L=
View metadata, citation and similar papers at_core.ac.uk brought to you by .i CORE

provided by Servicio de Coordinacién de Bibliotecas de la Universidad Politécnica de Madrid

Programmed design of ship forms

A. Rodriguez, L. Fernandez-Jambrina*

ABSTRACT

This paper describes a new category of CAD applications devoted to the definition and parameterization
of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is
a product model with a variety of types large enough to face the modeling of any type of ship. The second
one is a design language dedicated to create the product model. The main purpose of the language is to
publish the modeling algorithms of the application in the designer knowledge domain to let the designer
create parametric model scripts. The programmed design is an evolution of the parametric design but it
is not just parametric design. It is a tool to create parametric design tools. It provides a methodology to
extract the design knowledge by abstracting a design experience in order to store and reuse it.

Programmed design is related with the organizational and architectural aspects of the CAD
applications but not with the development of modeling algorithms. It is built on top and relies on existing
algorithms provided by a comprehensive product model. Programmed design can be useful to develop
new applications, to support the evolution of existing applications or even to integrate different types of
application in a single one.

A three-level software architecture is proposed to make the implementation of the programmed
design easier. These levels are the conceptual level based on the design language, the mathematical level
based on the geometric formulation of the product model and the visual level based on the polyhedral
representation of the model as required by the graphic card.

Finally, some scenarios of the use of programmed design are discussed. For instance, the development
of specialized parametric hull form generators for a ship type or a family of ships or the creation of
palettes of hull form components to be used as parametric design patterns. Also two new processes of
reverse engineering which can considerably improve the application have been detected: the creation
of the mathematical level from the visual level and the creation of the conceptual level from the
mathematical level.

1. Introduction parameterization methodologies. The result of this review is used
to establish the foundations of the programmed design.

The evolution of CAD applications is due to several causes. The
improvements introduced by CAD developers in their products 2. State of the art
are inspired by users’ feedback and by technical advances in most
cases. Technical advances may be available to any development Since the initial days of the IT era, applications devoted to the
team willing to make the most of them. On the other hand, the design of ship hull forms have been devised since they have been
most effective way to improve CAD applications is to take into considered a key milestone within the ship design lifecycle. Most
account advanced users’ suggestions in the development process.A technical activities of the design process depend on this source of
CAD application can be enhanced by designers if they are provided 1nformaF10n, the most immediate of whlch.are naval archltgcture
with a tool to incorporate their knowledge to the application. The CalCUlE.lt!OHS. The outcome of these apphcatlops can be considered
programmed design is a proposal to achieve this goal. the origin of the ship product model as conceived nowadays.

The following paragraphs are devoted to review the state of the During .thls. long period of existence, a myriad of different hull
. . C . form applications have been developed, many of them before
art of ship hull form design applications in order to extract the

o the inrush of general purpose CAD systems. A nice review can
best features of the existing product models and the most relevant be found in [1]. With the advent of the CAD concept in other

areas such as mechanical and architectural design, some of these
hull form design applications were reformulated and others were
developed under this paradigm, consolidating definitively the
modern concept of ship product models. Nowadays there are many

https://core.ac.uk/display/148663760?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

different applications devoted to design of ship forms, and all of
them are a very good tool for some specific scenarios within the
design lifecycle.

For the purposes of the programmed design, the most relevant
design applications are those developed under the principles
of parametric design, since programmed design is an evolution
of parametric design. Parameterization is a key feature which
provides several wonderful capabilities for a ship model such
as the possibility of performing multidisciplinary optimization
and design reuse (see Refs. [2-5]). Programmed design can be
conceived as a tool to create parametric design tools.

General purpose CAD systems like CATIA [6] or SolidWorks [7]
are solid modelers using a parametric feature-based approach
to create models and assemblies. But solid modelers are not
especially suited to design ship forms. Surface modelers like
Rhinoceros are more adequate to perform this task. While Rhino
is not parametric in its conception, Grasshopper [8] enables the
creation of flexible parametric designs with Rhino. Grasshopper
is a graphical algorithm editor tightly integrated with Rhino’s 3-D
modeling tools.

However, in the context of ship forms design applications the
parameterization methodologies which have emerged are quite
different to those provided by general purpose CAD systems. There
are at least three different methodologies to create parametric ship
forms; global parameterization, geometric parameterization and
parameterization by transformations. The following paragraphs
are devoted toreviewing these methodologies of parameterization
and the underlying product models.

2.1. Global parameterization

The variety of applications oriented to design of ship forms is
surprisingly high, as has been already mentioned in the previous
paragraphs. One of the most original approaches is the method-
ology provided by hull form generators, which are applications
developed under the principles of parametric design. Refs, [9-11]
provide a nice introduction to ship form parametric design con-
cepts. The general approach to hull form generation requires book-
keeping on surface and volume domains. A solution to this problem
is presented in [12].

Two applications are the most representative of this type.
One is the FORAN hull form generator, based on a waterline
formulation and the other is the FRIENDSHIP modeler, based on
parametric design grounded on sections. To understand this type of
application, let us consider the FORAN hull form generation, since
it was the first application which implemented this concept.

The FORAN [13] hull form generator is based on a waterline
formulation defined by parameters containing very relevant ge-
ometric, hydrostatic and hydrodynamic features. The amount of
parameters available to define the waterline provides great flex-
ibility. The waterline formulation has been developed to contain
nice design characteristics if the parameters are maintained within
some specified ranges. Any parameter of the waterline has a de-
fault value which is very convenient when information is scarce.
One of the advantages of this approach is that the application con-
tains a great amount of heuristic design information available for
the designer.

To generate the hull surface, each of the parameters of the
waterline is controlled by a parametric draft function which
determines its vertical distribution. Then, the draft function
parameters combined with the waterline formulation provide the
degrees of freedom available for performing hull form variations.
Due to the nature of the parameters of the waterline formulation,
many of the draft functions are hydrostatic characteristics of the
designed hull form, and this allows the designer direct control of
these features.

In the case of the FRIENDSHIP modeler [14], a parametric
design section is generated by means of a suitable set of
longitudinal curves. The concept is very similar to the FORAN hull
form generator except for the arrangement of curves, which is
orthogonal to that of the FORAN lines. Longitudinal curves which
control the parametric distribution of design sections are also very
meaningful for the designer as it is for example the sectional area
curve, Then, the designer is able to specify hull form characteristics
within their semantic domain as in the FORAN system. See Ref,[15]
for more detailed information.

FORAN waterline formulation allows us to nicely fit and dis-
tribute the hydrostatic characteristics of the hull. The FRIENDSHIP
modeler can do something similar with longitudinal characteris-
tics (some of them are also hydrostatics characteristics) and nat-
urally supports Lackenby transformations [16]. A nice feature of
the FRIENDSHIP modeler is that it generates geometry (curves and
surfaces) based on the NURBS formulation. This makes easy its in-
tegration with any other CAD/CAE/CAM applications.

The parameters which define the control curves of the method
are meaningful data in the knowledge domain of the designer such
as main dimensions, hull and waterline coefficients, hydrostatics
characteristics, underwater volume, center of buoyancy, geometric
parameters, etc. With this method the designer can interact only
with its semantic domain during the design process without
taking care of the geometric details of the model. For this reason
this type of parameterization can be called holistic or global
parameterization.

These tools are very useful for initial design and are unbeatable
for preparing a contract design very quickly, as it is usually required
for these short design processes. On the other hand, they are not
flexible enough to fit any kind of hull form details, as it is required
for fitting and fairing for production.

2.2. Parameterization by transformations

The holistic or global parameterization provided by hull form
generatorsis a very powerful tool for the initial design stage and for
conventional hull types. But there are other parametric approaches
which are not as powerful but much more generic and its use can
be extended to other design stages and for any type of hull forms.
These other approaches are parameterization by transformations
and local or geometric parameterization.

Parameterization by transformation consists in adding
parametric features to an existing model (which could be paramet-
ric in origin but not necessarily) by means of a parametric trans-
formation which produces a new hull form. For this reason this
approach is also called parameterization “a posteriori” or partial
parameterization.

Parameterization by transformation is aligned with one of the
traditional methods of ship design, which consists in starting with
a ship which is similar to the one required by design and per-
forming affine transformations on it to reach the target dimen-
sions. When there are more than one ship, the method described in
Ref. [17] may be used to combine them.

The final step of parameterization by transformation is to apply
Lackenby transformations [18] to fit hydrostatic features and hull
coefficients. There are other types of transformations apart from
affine and Lackenby transformations, such as local transformations
which can be restricted to transform only some specific zones of
the hull, but the first ones are the most useful and extended. For
any world class application this functionality is a “must have” and
consequently parameterization by transformation can be found in
FORAN, NAPA, etc.

2.3. Geometric parameterization

Geometric parameterization is the most common methodol-
ogy provided by general purpose CAD systems. Any of the input

arguments used during the design session can be considered asa
parameter in order to produce variations o the design. The most
common input arguments used for modeling are geometric condi-
tions like dimensions and tangencies, providing the name to this
type of parameterization. This functiondity arises naturally in ap-
plications in which the whole design session is registered in a
script. Applications with auser interface condsting of text com-
mandstyped by the user can provide thistype of parameterization
without too much development effort. An example df this type of
parameterization can be found in the NAPA system.

Any scriptable product modd can be parameterized with this
methodology and consequently can be incorporated into the pro-
grammed design scope. The most common geometric product
models used in the design of ship forms ought to be incorporated
into the programmed design to implement geometric parameteri-
zation. Thefallowing paragraphs are devoted to describe the most
relevant of them.

2.3.1. Wire models

Ore o the most successful and traditional approaches for
developing a hull form design application is by means of awire
model. The wire modd is an indirect way of defining a surface,
which provides some advantages but dso some disadvantages.
Among the advantages, the most interesting is that the way of
working mimics the traditional method o fitting and fairing by
hand with batten and weights.

The main disadvantage of this model comes from the fact that
defining a surface with awire modd is an indirect way of doing
the work and the supplied information isincomplete. The surface
iswell defined just on the curves belonging to the wire mode and
has to be deduced on the holes between the defining curves. The
agorithm used to fill the gaps is critical and it iswhat makes the
difference between applications. For example, some systems, like
NAPA, use a sort o bi-cubic patch while others, like FASFAIRWAY,
use trangfinite interpolation [19].

As the fitting process can be performed with curves it is
very essy to carry out this work with a wire model. Snce the
fairing process should be based on the resulting surface, which
is indirectly and incompletely controlled with this method, this
process becomes cumbersome and requires experience, but it is
sraightforward and familiar for most designers.

A typica hull form which has undergone afitting and fairing
process for production with this method usualy has many curves
incorporated to control the resulting surface. A large number of
curves in awire modd generates an even larger number o filling
patches between gaps. The wire model application is capable of
coping with this fact, but for other applications which need to
import the resulting surface modd it is usualy a nightmare to deal
with this fragmented set of smal patches.

2.3.2. Surface models

The B-SJindNURBS formulation is one the most common
product modd basis found among hull form design applications.
This formulation provides not only the product modd, but aso
a modding tool which is very easy to use and requires little
development effort [20]. The starting point of adesign processwith
this type o applications is usualy a ample surface, for example
a rectangular plane plate or a cylinder. The dimensions and the
number of control points of the initial patch are predefined by
the user. From this starting point, the user can modd the hull by
moving and inserting control points (entire rows or columns) in
the patch.

With this methodology the fairing process consists in getting
anet of control points as uniformly and regularly distributed as
possible. Asin the NURBS formulation the derivatives of the surface
are vectors which can be extracted from the net of control points,

Fig. 1. Ship forms defined with FORAN FSURF.

getting a uniform distribution of these points provides a smooth
variation of the derivatives and consequently the same could
be sad about the curvatures. A more advanced approach to the
generation o far free-form surfaces can befound in[21]. The main
problem that the designer finds with this type of application is
the destructive interference between fitting and fairing processes.
On moving the control points for the fitting process, the fairing is
destroyed and the same happens the other way round. When the
degrees o freedom are insufficient, additional rows or columns
o control points should be added to increase the modding
capabilities. But increasing the amount of control points on the
aurface amplifies the destructive interference of both processes,
meaking difficult convergence to an acceptable solution.

Anyway, when the fitting requirements are not too strict or
the hull forms are not very involved with constructive details, this
method is very feesble and has many adepts. Examples of thistype
o application are MAXSURF [22] and FASTHIP [23].

There is another type of hull form design application based
on the NURBS formulation but with a very different modeling
strategy. The advantages of a wire modd for fitting tasks have
aready been pointed out. Additionaly, the fairing process isbetter
accomplished with a surface modd [24]. The combination of
both strategies can be implemented by means of sophisticated
agorithms providing different constructive methods for cregtion,
fitting and fairing of patches [25]. Algorithms for fitting curvesto
points (interpolation, approximation, etc.), construction of surface
patches from curves (interpolation, approximation, skinning, tc.),
automatic fairing o curves and patches, manud fitting and
faring of patches usng curves as auxiliary tools, management
o trimmed surfaces and management of continuity (in position
and tangency) between adjacent patches are among the kind of
agorithms required by this methodology. An example of thistype
o application is the FORAN FSURF module based on the NURBS
formulation, shown in FHg. 1.

3. Programmed design

3.1. Concept

As it has been stated before, the programmed design god
is to provide a CAD environment in which advanced users
may incorporate their knowledge to the CAD application by
themselves. Consequently, the programmed design functiondity
is a component to be built on top of an existing CAD application.
The CAD application has to provide the algorithms used to creste
the product model elements. On the other hand, the programmed
design incorporates a design language to alow the advanced user
the cregtion of modding programs with those agorithms.

In order to implement the programmed design environment a
comprehensive product mode is required to face the modeling of
any type of ship. This product moded will have to integrate most
o the different modeling and parameterization methodologies
which have been found in the review o the state of the art. To

Fig. 22 Surface modd for containing different forms external hull, decks,
bulkheads, etc. Some zones of the external hull form have been removed to show
the inner forms.

facilitate the integration of very different components, the product
model needs a structure specificdly designed for this purpose.
Additiondly, the design language provides out of the box the
geometric parameterization while other parametric approaches
have to be implemented by the product modd algorithms.

The following paragraphs are devoted to develop the product
model structure that is required by the programmed design envi-
ronment and the design language which is adequate to "program"
such aproduct model.

3.2. Product model

In the context of this paper, the term product modd refers
to a computational representation of the ship, which is defined
and exploited during the design process in order to support
adl technica activities. The product modd should provide an
unambiguous representation of the vessdl, preferably based on
neutral formats, in order to describe the ship as a product.

This representation contains information of geometric nature
and other non-geometric data such as topology, parameters and
technologica attributes, but the most important information
contained in the product mode isthe geometric representation of
the ship.

Product modd topology is nicdy explained in Re. [26]
whereas this paper focuses on geometric representation. This
representation is defined as a collection of types of entities that
can be used to build the modd and these are usually arranged in a
hierarchica tree. This organization of the mode isamed to make
the design process easier.

The product modd required for the process of ship form design
is a collection of independent surfaces which can be connected
by topological relationships (see Hg. 2). These surfaces are hull(s),
decks, bulkheads, superstructures, appendages, etc. They represent
the firg level of the hierarchica structure of the product model.
Each of these forms may have agreat complexity depending onthe
sort of ship. In conventional shipsthe most complex surface isthe
hull but modern ships require the same modeling capabilities more
and more for any of their forms.

In order to manage the complexity of the surfaces, each of these
forms can be divided into zones. The advantage o this subdivision
is the possibility of applying a different modeling methodology
to each o the zones in which the form has been split. Hence,
the product modd has to provide a different type of zone for
each modeling methodology supported by the application and a
subdivison method to split the form into zones, if more than
one zone isrequired to modd the form. Consdering the different
modeling methodologies found in the state of the art revision, it

Fig. 3. Typicd U-V arrangement of afore body wire model.

is convenient to have three different types of zones: planar zones,
constructive zones and generic zones.

The planar zones are required to make the definition of flat
aurfaces independent from the definition of curved surfaces when
modeling the forms, since it is possible, but involved, managing
both types of surfaces within the same zone. Planar zones are
defined by means of 2D contour curves.

The congtructive zone is amed to supply the holigtic param-
eterization and any other method to create a patch by means of
geometric constructions like cones, cylinders, and swept surfaces
or with more complex methods like skinning, blending, trimming
and rounding surfaces. Congiructive zones are basic constituents
o the modd which can be defined by means o specific and well
defined methods. Depending on the complexity of the construc-
tion, the result may consist in one single patch, two patches or even
three patches.

The generic zonesimplement the wire model methodology. The
borders o the zone are defined with connected curves defining
a 3D contour while the inner geometry is defined by two sets of
intersecting curvescaled U curvesand V curves. The U curves have
thefirg and the last points inthe borders dof the zone and the inner
points must lie on the V curves. The V curves are defined in the
same way with respect to the borders and the U curves (see Hg. 3).
The main advantage of this modding methodology isthat it does
not need structured data with arectangular arrangement as many
o the constructive methods need. The key factor to implementing
this approach is the filling algorithm which is used to create a
aurface from grid curves.

One way to provide an easy and robust method of filling gaps
between grid curves is by means of Bézier patches of rectangular
and triangular topology. This method may require additiona
work to prepare the grid in order to produce only rectangular
and triangular patches, but the advantages overpass the effort
spent in this preparation work. In any case, this work could be
performed automatically by the application. Some applications
create triangular patches by collgpsing one border of arectangular
patch. Thisis not agood idea because in such patches the normal
vector is undefined by the formulation despite there is enough
geometric information to define it correctly. Usng triangular
Bézier patches this problem is avoided.

In order to help the coexistence of different types of zones
within the same form, a subdivision procedure isrequired with the
capability of keeping the continuity and optionally the tangency
between adjacent zones. This requirement is easy to comply
with if the zones are created following a specific sequence. The
congtructive zones must be defined firgt. Then, amap of contour
curves enclosng generic and planar zones should be defined. This
map can include the limiting curves of the congtructive zones as
contour curves for generic or planar zones when needed. Findly,
each generic zone should be completed with the U and V curves,
which should be extended up to the borders o the zone defined
in the map. The map can be considered as an agreement between

Fig. 4. A map of generic, congtructive and planar zones.

adjacent zones with respect to the continuity and tangency of the

form. It is possible to insert U and V curves indgde ageneric zone
without modifying the geometry of the contour curves using the

knot insertion algorithm of the NURBS formulation. Hg. 4 provides
an example of amap.

3.3. Design language

A language which is suitable for supporting modeling tasks
performed by aform designer without programming skills must
comply with some specific requirements (see Re. [27]).

Hrg a al, the language hasto be read by the design application
and consequently the latter playsthe role of interpreter of the lan-
guage. Hence, the role of the designer isto spedify what the pro-
gram should accomplish, rather than describing how to go about
accomplishing it, as the designer is not supposed to have specid
skillsto write complex agorithms. In order to make the use of the
language easier to the designer, the language should be specificaly
oriented to the ship form modeling domain. Consequently, the de-
dgn language should be adeclarative interpreted domain specific
language. Additionally, the language should provide some control
sentences such asloops and conditional branchesto fecilitate exe-
cuting repetitive tasks and automation of processes.

A declarative language script condsts of a sequence of decla
rations which am in this case to build product modd elements.
Each of these sentences creates a geometric construction which can
be either a product modd component or an auxiliary entity to
be used later to build a more complex component of the product
moddl. These declarative sentences can be considered "construc-
tors' of primitives (auxiliary elements) or components (constitu-
tive product moded elements).

Hence, a design language script isa set of constructors which
can be combined with control sentences to create loops, branches
and procedures. The outcome of executing this script should bea
complete ship product modd or apart o it.

3.3.1. Types and constructors

The design language has to provide a complete set of element
typesin order to be capable of creating any primitive or component
which may be required to build the ship product modd with any
o the methodologies which have been selected from the state of
the art.

According to the language premises, each type is provided with
a st o congtructors and each congtructor implements a specific
agorithm or method to creste an element of such type. Each
congtructor is identified by a unique name within the type and
has associated alist of arguments which collects dl the input data
required by the agorithm. Each element of the list of arguments
is a primitive of the product modd. The result of executing the
constructor isanew primitive or anew component of the product
modd with a unique name in the whole product model.

In order to create aprimitive or acomponent of an explicit type
with a spedific congtructor, dl of the primitives required by the
ligt of arguments must be created before invoking the constructor.
This may produce very heavy scripts. To avoid this problem the
language must provide the possibility of specifying anonymous
constructors. An anonymous constructor creates on the fly an
element of the required type within the lig of arguments to be
consumed immediately and for this reason no name is required.

Mog common primitive types are points, polylines, curves,
patches, planes, vectors, lines, segments, integers, floats, strings,
Booleans and lists of primitives. Component types are congtructive
Zones, generic zones, planar zones, maps and forms.

The syntax of a constructor invocation is. TYPE elemlD
ConstructorID (primIDlI primIDn).

An anonymous constructor contains only the constructor
identification with the list of arguments, as the type is inferred
from the context: ConstructorID (primIiDI primIDn).

Usng an anonymous congtructor consists in subgtituting a
primitive identification in the lig of arguments o another
constructor with the anonymous constructor invocation:

TYPE elemlI D ConstructorIDI (primlIDl,priml D2,..., primlDn);

TYPE eleml D ConstructorIDI (primiDl,
ConstructorID2(pl,..., pn),..., primiDn).

Anonymous constructors can be nested ad infinitum.

3.3.2. Control sentences

The designer must have the possibility of writing loops and
conditional jumps to implement more advanced procedures. The
following schemas are required:

Conditiona branching: if(B,);... ;elseif(By);... ;else;... ;endif.

Conditiona loop: while(B);...;endwhile.

In the above expressons, B, B\ and B, are identifications of
Booleen elements or anonymous constructors of such type of
primitive.

Lig scanning loop: for (listID, listindex, UstElement);...; end
for; In order to take full advantage of the list scanning loop, the
language hasto include alist type for each type of primitive (float
ligt, points lig, curves lig, etc.) and some list of lists types (list of
lists of floats, etc.).

Element mutator: set elemlD ConstructorID (primiDI
primiDn); Mutator syntax isrequired to modify existing elements
by means o any o its constructors.

In order to organize, encapsulate and reuse design language
scripts, the language must provide the possibility of writing
procedures and user constructors:

Procedure encapsulation: proc(inputlDl,.., inputlDn);...;end
proc(outputlDlI,.., output|Dm).

Cc D E F y) H 1
1 X 2 0 4 10 175 pird
1 0 Y t 10 175 20 X
i 20 c 75 16 19.i 195
4 40 \Y c 48 95 i1 15
S
1 P
5 (Profile [59 55 65 70
Lct Procedure firtde Procedures
1fx 0 20 40;
Ifz 0 -1 Lo 17.s 2";
mfy(0 10 as 20 20 0**i
0 75 16 19.5 19.5,
0 4.5 95 15 15); dear
‘Tixeis -:
s 50 59 55 65 70;
-
-'zp 0 4 10 [7s 20 e he

Severe

Fig. 5. Smplified offsat table, three frames by five waterlines with the fore profile
and the appropriate data structures to manage this information.

Procedure invocation; call proc((inputlDl,.., inputlDn), (out-
putlDl,.., output|Dm)).

Usr congtructor definition: cons TYPE ConstrnctorID(TYPEI
primiDl,.., TYPEnN primiDn);... ;ret retlD.

Usr constructor invocation: TYPE elemlD Constrnctor|D
(primIDlI primiDn).

A complete language specification isout of scope of this paper,
but in order to explore the programmed design concept the
authors have developed a program for demonstration purposes.
This prototype implements some geometric parameterization
constructors. In the next paragraph a smplified case of use of
programmed design is shown, which hasbeen created with the
demonstration programjust to illustrate this paper.

Example. Thedtarting point of this example isavery smplified
offset table for afore body, asshown in Hg. 5. The offst tableis
transferred to the design language primitives devoted to contain
ligts of floats If and matrices of floats mf, which in fact arelists
o lists of floats. Thistransfer has been performed by means of the
clipboard copy and paste functions between the worksheet and the
script editor of the demonstration program.

The heights of the waterlines are stored inaligt o floats named
z with the following sentence: 1204 10 17.5 20; This sentenceis
using asmplification of the most forma syntax which should be:
Ifz (0,4,10,17.5, 20); Thissmplification isdlowed for plain lists
o arguments, as those without anonymous constructors are. Other
lists of floats like x, xp and zp are defined inasimilar way, whiley
isalig of ligts o floas of type mf.

Ust Procedure

i 0 20

Itz 0 4

miv(0 10
0 7.5
0 45

Fxp 50 59
Ifzp 0 4

\ c prof .xz(o, .(.Ifxp zp));

%OK « Script is correct

Usng the above data, the following declaration creates the
profile curve: ¢ profxz(0,.(.If xp zp)); where c indicates that the
type is a curve and prof isthe curve identification. The curve
congtructor for aprofile isxz, which has asarguments afloa for
the Y coordinate and a 2D curve. The firg argument of the curve
congtructor isthe Y coordinate O, asthe prdfile isin the centra
plane. The second argument is.f.i/ xp zp) where, (indicates the
default constructor for 2D curves, that has as argument alist of
2D points). In this casg, the lig of 2D points is created by an
anonymous constructor which takestwo list of floats:.Ifxp zp. This
ligt of arguments can be typed in the shortened way asitissmple,
instead of the forma way.i/ffxp, zp). The result of executing this
constructor is shown inHg. 6.

In order to provide tangent conditions at points of the profile
there are other constructors for the 2D curve inwhich theinitial
and/or find tangents or even atangent for each point of the curve
can be defined. The following declaration uses the last one, which
requires alisg of 2D points and alist of 2D tangencies as input
arguments:

[tc2 tprof 09090 30.n; Lig of 2D tangencies (2D vectors or
angles) with name tprof and where .n means free tangency.

.pt(.1fxp zp, tprof) Anonymous 2D curve constructor with two
arguments. Thefirg isthe list of 2D points given by an anonymous
congtructor from 2 lists of floats and the second isthe previoudy
defined list of 2D tangenciestprof.

c prof xz(Q,.pt(.If xp zp, tprof)). Prdfile curve constructor
Xz with a different second argument indicating a 2D curve
with tangencies defined by the anonymous constructor explained
before. The resulting 3D curve name isprof. The results can be
appreciated inHg. 7.

The same technique isused to create each section. Inthis case,
firg of dl atangency pattern is created with the 2D tangency
constructor:

Itd tfrO.n.n 90 90. Lig of 2D tangencies (2D vectors or angles)
with name tfr and where.n means free tangency.

Jisx 0 Anonymous constructor returning the element of list x
with index 0. Thisisthe firs element o the list of floats x, and o
it isafloa constructor returning the float value 0.0.

Jisy O Anonymous constructor returning the element of ligy
with index 0. Thisisthe firs element of the list of lists of floats y,
and itisalis of floa constructor returning the list of floats (0.0,
10.0,17.5, 20.0, 20.0).

f(.lisy0, 2 Anonymous congtructor of alist of 2D points with
two arguments which are ligts of floats. Thefirg oneis constructed
by the anonymous constructed explained before and the second
one isthe previoudy created list named z.

pt(If(lisy 0, 2), tfr) Anonymous 2D curve constructor with
two arguments. The firg oneisthelist of 2D points given by an

* rKie Procedures
40;
10 175 20;
175 .o 20.
ti 195 ISA
95 15 is); ONew
*
% e 0*H
10 175 20; dear
[Process AL
Ust

Ope'file

iniit \e

Fig. 6. Prdfile congtruction from two lists of X and Z coordinates.

Sc-ipt

| Lrct Procedure

]

hide roceduw 1

9 New

Itc2 tprof « 9D 90 30 .n: Add
¢ prof .m(0. .pt(-If xp zp, tprofl);

Clear

Process FI 1

%O0K - Script is correct ist

Fg. 7.

Open file

Save til? n

Profile curve with tangent conditions.

Fig. 8. Prdfile and frame curves.

anonymous congtructor from 2 ligts of floats explained before and
the second one isthe previoudy defined list of 2D tangencies tfr.

cfrO.yz(.lisxO, pt(.If(.lisyO, 2), tfr));
cfrl.yz(lisxl, pt(If(lisyl,2), tfr));
cfr2.yz(.lisx2, pt(.If(.lisy2, 2), tfr)).

These three congtructors define named 3D curves in a YZ plane
given an X coordinate (a float value) and a 2D curve defined in
U, V coordinates corresponding in this constructor with Y and
Z coordinates. The arguments are given by means of already
explained anonymous constructors. The result is shown in Hg. 8.

Hence, the body is created with a patch constructor from the
previous curves and a new curve that is used to indicate the
tangency condition at the fore border. This is shown in Hg. 9 with
some improvements asa “for loop" to create the frames using alist
o curves

Theloop to create the curvesuses alist of curves created outside
the loop and used within the loop to load the curves: Ic Ifr.ini;
where ic stands for alist of curves, Ifr isthe name of the list of
curves andfnf isthe constructor to create an empty list.

The loop is invoked by the sentence for x i xc; where x is
the ligt to scan (alist o floas which contain the abscissas of the
frame sections), i isthe index dof the current element o the list (of
integer type) and xc isthe current element of the list (of the type
corresponding to the elements of the ligt, in this case afloat).

Within the loop the curves are created anonymoudy asthey are
added tothe ligt. Sncethe list isnot created but modified, a specid
syntax for mutators is required: set Ifr.add(.yz(xc,.pt(.If(.lisy i, 2),
tfr))); which uses the generic list constructor.add to create anew
ligt adding the argument element to the previous ligt I fr.

The tangency condition at the fore end if defined by the curvec
tbody.pxz(.xy{ 50 0,20),.pt(Ifxpzp, tprof));

The curve name is tbody and the constructor.pxz takes two
arguments. The firg one is a plane containing the curve and the
second oneisa2D curve that representsthe 3D curve projected on
the XZ plane. In this case the plane isparald to the Z axis passing
through the point (50, 0, Q) forming 20° with plane XZ, as it is
indicated by the anonymous constructor.xy(50 0,20). The 2D curve

is the same as it has been used to create the profile.ptf.i/ xp zp,
tprof). Thistangency curve combined with the fore profile defines
tangency vectorsat the fore end perpendicular to the center plane.

Then the patch named body is created with the constructor.fi:
pat body.ti(l tbody,.rev Ifr);

Theti constructor has two arguments, a patch tangency
condition for the initia tangency (the find tangency is free with
this congtructor) and alist of curves representing patch sections.
A patch tangency condition is given by afloa factor and acurve.
Tangent vectors are taken from the affected patch curve (in this
cae the firg element dof the list of curves) to the given tangency
curve and multiplied by the given factor. In this case the factor is
10 and the curve is tbody which has been previoudy defined in a
convenient way to get tangencies at the fore end perpendicular to
the center plane.

Theligt of curvesis defined with the anonymous congtrictor.rev
Ifr, which returnsthelist I fr inreversed order. It is defined thisway
to get the patch normal vectors pointing outside. Thisisthe reason
for using the.ti constructor for the patch, Snce the profile becomes
the firg curve of the list.

Findly, a new user constructor can be defined (Hg. 10) and used
parametricaly (Hg. 11).

Notethat the sdlected text inthe Hg. 10 isa complete definition
o anew user congtructor for patches. Once it is defined, it can
be invoked as any other "built in" constructor o the underlying
CAD gpplication. Additionaly, the lig of arguments of the new
congtructor are parameters on which it is possble to perform
parametric variations as shown in Hg. 11, where changed values
are highlighted. Any input argument can be modified providing
geometric parameterization. The user constructor can be applied
to any data structure Smilar to the amplified offset table of
the example. With some additiona programming effort, the
constructor can be abstracted for more generic offsgt tables.

The complete script can be wrapped with anew user construc-
tor exposing just the parameters which are required for an specific
andyss, asfor example, length and height of the bulbous bow.

This example is necessarily oversamplified in order to keep the
paper in areasonable length, but it illustratesthe idea of atool used

http://constructor.fi

le Ifr in<:
k2 tfr O .n 11 90 90;
for x | xc;

set Ifr .add(.vz(xc, .pt(.If(lls V1, z), tfr)));
end for; Oia
c thody .px2(.X¥(S0 0, JO), .pt(.rf xp ip, Tpiof));
pal body ,t1(l tbody. ,rev Ifr);

%OK - Script is corred

Fig. 9. Forebody with bow tangency.

Lst Procedure Hide Procedures
20 40:
4 10 175 20
/ (c 175 X iC.
75 16 195 195.
45 9s 15 19):
el 5 65 70t
. 10 L7.s 2Q:

cons pat .offsetflf x. mfy. If z. If xp. If 2p):

I:c2 tprof 0 90 90 30 .re
c prof JE(0. .pt(.If xp zp. tprof))

IK2 rff 0 . 31 90 90
Ic Ifr .mi
for xixc
set Ifr add(yz(Ms x i, .pt(.iiflis v L z). tff)»;
end for:

set ifr .add prof:

c thody .px2(jty(50 0. 20). ,ptf,If xp zp, tprof))

pat body rev ifr): N
ew
Add
ret body
pat mySody .offset|x.y.z,xp,zp):
%OK - Script is correct Co:-r t
Save 61.
Fig. 10. Forebody constructor.
(e
roitstp HJ r Vhu
20 aGr
11 "z o 4 0 175
10 175 20 “a
chmr 0 25 IE Ins i&s
a5 95 15
0
65
AHPp 50 TTA 10 175 Add
Oeir
AM nal mvnony x ProcessFl

Lot
MAOK-Scipt

X

Fig. 11. Fore body parametrized.

by advanced designers to write their design experiences with a 4. Architecture of the application

dedicated language and which can be stored and reused whenever

required.

Rd. [28] provides a very detailed explanation of the most
relevant architectural aspects of shipbuilding CAD applications.

Fig. 12. Top I€ft, conceptual leve (the design program and its result), top right, mathematical level (the net of control points and the isoparametric curves of the NURBS
formulation) and 2 different visua levels (bottom left generated with higher precision and bottom right generated with lower precision).

The functiondlity of a design application comprises the tools for
credting, viewing, editing and interrogating the product model.
The implementation df this functiondity requires data structures
which support these functions and dl the agorithms associated
with these tasks. Under the paradigm dof object orientation, both
data structures and agorithms are encapsulated in classes. The
main god of the process of software design is the assignment of
responsibilities to the objects (a mantra for devel opers).

The result of the software design is a dass diagram which
contains al the data structures and algorithms required by the
application. The diagram aso represents the relations between
objects. A relevant subset of this diagram should be devoted
to implement the product mode. The product modd class
diagram has to supply the agorithms required by other objects
devoted to provide services such asvisualization, selection, edition,
interrogation, etc.

In order to make easier the interaction between these service
objects and the product modd implementation, it is very
convenient to split the product modd into three levels. These
levels are epecidly useful for arranging the different types of
agorithms which are implemented by the product modd and
can be consdered levels o abstraction. The most abstract of
them can be cdled the conceptual levd and it is devoted to
implement the design language, the organization of the mode,
the topology and any other kind of relational or organizationa
aspect of the product model. The next leve of abstraction provides
amathematical formulation for each o the entities created by the
conceptual modd. In this example the mathematical leve is based
on NURBS formulation and Bézier triangles and rectangles. Findly,
the modd has to interact with the graphic card and requires a
visua representation of the model based on faceted or polyhedra
aurfaces and polylines. This visua mode is extracted from the
mathematical level by means of some agorithms which reguire
the pre-sdlection of certain precision parameters. Hg. 12 provides
agraphic explanation of the previous concepts.

These three levels can be interpreted as a cause-effect chain
or athree stage projection process. The concept is implemented

or described mathematically and these mathematical entities are
visualized or represented as low level visud entities. It is dso
possible to consider that concept gpaceis projected to amathemat-
ica space for description and implementation and mathematical
pace is projected to avisua space for machine/world representa-
tion (visualization, selection and any kind of exploitation).

The projection from concept to mathematical level determines
which agorithms are possble for creation and edition of esch
element or which constructors are available for each type. The
projection from mathematical to visud leve is determined by
the level o precison which is required by the exploitation that
the visud modd will undergo. For different uses, different visua
modelswith different precisonswill be generated. Congdering an
ided scenario, thewhole definition of the product model should be
performed at the conceptual leve while the whole product mode
exploitation will take place &t the visua level.

Taking into account the previous idess, there is an optimal
leve for each product mode agorithm to be implemented within
the application, but sometimes there is space for selection. For
example, an intersection agorithm can be implemented in the
mathematical level (very complex) or in the visua level (essier
but the outcome depends on the precision with which it has been
generated).

In order to enforce the programmed design concept and to im-
plement the proposed architecture a design application based on
these premises has been developed. This prototype provides some
geometric parameterization constructors. Developing holistic con-
structors is much more complex and it is let to a subsequent phase.
The application has been developed in NET C# language with Vi-
sua Studio 2010 Express Edition (NET Framework 4.0). The appli-
cation is configured as a Windows Presentation Foundation (WPF)
application but it aso uses Windows Forms for some specific tasks.
The 3D engineis based on XNA Game Studio 4.0 for Windows (Xbox
isout of scope). XNA requires the use of Windows Formsto bein-
tegrated within a WHF application. All of the examples provided in
this paper have been generated with such application.

5. Conclusions

Programmed design can be considered as a new desigh method-
ology based on adesign language with the semantics and syntax
which has been explained before. As such, it can be consdered
another type of design tool with its own advantages and disadvan-
tages. For asngle or sporadic design, programmed design may not
bethe preferred tool. The user interface based on adesign language
isnot the most adequate for the occasiona designer. The best sce-
nario where programmed design is without any doubt full of ad-
vantages isdesign reuse and knowledge management. In thisway,
programmed design can be considered as atool for cresting de-
dgn tools or as a method to store and reuse design experiences.
The tools developed with programmed design scripts should be
wrapped within advanced user interface widgets to facilitate their
usage by less experienced designers.

Ore type of design tool which can be created with programmed
design isaparametric family o ship forms. Holistic parameteriza-
tion is able to prefix the integral properties of the hull (volumet-
ric and hydrostatic) within the product mode, but paying a high
cost with respect to the generality of the solution. With geomet-
ric parameterization, the integral properties should be evaluated
after defining the geometry and this geometry should be modi-
fied to reach the required results. This retrofitted process can be
"programmed” in a single script, combining geometric parame-
terization with parameterization by transformations. But combin-
ing holistic and geometric parameterizations with transformations
can define extremely powerful hull form generators. In order to
make the combination of locd and globa parameterization essier,
it is necessary to develop functions to facilitate the distribution of
those parameters which are automatically managed by the holis-
tic zones. If the contribution of the geometrical zones to these pa-
rameters is evaluated, the contribution of the holistic zones can be
easly adjusted to produce the find result of the parameter asre-
quired by the complete moddl. Typicaly, holistic zones are defined
between &t and fore perpendiculars and geometric zones are used
for appendages, bulbs, &t and fore endings, etc.

A more generic design tool can be based on the use of apalette
o form components that are used like design patterns. These
components should be strongly typified and its interfaces with
other components should haveto be dso very wel specified. These
components must be defined a aleve of granularity in which
most o the "normal” hull forms are composed of the same types
of components, following asimilar strategy asthe interim product
technology.

Findly, one way to improve the use of programmed design isto
feedback the normal flow from conceptual leve to mathematical
level and from thisto visual level. Hence, thisfeedback will require
the possibility o transferring a visua mode to a mathematical
model and amathematical modd to aconceptua modd. Of these
two processes, the last one is the most usgful as most surface
models defined with design applications can be imported at the
mathematical level. The process could require the sdlection of
the types of entities and constructors which are going to receive
(generate) the mathematical mode but it should be automated as
much as possible in order to take full advantage of the process.
Thisfunctionality will alow the application to incorporate external

designs with the same capabilities as native or proprietary designs
and consequently produce programmed designs with externa
information in avery easy way.

Nowacki H. Five decades of computer-aided ship design. Computer-Aided
Design 2010;42(11):956-69.

Abt C, Harries S A new approach to integration of CAD and CFD for Naval
architects. In: 6th international conference on computer applications and
information technology in the Maritime industries, COMPIT2007, Cortona,
April 2007.

Harries S Serious play in ship design, tradition and future of ship design in
Berlin, Colloguium, Technical University Berlin, Abridged version, February;
2008.

Harries S, Abt C. Parametric curve design applying fairness criteria. In: Inter-
national workshop on creating fair and shape-preserving curves and surfaces.
Berlin/Potsdam: TeubnerVerlag: 1998.

Harries S Nowacki H. Form parameter approach to the design of fair
hull shapes. In: 10th international conference on computer applications in
shipbuilding. ICCAS '99, Massachusetts Institute of Technology, Cambridge,
MA, USA: June 1999.

www.3ds.com/products/catia.

www.solidworks.com/.

www.grasshopper3d.com/.

Abt C, Bade SD, Birk L, Harries S. Parametric hull form design — a step towards
one week ship design. In: 8th international symposium on practical design of
ships and other floating structures, PRADS 2001, Shanghai: September 2001.
Abt C, Harries S Hochkirch K. Constraint management for marine design
applications. In: international symposium on practical design of ships and
other floating structures, PRADS 2004, Lubeck-Traveminde: September
2004.

Kuiper G. Preliminary design of ship lines by mathematical methods. Journal
of Ship Research 1970:14.

Nowacki H, Kim H. Form parameter based design of hull shapes as volume
and surface objects. In: Proc. 12th international conference on computer
applications in shipbuilding ICCAS2005, Busan, Korea: August 2005.
www.senermar.es/NAVAL/foran/en.

www.friendship-systems.com.

Abt C, Birk L, Harries S parametric hull design: the FRIENDSHIP-modeler. In:
International conference on ship and shipping research, NAV 2003, Palermo:
June 2003.

Abt C, Harries S Hull variation and improvement using the generalized
Lackenby method of the FRIENDSHIP-framework. In: The naval architect,
RINA, September 2007.

KangJY, Lee BS Mesh-based morphing method for rapid hull form generation.
Computer-Aided Design 2010:42(11):970-6.

Lackenby H. On the systematic variation of ship forms. RINA-Transactions
1950:92.

Veelo B. Shape modification of Hull models in H-REP. In: Conference on
computer app. and IT Maritime ind., COMPIT'04, 2004.

Pérez-Arribas F, Suarez JA, Fernandez-Jambrina L. Automatic surface mod-
elling of a ship hull. Computer-Aided Design 2006:38:584-94.

Nowacki H, Jin F, Ye X. A synthesis process for fair free-form surfaces.
In: Strasser W, Klein R Rau R editors. Geometric Modeling: Theory and
Practice. Berlin, Heidelberg, New York: Springer-Publ.: 1997.

MAXSURF user's manual, formation design systems Pty Ltd. 1984-2009.
FASTSHIP Proteus Engineering.
http://www.proteusengineering.com/fastship.htm.

Brunet P, Vinacua A, Vivo M, Rodriguez A. Surface fairing for ship hull design
application. Mathematical Engineering in Industry 1998:7(2):79-193.
Rodriguez A, Vivo M, Vinacua A. New tools for hull surface modeling. In: 1st
int. conference on computer app. and IT Maritime Ind., COMPITOO, 2000.
Solano L, Gurrea |, Brunet P. Topological constraints in ship design, IFIP
conference proceedings. In: Proceedings of the IFIP TC5 WG5.2 fourth
workshop on knowledge intensive cad to knowledge intensive engineering,
Vol. 207. 2000. pp. 173-182.

Reidar T, Rodriguez A. Automation tools in the design process. In: 3rd int.
conference on computer app. and it Maritime ind., COMPIT'04, 2004.
Rodriguez A, Gonzalez C, Gurrea |, Solano L. Kernel architecture for the
development of cad/cam applications in shipbuilding environments. In: 2nd
int. conference on computer app. and it Maritime ind., COMPIT'03, 2003.

http://www.3ds.com/products/catia
http://www.solidworks.com/
http://www.grasshopper3d.com/
http://www.senermar.es/NAVAL/foran/en
http://www.friendship-systems.com
http://www.proteusengineering.com/fastship.htm

