
Third International Conference “Natural Information Technologies” (NIT 2012)

116

A WEB IMPLEMENTATION OF A GENERALIZED NEP

David Batard, Sandra María Gómez and Abraham Gutiérrez

Abstract: The Networks of Evolutionary Processors (NEPs) are computing mechanisms directly inspired from the
behavior of cell populations more specifically the point mutations in DNA strands. These mechanisms are been
used for solving NP-complete problems by means of a parallel computation postulation. This paper describes an
implementation of the basic model of NEP using Web technologies and includes the possibility of designing some
of the most common variants of it by means the use of the web page design which eases the configuration of a
given problem. It is a system intended to be used in a multicore processor in order to benefit from the multi thread
use.

Keywords: Evolutionary processors, Implementation, natural computing, NEP.

Introduction
Networks of Evolutionary Processors (NEP) are a rather new computing mechanism directly inspired from the
behavior of cell populations. Every cell is described by a set of words, evolving by mutations, which are
represented by operations on these words, resembling the manner carried out by DNA strings [P un, 1998]. At
the end of the process, only the cells with correct strings will survive. The main potential in this model is the
simultaneous way it develops for which a basic architecture for parallel and distributed computing is required
consisting on several processors, each of them placed in a node of a virtual complete graph, which are able to
handle data associated with the respective node. Each node processor acts on the local data in accordance with
some predefined rules. Local data is then sent through the network according to well-defined protocols. Only data
which is able to pass a filtering process can be communicated. This filtering process may be required to satisfy
some conditions imposed by the sending processor, by the receiving processor, or by both of them. All the nodes
simultaneously send their data and the receiving nodes also simultaneously handle all the arriving messages,
according to specific strategies. In addition, the data in the nodes is organized in the form of large multiset of
words where each word could appear in an arbitrarily large number of copies and all the copies are processed in
parallel so that every possible action takes place.
This basic model has evolved to others which extend not only the definition but the applications. In this case we
consider the hybrid networks of evolutionary processors (HNEP) where the rules in every processor could be
applied differently opposed to the basic model as described in [Martín-Vide, 2003]. Also other variants can be
considered as they all share the same general characteristics.
In this paper we describe the initial work of implementation of a general NEP which can be thought to represent
the most common variations of the basic model, considering the concurrent way it was conceived to perform and
having a graphic user interface for an easier way of defining it and getting the outcomes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Third International Conference “Natural Information Technologies” (NIT 2012)

117

Basic concepts
A network of evolutionary processors of size n is a construct:

,
where V is an alphabet of symbols and for each 1 i n, = (, , , ,) is the -th
evolutionary node processor of the network. The parameters of every processor are:

 is a finite set of evolution rules of one of the following forms only:
– a b a, b V (substitution rules),

– a a V (deletion rules),
– a a V (insertion rules),

In this case for the hybrid NEP we are considering each deletion node or insertion node having its own working
mode (performs the operation at any position, in the left-hand end, or in the right-hand end of the word) and
different nodes are allowed to use different ways of filtering. Thus, the same network may have nodes where the
deletion operation can be performed at arbitrary position and nodes where the deletion can be done only at the
right-hand end of the word.

 is a finite set of strings over V. The set is the set of initial strings in the -th node. We consider that each
string appearing in any node at any step has an arbitrarily large number of copies in that node.

 are the input permitting/forbidding contexts of the processor, while are the output
permitting/forbidding contexts of the processor. These filters can work in four different way as described below:
For two disjoint subsets P and F of an alphabet V and a word over V, we define the predicates and as
follows:

The construction of these predicates is based on random-context conditions defined by the two sets P (permitting
contexts) and F (forbidding contexts). For every language and , we define:

.
Finally, G = ({ }, E) is an undirected graph called the underlying graph of the network. The edges of
G, that is the elements of E, are given in the form of sets of two nodes.
By a configuration (state) of a NEP as above we mean an n-tuple C = (), with for all 1 i

 n. A configuration represents the sets of strings which are present in any node at a given moment. The initial
configuration of the network is = (). A configuration can change either by an evolutionary step
or by a communicating step. When changing by an evolutionary step, each component of the configuration is
changed in accordance with the evolutionary rules associated with the node i.
Formally, we say that the configuration = (), directly changes into the configuration =
() by an evolutionary step, written as if is the set of strings obtained by applying the
rules of to the strings in as follows:
(i) If the same substitution or deletion rule may replace different occurrences of the same symbol within a string,
all these occurrences must be replaced within different copies of that string. The result is a multiset in which every
string that can be obtained appears in an arbitrarily large number of copies.

Third International Conference “Natural Information Technologies” (NIT 2012)

118

(ii) An insertion rule is applied at any position in a string. Again, the result is a multiset in which every string, that
can be obtained by application of an insertion rule to an arbitrary position in an existing string, appears in an
arbitrarily large number of copies.
(iii) If more than one rule, no matter its type, applies to a string, all of them must be used for different copies of
that string.
When changing by a communication step, each node processor sends all copies of the strings it has which
are able to pass its output filter to all the node processors connected to and receives all copies of the strings
sent by any node processor connected with providing that they can pass its input filter.
Formally, we say that the configuration = () directly changes into the configuration
 = () by a communication step, written as if

for every 1 i n.
Let = (V,) be an NEP. By a computation in we mean a sequence of configurations
. . ., where is the initial configuration, and for all i 0.
If the sequence is finite, we have a finite computation. The result of any finite or infinite computation is a language
which is collected in a designated node called the output node of the network. If one considers the output node of
the network as being the node k, and if , , . . . is a computation, then all strings existing in the node k at
some step t - the -th component of - belong to the language generated by the network. Let us denote this
language by (). The time complexity of computing a finite set of strings Z is the minimal number of steps t in a
computation , , . . . , . . . such that Z is a subset of the k-th component of .

A polarized evolutionary processor over is a pair , where:

 is a set of substitution, deletion or insertion rules over the alphabet .
 Formally: . The set represents the set of

evolutionary rules of the processor. As one can see, a processor is “specialized” in one evolutionary
operation, only.

 , is the polarization of the node (negatively, neutral or positively charged, respectively).
We denote the set of evolutionary processors over V by . Clearly, the evolutionary processor described here
is a mathematical concept similar to that of an evolutionary algorithm, both being inspired from the Darwinian
evolution. As we mentioned in the Introduction, the rewriting operations we have considered might be interpreted
as mutations and the filtering process described above might be viewed as a selection process. Recombination is
missing but it was asserted that evolutionary and functional relationships between genes can be captured by
taking only local mutations into consideration [Sancoff, 1992].
A network of polarized evolutionary processors (NPEP for short) is a 7-tuple ;
where:

 and are the input and network alphabet, respectively, .
 is an undirected graph without loops with the set of vertices and the set of edges .

 is called the underlying graph of the network.
 is a mapping which associates with each node the polarized evolutionary

processor .

Third International Conference “Natural Information Technologies” (NIT 2012)

119

 is a valuation of in .
 are the input and the output node of , respectively.

A configuration in a NPEP can change either by an evolutionary step or by a communication step as the rest of
the models. When changing by an evolutionary step, each component C(x) of the configuration C is changed in
accordance with the set of evolutionary rules associated with the node , but when changing by a
communication step, each node processor sends out one copy of each string it has, which has a polarity
different than that of , to all the node processors connected to and receives all the strings sent by any node
processor connected with providing that they have with the same polarity as that of . Note that, for simplicity
reasons, we prefer to consider that a string migrate to a node with the same polarity and not an opposed one.
Formally, we say that the configuration is obtained in one communication step from configuration , written as

 , iff

for all . Note that strings that have the same polarity as that of the node in which they are remain in that
node and can be further modified in the subsequent evolutionary steps, while strings with a different polarity are
expelled. Further, each expelled string from a node that cannot enter any node connected to (no such node
has the same polarity as the string has) is lost.

Implementation
This simulation is assumed to be a foundation for future additions and adaptations as the findings in this field are
moving forward, so the class structure is considered to be lithe by means of the use of interfaces along with
abstract classes which gather the common and required features of the formal definition. The relation and
dependencies of classes for simulating the NEP model are showed in Figure 1, in a simplified way.
When we are using a web based system we have to consider the specificities for this type of technology where a
server receives all upcoming requests and after processing them produces a response. When this processing is
known to be a time consuming procedure, an imminent response is preferred rather than waiting for the whole
computation to be finished, for that reason we consider running the NEP instance within a thread (ThreadNEP)
aside from the request–response process, once the computation is started allowing the access to the NEP when
needed .
In this diagram we state the relation among all the involved classes. We thought the main class NEP should be in
charge of keeping reference to the rest of the well-known components of a NEP such as the alphabet in a form of
a String in which every character is standing for a symbol, the graph, the list of nodes or processors, the stopping
conditions and the type of NEP for stating if it is polarized. This class it is also in charge of initiating and
controlling the evolutionary and communication processes trough the method go() which is in charge of doing this
rotation of steps in accordance with the established model and controlling with the anyStoppingCondition() the
possibility of stopping the processing due to the occurrence of any of the required conditions for stopping the
computation. This class also interacts with others devoted to the data management and NEP configuration
procedure as well as for retrieving the outcomes of a calculation.
For the Graph class we have an array list of Connection which is a class describing a connection between two
nodes by keeping the names of the nodes related in a form of int values, which are also the numbers of the
positions of each node in the list of nodes. The method neighbors(int node) of this class was thought to be of

Third International Conference “Natural Information Technologies” (NIT 2012)

120

use in communication steps for retrieving the list of nodes connected to a given one for next exchange of words
among them.

Fig. 1. Class diagram of the main design.

As we mentioned, the NEP stops when at least one of the stopping condition is met. In this case we have
considered covering the most common ones as in jNEP in [Rosal, 2008]. The Figure 1 shows how from an
interface it was conceived the general structure of the stopping condition by means of the stop(NEP nep) method
allowing future variant to be considered without extended variation since each of the four are already in the
implementing classes (StoppingConditionConsecutiveConfiguration, StoppingConditionWordsDisappear,
StoppingConditionNonEmpty, StoppingConditionStep) of interface IStoppingCondition share the same
method but differing in theirs attributes. Explaining each one of them we say that for the
StoppingConditionConsecutiveConfiguration to succeed stopping the computation if two consecutive identical
configurations are found once communication and evolutionary steps were performed. For the
StoppingConditionWordsDisappear to trigger the stop if none of the words listed are in the NEP. The
StoppingConditionNonEmpty if one of the nodes is non-empty and the StoppingConditionStep for stopping
after a given amount of steps.
The processors are other key components of a NEP simulation, in this they are referred as nodes. The Node
class which has a polarity attribute useful for the polarization process and also having a MultiSet reference,

Third International Conference “Natural Information Technologies” (NIT 2012)

121

standing for the group of words of the processor treated as an ArrayList<Word> and implementing a group of
methods useful for the filtering and rules application processes.
 In the nodes we have a list of rules defined by the IRule interface and instantiated buy a group of the classes:
InsertionRule, DeletionRule, SubstitutionRule the ones are meant to cover the basic model of NEP,
implementing the applyRule(String word) method of the interface and inheriting from the Rule class, not
considered in the class diagram for space reasons. The common attributes come from Rule as symbol, to
represent the symbol to apply the rule to, coming as a String but so far considering the only character it carries
and the attribute how, also a String referring the way it has to be done as in the position the rule has to be
used, having one of this values: left, right, any. This also reworks the basic model which was conceived for
applying rules at the end of the word.
Nodes have two filters as attributes, the inputfilter and the outputfilter which are instantiated from one of the
four filtering classes (Filter1, Filter2, Filter3, Filter4) according to the level of strength in the filtering processes
described in [Martín-Vide, 2003], each one implementing the IFilter interface where the applyFilter() returns a
list of words able to pass the filter and the passFilter() for considering a single word.
EvolutionaryStep is the class conceived to manage the list of nodes for the purpose of performing an
evolutionary step; for doing that and by means of generating a new thread by each node in every step. For that, it
requires the ThreadNode class which uses a node reference to access the node multiset and rules. The run()
method in every thread applies randomly the rules to every word and every copy till no more can be applied.
Once the evolutionary step is finished the NEP commands to the method apply(ArrayList<Node> nodes,Graph
graph) of the CommunicatingStep class to proceed with the exchange of words using the defined filters of each
node.
The need of a way for pleasantly interacting and storing the different designs of NEP is something considered in
this implementation. The use of a web based platform fits for the purpose of availability and manageability. Some
previous application for these models do not present a solution for this matter but for only for storing and reading
from a configuration file which the user has to learn how to create. In the Figure 2 we show the interaction
between components as in a MVC pattern.

Fig. 2. MVC design pattern.

The relationship between classes is centered in the controllers dealing with the logic of the program having one
by each use case, loading, configuring and running, implemented by the servlets LoadNEPServlet
ConfigurationServlet and RunServlet illustrated in Figure 3.

Third International Conference “Natural Information Technologies” (NIT 2012)

122

Fig. 3. Class design for the MVC interaction.

Once the initial page starts it is necessary to upload the file containing the NEP description, specified in a json
syntax, to the NEP instance by means of the getSavedConfiguration(String path) method of the
PessistentConfiguration class contained in the data access package, accessible through the Load NEP link
placed in the menu at the left as shown in Figure 4 which allows us to locate and select the desired configuration.

Fig. 4. Load Page.

Third International Conference “Natural Information Technologies” (NIT 2012)

123

The configuration page is responsible for the main interaction with the user allowing the creation and modification,
of a current NEP. The use of the UserNep class it is given as a translation mechanism between the form of
writing in the visual components and the NEP object oriented structure. For example in Figure 5 for defining the
graph, a structure in the way of tuples of nodes numbers associated with a colon and delimited through brackets
as follows: (0,1)(1,2) (2,0). For that purpose the readGraphString(String sgraph) is in charge of the translation
of a string representation of the graph to a Graph class form, in the opposite direction the writeGraph(NEP nep)
method is responsible of putting in a string form the Graph content required for visualizing it in the
updateConfiguration page.
In this view the colon is used for separating the individual elements as words in the multiset, also the
symbolization -> for describing the rules having consequent, not for the deletion or insertion rules which only
requires the one different from the empty symbol. The filters’ section is shown only if required, for instance when
the NEP is not polarized.
The Node panel also in Figure 5 allows us to move through the different nodes using the <<<<<Previous
Node<<<<<, and >>>>>Next Node >>>>> buttons as well as going directly to the desired one if the
configuration is too long.

Fig. 5.Configuration page

When running the NEP the run() procedure of ThreadNEP instance is activated and the result of the desired
node is shown automatically or by demand as it is illustrated in Figure 6.

Third International Conference “Natural Information Technologies” (NIT 2012)

124

Fig. 6. Running page

Conclusion
In this paper we have described the design and implementation of an abstract computer devise called NEP,
aiming to achieve a solution based in a Web development for gaining accessibility and fitting the most common
variants of the models. The use of a graphic user interface is also one of the first attempts of this type of
simulations allowing a fast and pleasant configuration of the NEP.
For next improvements we are evaluating the use of a data base for storing a group of different results of the
same problem in order to ease the analysis of the outcomes, although it would also improve the configuration
proses.
This work act as an instrument for future analysis of the different variants the NEP family as it will be submitted to
forthcoming developments in order complete a better and more complete solution.

Bibliography
[Bel-Enguix, 2008] Bel-Enguix G., Jiménez M.: A BioInspired Model for Parsing of Natural Languages. Studies in

Computational Intelligence, Springer Verlag, Berlin, 2008, Vol. 129/2008, 369-378.
[Bottoni, 2011] Bottoni, P., Labella, A., Manea, F., Mitrana, V., Petre, I., Sempere, J.: Complexity-preserving simulations

among three variants of accepting networks of evolutionary processors, Springer Science+Business Media B.V. 2011.
[Castellanos, 2001] Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks

of evolutionary processors. Proceedings of IWANN 2001, LNCS 2084, Springer-Verlag, 2001, 621–628.
[Castellanos, 2003] Castellanos, J., C. Martin-Vide, V. Mitrana & J.M. Sempere, Networks of Evolutionary processors, Acta

Informatica. 39 (2003): 517-529.
[Manea, 2004] Manea, F., Martin-Vide, V., & Mitrana, V., Solving 3CNF-SAT and HPP in linear time using WWW, Proc. of

MCU 2004, LNCS, in press.
[Manea, 2006] Manea F., Martín-Vide C., Mitrana V.: A Universal Accepting Hybrid Network of Evolutionary Processors,

Electronic Notes in Theoretical Computer Science, 2006, Vol. 135, 15-23.
[Martín-Vide, 2003] Martin-Vide, C., Mitrana, V., Perez-Jimenez, M., & Sancho-Caparrini, F., Hybrid networks of evolutionary

processors. In: Proc. of GECCO 2003, LNCS 2723, Springer Verlag, Berlin, 2003.
[P un,1998] P un, Gh., Rozenberg, G., & Salomaa, A., DNA Computing. New Computing Paradigms, Berlin, Springer,1998.
[Rosal, 2008] Rosal, E., Nuñez, R., Casteñeda, C., Ortega, A. Simulating NEPs in a cluster with jNEP. Proceedings of

ICCCC, 2008.

Third International Conference “Natural Information Technologies” (NIT 2012)

125

[Sancoff, 1992] D. Sankoff et al. Gene order comparisons for phylogenetic inference:evolution of the mitochondrial genome,
Proceedings of the National Academy of Sciences of the United States of America 89, (1992), 6575-6579.

Authors' Information

David Batard – University of Informatics Sciences, Senior Lecturer in Department of
Research Management, La Habana-, Cuba; e-mail: dbatard@uci.cu
Major Fields of Scientific Research: Natural computing, Science Measurements, Intelligent
systems, database technologies.

Sandra María Gómez Canaval - Department of Languages, Projects and Computer Systems,
University College of Computer Sciences, Technical University of Madrid, Crta. de Valencia
Km 7, 28031 Madrid – Spain; email: sgomez@eui.upm.es

Abraham Gutiérrez Rodríguez – Department of Intelligent Applied Systems, University
College of Computer Sciences, Technical University of Madrid, Crta. de Valencia Km 7, 28031
Madrid – Spain; email: abraham@eui.upm.es

