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We propose a model of nonequilibrium quantum transport of particles and energy in a system connected
to mesoscopic Fermi reservoirs (mesoreservoir). The mesoreservoirs are in turn thermalized to prescribed
temperatures and chemical potentials by a simple dissipative mechanism described by the Lindblad equation.
As an example, we study transport in monoatomic and diatomic chains of noninteracting spinless fermions. We
show numerically the breakdown of the Onsager reciprocity relation due to the dissipative terms of the model.
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I. INTRODUCTION

Nonequilibrium systems abound in nature, and still their
theoretical description poses numerous challenges to theory.
Nonequilibrium steady states (NESS) describe the state of
a system maintained out of equilibrium by external forces,
such as gradients of temperature T and chemical potential μ,
and are characterized by the emergence of steady flows. One
might expect that a finite system connected to two infinitely
extended reservoirs imposing external gradients will reach a
NESS after a sufficiently long time.1,2 Nonetheless, this is
not always the case, and the conditions to reach a NESS are
not well understood in general. Although the problem of the
existence of and approach to NESS has been discussed since
the early days of statistical mechanics, rigorous results are
limited to a few examples.3–5 Moreover, in nonequilibrium it
is customary to try to minimize unwanted disturbances of the
NESS by the contacts through which the system is coupled
to the external ideal and infinite reservoirs. However, this is
nearly impossible at the mesoscopic scales at which the system
is coupled to reservoirs through finite leads, particularly far
from equilibrium, where unexpected boundary effects may
arise.6,7

In quantum mechanics the construction of NESS requires
us to consider open quantum systems, rendering the problem
extraordinarily more difficult. The common setup is to consider
the infinite time limit of the density matrix of the finite system
S coupled to two infinite reservoirs which are in thermal
equilibrium at different temperatures and chemical potentials,
starting from an initial separable state ρL ⊗ ρS ⊗ ρR . One can
then study the properties of the density operator of the total (in-
finite) system1,2 or the reduced density operator for the (finite)
system S,8 obtained by tracing out the reservoirs’ degrees of
freedom. The time evolution of the density operator is naturally
determined by the Von Neumann equation. However, dealing
with infinite degrees of freedom is in most cases difficult. A
second approach based on the master equation of the reduced
density operator is more accessible, albeit at the price of several

approximations such as the Born-Markov approximation (see,
e.g., Ref. 9).

In this article, we propose a conceptually different approach
for studying NESS that comprises mesoreservoirs with a
finite number of degrees of freedom, which in turn are
thermalized by Markovian macroscopic reservoirs using a
simple Lindblad equation. The mesoreservoirs model the finite
leads through which the system is coupled to the reservoirs.
This setup yields a computationally efficient model in which
the NESS of the system and of the mesoreservoirs are
mathematically accessible, allowing us to study the relaxation
times of the system and mesoreservoirs, the correlations
among them, and their dependence on the number of degrees
of freedom. Moreover, as we shall show, our approach
allows us to obtain the nonequilibrium currents without
the necessity of ad hoc assumptions, such as reflectionless
contacts and ideally thermalized reservoirs. It is interesting
to remark that finite mesoreservoirs, in principle, allow the
creation of entanglement among the different degrees of
freedom of the system solely through its coupling with the
mesoreservoir,10 thus making our setup much richer. This
paper is organized as follows. In Sec. II, we introduce the
model for a chain coupled to left and right reservoirs, and
we discuss some of its properties and briefly discuss the
method to study relaxation to NESS and observable averages
in NESS. In Sec. III we presents our main results about the
particle and energy current in the NESS. We conclude in
Sec. IV.

II. THE MODEL

We consider a one-dimensional quantum chain of spin-
less fermions coupled at its boundaries to mesoreser-
voirs comprising a finite number of spinless fermions
with wave number k (k ∈ {1, . . . ,K}). The Hamiltonian of
the system can be written as H = HS + HL + HR + V ,
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where

HS = −
n−1∑
j=1

(tj c
†
j cj+1 + H.c.) +

n∑
j=1

Uc
†
j cj ,

Hα =
K∑

k=1

εka
†
kαakα, εk ≡ θF (k − k0), α={L,R}, (1)

V =
K∑

k=1

v(a†
kLc1 + a

†
kRcn) + H.c.,

and {tj } are the nearest-neighbor hoppings, U is the on-site
potential, v is the coupling between the system and the
mesoreservoirs, θF is the inverse density of states, and cj and
c
†
j are the annihilation and creation operators for the spinless

fermions of the chain, while ak,α and a
†
k,α are those of the left

and right mesoreservoirs.
The key idea of our model is to enforce the finite mesoreser-

voirs to equilibrium using simple Lindblad dissipators.11–14 If
the couplings to the Lindblad dissipators are small, then we
can interpret these terms as coming from tracing out infinitely
extended (super)reservoirs (schematically depicted in Fig. 1).
Thus, the density matrix of the total setup evolves according
to the many-body Lindblad equation,

d

dt
ρ = −i[H,ρ]+

∑
k,α,m

(2Lk,α,mρL
†
k,α,m−{L†

k,α,mLk,α,m,ρ})

Lk,α,1 = √
�k,α,1akα, Lk,α,2 = √

�k,α,2a
†
kα, (2)

�k,α,1 = γ [1 − Fα(εk)], �k,α,2 = γFα(εk), α = {L,R},
where Lk,α,1 and Lk,α,2 are operators representing the coupling
to the superreservoirs, Fα(ε) = (eβα (ε−μα) + 1)−1 are Fermi
distributions, with inverse temperatures βα and chemical
potentials μα , and [·,·] and {·,·} denote the commutator
and anticommutator, respectively. Generalization to spinfull
fermions (e.g., electrons) is straightforward.

The parameter γ determines the strength of the coupling
to the superreservoirs. We are interested in a regime where
the physical observables are γ independent. We note that γ ,
which also determines the relaxation rate of the mesoreservoirs
toward equilibrium, in general depends on the temperature,
chemical potential, and wave number k of the mesoreservoir
modes. Here we consider the simplest model possible in which

FIG. 1. (Color online) Schematic view of the two-level reservoir
open-system model.

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 

-10  0  10

<akα
+ akα> - fα (k)

εk

(a) (b)

-15

-10

-5

 0

 5

 10

 0  0.02  0.04  

Im βj

Re βj

FIG. 2. (Color online) (a) The (mode) k dependence of the
deviation from the Fermi function 〈a†

kαakα〉 − Fα(εk). The red (blue)
curve is for the left (right) mesoreservoir, and vertical lines indicate
the energy band of the system; see main text for parameter values.
(b) The rapidity spectrum for the monoatomic chain, indicating the
separation of time scales.

γ is constant. We stress that our model does not rely on
the usual weak-coupling assumption needed for the physical
derivation of the Lindblad master equation;8 thus γ does not
need to be a small parameter.

When the system and the mesoreservoirs are decoupled
(v = 0), each noninteracting mode of the mesoreservoir
is thermalized separately with the prescribed Fermi-Dirac
occupation number.15 For small v (v < γ ), we thus expect
the distribution of occupations in the mesoreservoirs to be
close to Fermi-Dirac. Figure 2(a) depicts this small difference.
A remarkable feature of our model is that we can monitor and
control the difference of occupation distributions 〈a†

kαakα〉 −
Fα(εk) by changing the coupling parameters v or γ . More
important, we can show that the Lindblad equation of motion
implies the following identity for averages in a steady state:

〈
J α

k

〉 = −2γ {〈a†
kαakα〉 − Fα(εk)}, α = {L,R}, (3)

where J α
k is the kth-level contribution to the current from

the α mesoreservoir to the system, J α
k = iv(a†

kcα − c†αak)
(cL = c1, cR ≡ cn). This relation can be used to determine the
Lindblad dissipator from physical observables such as currents
and occupation numbers. It is interesting to remark that this
relation can be interpreted as a type of Landauer formula,
i.e., 〈JP

tot〉 = −∑
k 2γ {〈a†

kLakL〉 − FL(εk)}, where JP
tot is the

particle current from the left reservoir to the system, and
shows explicitly how the nonequilibrium situation modifies
the Fermi distributions. A similar expression holds for the
current from the right reservoir to the system. It can be shown
that particle current is conserved. That is in NESS the average
particle current inside the chain, a quantity we analyze later
in detail, equal to 〈JP

tot〉. Given our model, it is expected that
this current propagates ballistically. This is directly confirmed
by the numerical analysis of the particle current we present
later and by the occupation density inside the system 〈c†j cj 〉,
which we observe to be almost a constant, i.e., independent of
j . It follows from particle current conservation that although
the distribution functions 〈a†

kαakα〉 are slightly modified by the
presence of the system and the other reservoir, the integrated
difference from the Fermi distribution summed over both
mesoreservoirs satisfies

∑
k,α{〈a†

kαakα〉 − Fα(εk)} = 0.22

We have studied monoatomic (tj = t) and diatomic
(t2j−1 = tA, t2j = tB) chains. Unless specified differently, we
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have set n = 99, t = 3, U = 4 for the chain. The mesoreser-
voirs parameters are ε1 = −20, εK = 20, and K = 200, fixing
the spacing θF and k0 in Eq. (1). The chain-mesoreservoir
coupling is set to v = 0.03. The superreservoirs, which enter
into our model through the operators Lk,α,1 and Lk,α,2, are
characterized by γ = 0.1, inverse temperatures βL = βR = 1,
and chemical potentials that we take always with opposite
values, i.e., μL = −μR = μ = 3.

A. Solution method: Brief summary of third quantization

As shown in Ref. 16, the spectrum of the evolution
superoperator is given in terms of the eigenvalues βj (so-called
rapidities) of the matrix X:

X = − i

2
H ⊗ σy + γ

2

⎛
⎝

EK 0K×n 0K×K

0n×K 0n×n 0n×K

0K×K 0K×n EK

⎞
⎠ ⊗ E2,

where 0i×j and Ej denote an i × j zero matrix and a
j × j unit matrix, σy is the Pauli matrix, and H is a
matrix which defines the quadratic form of the Hamilto-
nian as H = d†Hd in terms of fermionic operators dT ≡
{a1L, . . . ,aKL,c1, . . . ,cn,a1R, . . . ,aKR}.

Let us briefly discuss the relaxation times of our sys-
tem. Figure 2(b) shows a typical rapidity spectrum for the
monoatomic chain. Interestingly, there is a clear separation
of the relaxation times into slow and fast normal modes.
The number of slow modes ns , with eigenvectors localized
in the system part, is ns ≈ 2n, and the number of fast modes
nf ≈ 4K , with eigenvectors localized in the mesoreservoirs.
We have not observed rapidities with zero real part, which
according to Refs. 15 and 16, shows that there exists a unique
steady state for the range of parameters here studied.

Next, we show how the NESS averages 〈·〉 of observables
are computed. The quadratic observables are given in terms of
the solution of the Lyapunov equation:16

〈wjwk〉 = δj,k − 4iZj,k,

w2j−1 ≡ cj + c
†
j , w2j ≡ i(cj − c

†
j ), XT Z + ZX ≡ M i ,

M i ≡ − i

2
diag{�−

1L, . . . ,�−
KL,01×n, �−

1R, . . . ,�−
KR} ⊗ σ y,

�−
kα ≡ �k,α,2 − �k,α,1 = γkα{2Fα(εk) − 1}, α = {L,R},

whereas Wick’s theorem can be used to obtain expectations of
higher-order observables.

III. NESS PROPERTIES OF PARTICLE AND
ENERGY CURRENTS

We now turn our attention to the particle and energy currents
inside the chain. The particle current is defined through the
conservation law of number of particles,

dc
†
j cj

dt
= JP

j−1 − JP
j (2 � j � n − 1),

J P
j ≡ itj (c†j cj+1 − c

†
j+1cj ) (1 � j � n − 1),

and the energy current is defined through the conservation law
of local energy,

dHj

dt
= JE

j−1 − JE
j (2 � j � n − 1),

J E
j−1 = i[Hj−1,Hj ] (2 � j � n),

Hj ≡ tj c
†
j cj+1 + tj c

†
j+1cj + Uc

†
j cj (1 � j � n),

where, by definition, cn+1 ≡ 0. Both currents converge to a
constant by increasing the system size n for the monoatomic
chains. For the diatomic chains, the currents converge to
different values, depending on the parity of the length of the
chain n. Therefore, ballistic transport is indeed achieved.

Figure 3(a) shows the K dependence of the particle current
for the monoatomic chains with γ ranging from 0.0001 to
10. The particle current increases linearly with the number
of mesoreservoir modes K , with notable fluctuations in K

observed for some range of γ (which will be discussed later).
We see that the particle current is roughly γ independent for
γ ∈ [0.001,1] and is somewhat smaller for very small or very
large γ . The dependence on γ of the particle current, shown
in Fig. 3(c), exhibits a plateau starting at γ ≈ v, and we take
γ in the plateau region [v,‖H‖].

Figure 3(d) shows the dependence of the particle current on
the bias of the chemical potential (μ). We find, as expected,
initially linear increase in μ, which slows down for larger μ.
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FIG. 3. (Color online) (a) The K dependence of the particle
current for the monoatomic chains (red: γ = 0.0001, green: γ =
0.001, blue: γ = 0.01, pink: γ = 0.1, cyan: γ = 1, yellow: γ = 10)
and (b) the rapidities for γ = 0.01. Using the symmetry with respect
to real axis, we plot rapidities in positive (negative) imaginary
plane for K = 216 (K = 220). Those two parameters are indicated
in (a) as red (K = 216) and blue (K = 220) circles. (c) The γ

dependence of the particle current for the monoatomic chains.
(d) The μ = μL = −μR dependence of the particle current. The red
line is for the monoatomic chains (t = 3), and the blue line is for the
diatomic chains (tA = 3, tB = 6). The values of the fixed parameters
are given in the text.
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The fluctuations in the current as a function of K occur
because for some values of K the coupling between the
mesoreservoirs and system is stronger. Intuitively, this happens
when an eigenenergy of the mesoreservoir coincides with one
of the system, resulting in some eigenvector of the matrix X
being supported both in the system and in the mesoreservoirs,
breaking the separation into slow and fast modes. When the
density of states of the mesoreservoir becomes dense enough
such that it is smooth (average level spacing smaller than the
width given by the coupling γ to the superreservoirs), the
current becomes a smooth function of K or, equivalently, of
the density of states. These ideas are confirmed by the
numerical results in Figs. 3(a) and 3(b). We note, however, that
the current fluctuations are strong only when the mesoreservoir
density of states is not smooth.

Figure 4(a) shows the dependence of the particle current
driven by either thermal or chemical gradients on the hopping
strength tB for diatomic chains. Where the particle current
is negative, the energy band of the chain is located entirely
below the Fermi energy of the cooler reservoir, yielding a
particle current flow from the cold to the hot reservoir. Such
crossed transport (and its counterpart of the energy current
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FIG. 4. (Color online) (a) The tB dependence of the particle
current for the chains. The red line is for βL = βR = 1 and μ =
μL = −μR = 1, and the blue line is for βL = 0.5, βR = 4, and μ = 0.
(b) The tB dependence of the Onsager coefficients (color code: LQP ,
red; LPP , black; LQQ, green; LPQ, blue), and (c) dependence of
ZT [comparing K = 200 (green) to K = 100 (red) and K = 500
(blue)] for the diatomic chains (tA = 3). Chains have exponentially
small current outside tb ∈ [1,7] indicated in the figure. (d) The γ

dependence of asymmetry LQP /LPQ − 1 for the diatomic chain
with tA = 3, tB = 6 (dashed line indicates linear growth). Note that
asymmetry grows linearly with γ in the regime γ > v. In (b), (c), and
(d) we have set μL = −μR = 0.001, βL = βR = 1 to compute LQP

and LPP and μL = μR = 0, βL = 0.999,βR = 1.001 to compute
LQQ and LPQ.

driven by the chemical gradient) can be exploited to pump
heat or particles.17

For sufficiently small thermal and chemical gradients, the
particle and heat current defined as JQ ≡ JE − μ̄JP [μ̄ =
(μL + μR)/2] depend linearly on the external gradients as18

JQ = LQQ�β − βLQP �μ ,

JP = LPQ�β − βLPP �μ ,

where �β ≡ βR − βL and �μ ≡ μR − μL. In our calculation
we take μL = −μR = 0.001, βL = βR = 1 to obtain LQP and
LPP and μL = μR = 0, βL = 0.999,βR = 1.001 to obtain
LQQ and LPQ, which are checked to be in the linear response
regime. The second law of thermodynamics imposes definite
positiveness of the matrix of Onsager coefficients L, which
implies LQQ � 0 and LPP � 0, and if the dynamics is time
reversible, the Onsager’s reciprocity relation LPQ = LQP

holds. In Fig. 4 we consider diatomic chains with tA = 3 and
show the dependence of various properties of L on the other
hopping parameter, tB . Figure 4(b) shows the tB dependence
of all Onsager coefficients, whereas Fig. 4(c) shows the
thermoelectric figure of merit ZT ≡ LPQLQP /detL.19 One
sees that while nondiagonal elements LQP or LPQ can
be sometimes negative, LQQ and LPP are always positive.
Moreover, ZT reaches large values only for disproportionate
hopping rates tA and tB .

On the other hand, systems interacting with environments
inevitably include irreversible processes, which break down
time-reversibility invariance and thus the validity of the
Onsager reciprocity relation.20 Figure 4(d) shows the γ

dependence of LPQ/LQP , and we see that the relation is
roughly linearly broken by increasing γ , and thus we conclude
that the Onsager reciprocity relation is satisfied only if there
is a time-reversible dynamics for the total system, including
the superreservoirs, which is the case in which the Onsager
reciprocity relation is rigorously proved.21 We recall that
γ 	 1 is one of the necessary conditions for deriving the
Lindblad equation by taking a partial trace of the unitary time
evolution; thus |LPQ/LQP − 1| can be understood as an error
indicator due to the weak-coupling assumption. We remark
that the transport coefficients for the diatomic chains [shown
in Figs. 3(d) and 4] are nonsmooth functions of tB at the
monoatomic point tB = tA.

IV. CONCLUSIONS

We have introduced a model of an open quantum system
with finite mesoreservoirs and studied nonequilibrium steady
states of quantum chains. The NESS is robust with respect
to the strength of the Lindblad dissipators. Moreover, we
have found that the occupation number distributions of
the mesoreservoirs are close to the Fermi distribution, the
difference being determined by the particle current. The decay
times of the normal modes show a clear separation into
slow modes (with support in the system) and fast modes
(with support in the mesoreservoirs). In a certain regime
we observed strongly fluctuating currents (as a function of
any generic parameter), which is attributed to the existence
of well-separated intermediate (resonant) decay modes. We
found that nondiagonal elements of the Onsager matrix can
be negative but confirmed the positivity of the full Onsager
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matrix. The Onsager reciprocal relation was shown to be
correct only for weak coupling γ 	 1, and the symmetry is
broken linearly as a function of γ .
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