tensor field attached
to the symmetric connection Γ is given by SΓ(X,Y ) = tr(Z 7→ RΓ(Z,X)Y ),
where RΓ denotes the curvature tensor field of the covariant derivative ∇Γ

associated to Γ on the tangent bundle; hence SΓ = (RΓ)jldx
l ⊗ dxj , where

(RΓ)jl = (RΓ)kjkl,

(RΓ)ijkl = ∂Γi
jl/∂x

k − ∂Γi
jk/∂x

l + Γm
jlΓ

i
km − Γm

jkΓi
lm.

The Lagrangian is the function on J1(M ×N Csym) thus given by,

LP (j1xg, j
1
xΓ) = gij(x)(RΓ)ij(x)

and local expression

LP = yij(Ak
ij,k −Ak

ik,j + Am
ijA

k
km −Am

ikA
k
jm).

As a computation shows, for every first-order connection γ on M ×N Csym

satisfying (44) and taking the formula (2) into account, we obtain Lγ
P = 0.

This result is essentially due to the fact that the P-C form of the P density
ΛP = LPv = LP vn projects onto M ×N Csym. In fact, the following general
characterization holds:

Proposition 5.1. Let p : E → N be an arbitrary fibred manifold and let γ be
a first-order Ehresmann connection on E. The equation Lγ = 0 holds true
for a Lagrangian L ∈ C∞(J1E) if and only if, i) the Poincaré-Cartan form

of the density Λ = Lvn projects onto J0E and, ii) L =
〈

(p10)
∗γ − θ, dL|V (p10)

〉

.
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Proof. The equation Lγ = 0 is equivalent to the equation DγL = L, where
Dγ is the p10-vertical vector field defined in the formula (17), and the general
solution to the latter is L = f(xi, yα, γαi + yαi ), f(xi, yα, yαi ) being a homo-
geneous smooth function of degree one in the variables (yαi ), 1 ≤ α ≤ m,
1 ≤ i ≤ n, according to Euler’s homogeneous function theorem. As f is de-
fined for all values of the variables (yαi ), 1 ≤ α ≤ m, 1 ≤ i ≤ n, we conclude
that the functions Li

α = ∂L/∂yαi must be defined on E. Hence L is written
as L = Li

α(xj , yβ)yαi + L0(x
j , yβ), but this is exactly the condition for the

P-C form of Λ to be projectable onto J0E = E, as follows from the local
expression of this form, namely,

ΘΛ =
∂L

∂yαi
θα ∧ i∂/∂xivn + Lvn

=
∂L

∂yαi
dyα ∧ i∂/∂xivn +

(

L− yαi
∂L

∂yαi

)

vn.

Moreover, by imposing the condition DγL = L we obtain L0 = Li
αγ

α
i , or

in other words L = (γαi + yαi )∂L/∂yαi , which is equivalent to the equation
ii) in the statement. �

The corresponding result for the second-order formalism is similar but the
computations are more cumbersome. Let us compute the covariant Hamil-
tonian density attached to the Einstein-Hilbert Lagrangian. As a matter
of notation, we set Sg(X,Y ) = SΓg

(X,Y ) for the metric g, Γg being its
Levi-Civita connection, and similarly, (Rg)ijkl = (RΓg

)ijkl.

The E-H Lagrangian is thus given by LEH ◦ j2g = (yij ◦g)(Rg)hihj. As the
Levi-Civita connection Γg depends functorially on g, LEH is readily seen
to be DiffN -invariant; it is in addition linear in the second-order variables
yij,kl. By using the third formula in (36) the following local expression for
LEH is obtained:

LEH = 1
2y

ijyhd (ydj,hi − yij,dh − ydh,ij + yhi,dj) + L′
EH ,

L′
EH = 1

2y
ij
{

yhmymr,jy
rd (yid,h + yhd,i − yih,d)

− yhmymr,hy
rd (yid,j + yjd,i − yij,d)

+ 1
2y

hrymd (yid,j + yjd,i − yij,d) (yhr,m + ymr,h − yhm,r)

−1
2y

hrymd (yid,h + yhd,i − yih,d) (yjr,m + ymr,j − yjm,r)
}

.
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According to (45), for every first-order connection form γ on M ×N Csym

satisfying the conditions (CM ) and (CC) above, we have

Lγ2

EH =
∑

a≤b

1
2−δij

(γabij + yab,ij)
∂LEH

∂yab,ij
− LEH ,

and as a computation shows,

Lγ2

EH = 1
2y

ij (γidjh + γjdih − γijdh − γidhj − γhdij + γihdj) y
hd

+ 1
2y

ij
{

yhmymr,hy
rd (yid,j + yjd,i − yij,d)

− yhmymr,jy
rd (yid,h + yhd,i − yih,d)

− 1
2y

hrymd (yid,j + yjd,i − yij,d) (yhr,m + ymr,h − yhm,r)

+1
2y

hrymd (yid,h + yhd,i − yih,d) (yjr,m + ymr,j − yjm,r)
}

= 0,

where the formulas (39), (44), (36), and Lemma 4.3 have been used. In this
case, the P-C form of the E-H density ΛEH = LEHv = LEHvn,

ΘΛEH
=
∑

k≤l

(

Li,kl
EHdykl + Lij,kl

EH dykl,j

)

∧ i∂/∂xivn + Hvn,(47)

H = L′
EH −

∑

k≤l
Li,kl
EHykl,i,

Li,kl
EH =

∂L′
EH

∂ykl,i
− 1

2−δij
yab,j

∂2LEH

∂yab∂ykl,ij
,

Lij,kl
EH = 1

2−δij

∂LEH

∂ykl,ij
,

(cf. (40), (41)) is not only projectable onto J2M but also on J1M (e.g.,
see [13]), although there is no first-order Lagrangian on J1M admitting
(47) as its P-C form. This fact is strongly related to a classical result by
Hermann Weyl ([39, Appendix II], also see [22], [18]) according to which
the only DiffN -invariant Lagrangians on J2M depending linearly on the
second-order coordinates yab,ij are of the form λLEH + µ, for scalars λ, µ.
This also explains why a true first-order Hamiltonian formalism exists in the
Einstein-Cartan gravitation theory, e.g., see [37], [38]. In fact, if

Li
EH = 1

2−δij

∂LEH

∂ykl,ij
ykl,j

(

hence Lij,kl
EH =

∂Li
EH

∂ykl,j

)

and the momentum functions are defined as follows:

pkl,i = Li,kl
EH −

∂Li
EH

∂ykl
,

then
dΘΛEH

= dpkl,i ∧ dykl ∧ i∂/∂xivn + dH ∧ vn,
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and from the Hamilton-Cartan equation (e.g., see [13, (1)]) we conclude
that a metric g is an extremal for ΛEH if and only if,

0 =
∂(pab,i ◦ j

1g)

∂xi
−

∂H

∂yab
◦ j1g,

0 =
∂(yab ◦ g)

∂xi
+

∂H

∂yab,i
◦ j1g.

On the other hand, it is no longer true that the covariant Hamiltonians of
the non-linear Lagrangians of the form f(LEH), f ′′ 6= 0, considered in some
cosmological models (e.g., see [1], [6], [9], [12], [19], [21], [31]) and those
in higher dimensions (e.g., see [15], [36]) vanish. In fact, as a computation

shows, one has f(LEH)γ
2

= f ′(LEH)LEH − f(LEH), ∀f ∈ C∞(R).

References

[1] A. Borowiec, M. Ferraris, Marco, M. Francaviglia, I. Volovich, Almost-
complex and almost-product Einstein manifolds from a variational prin-
ciple, J. Math. Phys. 40 (1999), no. 7, 3446–3464.

[2] U. Bruzzo, The global Utiyama theorem in Einstein-Cartan theory, J.
Math. Phys. 28 (1987), no. 9, 2074–2077.

[3] H. Burton, R. B. Mann, Palatini variational principle for an extended
Einstein-Hilbert action, Phys. Rev. D (3) 57 (1998), no. 8, 4754–4759.

[4] —, Palatini variational principle for N -dimensional dilaton gravity,
Classical Quantum Gravity 15 (1998), no. 5, 1375–1385.
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Phys. Théor. 61 (1994), no. 1, 17–62.



32 COVARIANT HAMILTONIANS
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