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A B S T R A C T 

This paper presents a new form of the one-dimensional Reynolds equation for lubricants whose 
rheological behaviour follows a modified Carreau rheological model proposed by Bair. The results of the 
shear stress and flow rate obtained through a new Reynolds-Carreau equation are shown and 
compared with the results obtained by other researchers. 

1. Introduction 

The classic Reynolds formula, Eq. (1), is obtained under the 
Newtonian fluid hypothesis. It therefore does not include the 
variation in viscosity (tj) through the film thickness (h). 

For contacts that are highly loaded with small film thickness, 
which is typical of elastohydrodynamic lubrication (EHL), the fluid 
ceases to be Newtonian. The use of Reynolds equations that include 
non-Newtonian effects has led to improvements in the calculation of 
film thickness [1,2] and in the prediction of the friction coefficient. 

The development of generalised Reynolds equations has been 
frequently based on two-dimensional models [3], such as the one 
presented in this article. This type of models is generally used in 
some applications of gears, cams and bearings [4,5]. 

However, the development of generalised exact Reynolds equa­
tions for non-Newtonian fluids has mainly focussed on fluids that 
fulfil the Eyring rheological model [6-11] or Ellis model [1,6], both of 
which have their limitations for predicting the variation in viscosity 
over a wide range of shear rate [12]. For other non-Newtonian liquid 
models, like the Ostwald-de Waele, Spriggs or Rabinowitsch models, 
exact Reynolds equations can be found in Ref. [13]. 

2. Rheological Carreau model 

The Carreau model [14] is a non-Newtonian model where 
viscosity depends on shear rate, as follows: 

When trying to find the generalised Reynolds equation for a 
non-Newtonian fluid, it is simpler to use a modified Carreau 
Eq. (3), proposed by Bair [1,15], with x as the independent 
variable. This expression is valid for 0.2 < n < 1, which means it 
can be applied to most non-Newtonian fluids that fit the Carreau 
model. Otherwise, a numerical calculation would be required to 
find the velocities field. 

3. Reynolds-Carreau equation 

Bair and Khonsari [13,16] have put forward an approximate 
Reynolds equation adapted to the Carreau model. It is based on a 
numerical adjustment of the equations for flow rate (0_) and 
mid-plane shear stress (xm) taken from 103 numerical simula­
tions for different operating conditions. The dimensionless 
expressions they obtained are as follows for the flow rate and 
mid-plane shear stress, and will serve for making a comparison 
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with the new equations obtained in this article: 
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These equations are fitted for the following dimensionless 
operating ranges: 

71 = 0.3, 0.5 and 0.75 
0.01 < um < 1 and um = - 1 
- 2 7 < p ' < 2 7 
- 0 . 5 < i ; < l (5) 

By taking the balance of forces obtained in Eq. (6) for ^ # 0 and 
making a substitution in the integration variable 
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where zm is defined as the value of the shear stress at point z=Q. 
By making the corresponding change in the integration limits, 
expression (8) is transformed to 
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4. New Reynolds-Carreau equation 

The procedure followed is identical to that for finding the 
Newtonian Reynolds equation. The first step is to balance the 
forces of an element of the contacting fluid, as Fig. 1 shows. 

This gives 

dp _ dz 
dx ~ dz 

(6) 

To obtain the Reynolds equation the velocities field needs to be 
calculated. The field can be defined by taking the integral 
expression as follows, where the origin of z is the mean point of 
the film thickness (-h/2 <z< h/2): 

u(z) = Ui + 
h/2 

du . 
-IT dz 
dZ 

(7) 

Inserting the relationship between viscosity {r¡) and shear 
stress (T) into the velocity gradient gives Eq. (8) 
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Fig. 1. Line contact diagram. 



Integrating Eq. (10) with z > 0 gives the fluid velocity field across 
the film thickness: 

By developing expression (16) and simplifying, we obtain the 
expression for the flow rate: 
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Transforming back to terms of z and developing leads to: 

U = lfl + 
1 - l - ( l / n ) r 

fi(dp/dx) 1 + n 
G¿ + zí+2zmz ^-+[z^-

dp 

dx 

dp 

dx 

dp 
dx 

2x (l + n)/2n 

(1 + n)/2n 

(13) 

By particularising u for z=h/2, Eq. (14) is obtained. This expres­
sion provides the value of zm, which a priori was unknown. 
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This expression (14) has no analytical solution in general. There­
fore, in order to find the value of zm numerical calculation is 
required. In this case, the Newton-Raphson method is used. 

The next step is to calculate the flow rate per unit length by 
integrating the velocities field: 
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By again making the same substitution in the integration variable, 
Eq. (9), the following equation is obtained: 
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Applying the law of conservation of mass will give the Reynolds-
Carreau analytical equation: 
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The resulting expression (20) is a function of zm, which means 
that to find the flow rate, all that is required is to insert the values 
of zm calculated from Eq. (14). 

So that the results from the equations obtained can be 
compared with those found by Bair-Khonsari, Eq. (20) is made 
dimensionless with the same dimensionless parameters used by 
Bair-Khonsari. These parameters are 
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By inserting these parameters in Eqs. (3), (13), (14) and (19), 
dimensionless equation is obtained for the Carreau model, the 
mid-plane shear stress, the flow rate and the Reynolds-Carreau 
equation: 

where ft is given by the expression: 
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Under the following integration rule, obtained through Maple's 
symbolic integration modulus (where the integrand is positive) 
the solution can be calculated: 
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where 2f i is the Gauss hypergeometric function [14], that 
corresponds to a particular case of the generalised form of the 
hypergeometric function or Barnes extended hypergeometric 
function. It is denoted by ¡Fk (a, b, z\ where j is the length of 
vector a and k is the length of vector b. For further clarity the 
following notation is used in this paper: hypergeom([ai, a2 , . . .[, 
lh,b2,...],z) [17,18]. 
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Fig. 2. Dimensionless results for flow rate and mid-plane shear stress compared with those obtained by Bair-Khonsari [16] through simulation and analytical formulation. 

5. Results obtained with the Carreau model modification by Bair 

Having presented the new equations, we will now compare 
the results for the flow rate and mid-plane shear stress obtained 
for different operating conditions with those obtained by Bair-
Khonsari through their equations and simulations. 

The appendix shows different operating conditions (um, E, p' 
and n) together with the results obtained by Bair-Khonsari [16], 
(Q_sim and Q_Bair, %m.sim and Tm;Bair), and the new results (Q_new and 
Tm;„ew) through Eq. (22). 

Fig. 2 shows the results obtained in graphic form. The values 
calculated through analytical expressions (5) and (22) are shown 
compared with the values obtained through simulations, which 
are represented by the line (y=x). 

The errors obtained are less than 6% for the values of Tmand less 
than 8% for the values of Q.newin all conditions. If a comparison is 
made with the data obtained by Bair-Khonsari [16], the errors for 
flow rate are of the same order, but the results for mid-plane shear 
stress over the whole simulated range are generally better. 

6. Particularisation for the Ellis and Rabinowitsch models 

After verifying the new equations, they are particularised for 
n = l/3 where the Carreau model is equivalent to Rabinowitsch 
and Ellis equations [1[. For these two models analytical results of 
the Reynolds equation are published in Refs. [l,13,19],and there­
fore the results derived from the new equations can be compared 
with the existing equations for this particular case. 

By substituting n = l/3 in (3) and (14) the particular Theologi­
cal model (23) is found, whereas Eq. (24) gives the shear stress in 
the mid-plane, xm. 
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In order to verify the flow rate equation, expression (18) 
particularised to n = l/3 leads to the polynomial 
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By inserting Eq. (25) into (19) and developing, flow rate 
expression (26) is obtained . 
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If Eqs. (24) and (26) are developed to deduce the mid-plane 
shear stress and flow rate, a complete equivalency is found 
with the results presented by Bair [1,13] when regarding the 
Rabinowitsch model and the particular case of the Ellis model 
when n = l /3. 

7. Conclusions 

This article proposes a new Reynolds-Carreau equation for line 
contact and expressions for the mid-plane shear stress and flow 
rate. The equations have been obtained in a general way, unlike 
the approximate expressions published previously for the Carreau 
model, which are obtained by fitting the simulations to specific 
conditions. Therefore, the new equations are applicable to a wider 
range of conditions. 

The new formulae are analytical, simple and easy to imple­
ment since the hypergeometric function can be found in most 
programming libraries (Matlab, Mathematica, Maple among 
others) and moreover the results obtained with new equations 
show a good correlation with simulations presented by Bair-
Khonsari [16]. 

In addition, the presented equations have been particularised 
for n = l/3 in order to obtain comparable expressions to the Ellis 
and Rabinowitsch models. As analytical equations are available 
for the Ellis and Rabinowitsch models, it has been verified that the 
particular solution attained by using the new equations is 
identical to that presented previously. 

The Carreau model describes the behaviour of a large number 
of lubricants and we hope that the equations deduced will be of 
help in calculating friction and film thickness in line contacts 
under elastohydrodynamic lubrication. Moreover, the use of 
analytical equations facilitates the solving process because it 
avoids numerical integration of the velocity field of the fluid, 
unlike numerous generalised Reynolds equations where flow 
factors are used [6,20,21]. 
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Table A.1 
Summary 

"m 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
-1 
-1 
-1 

of results. 
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0 
0 
0 
0 
0 
0 
0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0 
0 
0 
0 
0 
0 
0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0 
0 
0 
0 
0 
0 
0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0 
0 
0 
0 
0 
0 
-0.5 
-0.5 

P' 

0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
9 
27 
18 
0.111 
3 
27 
-0.111 
-3 
-27 
0.111 
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n 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

^J-sim 

9.07E-02 
7.20E-02 
1.19E-02 
-3.69E-01 
-1.40E + 01 
-5.49E + 02 
-1.42E + 02 
9.10E-02 
7.23E-02 
1.20E-02 
-3.69E-01 
-1.40E + 01 
-5.49E + 02 
-1.42E + 02 
9.90E-01 
9.72E-01 
9.12E-01 
5.31E-01 
-1.31E + 01 
-5.48E + 02 
-1.41E + 02 
9.91E-01 
9.67E-01 
8.93E-01 
5.05E-01 
-1.31E + 01 
-5.48E + 02 
-1.41E + 02 
9.99E + 00 
9.98E + 00 
9.92E + 00 
9.53E + 00 
-4.12E + 00 
-5.39E + 02 
-1.32E + 02 
9.94E + 00 
9.67E + 00 
9.29E + 00 
-4.20E + 00 
-5.39E + 02 
-1.32E + 02 
-1.01E + 00 
-1.47E + 00 
-5.50E + 02 
1.009E + 00 
1.47E + 00 
5.50E + 02 
9.85E-01 
5.00E-01 

Q-Bair 

9.075E-02 
7.219E-02 
1.304E-02 
-3.536E-01 
-1.208E + 01 
-6.444E + 02 
-1.466E + 02 
9.075E-02 
7.219E-02 
1.304E-02 
-3.536E-01 
-1.208E + 01 
-6.444E + 02 
-1.466E + 02 
9.907E-01 
9.722E-01 
9.130E-01 
5.464E-01 
-1.118E + 01 
-6.435E + 02 
-1.457E + 02 
9.907E-01 
9.722E-01 
9.130E-01 
5.464E-01 
-1.118E + 01 
-6.435E + 02 
-1.457E + 02 
9.991E + 00 
9.972E + 00 
9.913E + 00 
9.546E + 00 
-2.185E + 00 
-6.345E + 02 
-1.367E + 02 
9.991E + 00 
9.972E + 00 
9.913E + 00 
-2.185E + 00 
-6.345E + 02 
-1.367E + 02 
-1.009E + 00 
-1.454E + 00 
-6.455E + 02 
1.009E + 00 
1.454E + 00 
6.455E + 02 
9.907E-01 
5.464E-01 

*J-new 

9.073E-02 
7.171E-02 
1.877E-03 
-5.817E-01 
-1.532E + 01 
-5.548E + 02 
-1.453E + 02 
9.065E-02 
7.148E-02 
1.429E-03 
-5.819E-01 
-1.532E + 01 
-5.548E + 02 
-1.453E + 02 
9.907E-01 
9.717E-01 
9.019E-01 
3.183E-01 
-1.442E + 01 
-5.539E + 02 
-1.444E + 02 
9.850E-01 
9.552E-01 
8.653E-01 
3.014E-01 
-1.442E + 01 
-5.539E + 02 
-1.444E + 02 
9.991E + 00 
9.972E + 00 
9.902E + 00 
9.318E + 00 
-5.416E + 00 
-5.449E + 02 
-1.354E + 02 
9.916E + 00 
9.750E + 00 
9.279E + 00 
-5.503E + 00 
-5.449E + 02 
-1.355E + 02 
-1.009E + 00 
-1.682E + 00 
-5.559E + 02 
1.009E + 00 
1.682E + 00 
5.559E + 02 
9.850E-01 
3.014E-01 

^•m;sim 

0 
0 
0 
0 
0 
0 
0 
5.00E-
4.96E-
4.55E-
1.82E-

-02 
-02 
-02 
-02 

9.90E-04 
2.90E-04 
2.60E-04 
0 
0 
0 
0 
0 
0 
0 
4.62E-
4.58E-
4.21E-
1.78E-
1.50E-
1.18E-

-01 
-01 
-01 
-01 
-02 
-03 

2.20E-03 
0 
0 
0 
0 
0 
0 
0 
1.62E + 00 
1.59E + 00 
1.53E + 00 
1.49E-01 
9.90E-
2.90E-
0 
0 
0 
0 
0 
0 

-03 
-02 

-4.62E-01 
-1.79E-01 

^•m;Bair 

0 
0 
0 
0 
0 
0 
0 
4.995E-
4.977E-
3.898E-
5.499E-

-02 
-02 
-02 
-03 

4.293E-04 
3.308E-05 
8.520E-05 
0 
0 
0 
0 
0 
0 
0 
4.624E-
4.607E-
3.608E-
5.091E-
3.974E-
3.062E-

-01 
-01 
-01 
-02 
-03 
-04 

7.887E-04 
0 
0 
0 
0 
0 
0 
0 
1.598E + 00 
1.593E + 00 
1.247E + 00 
1.374E-02 
1.059E-
2.726E-
0 
0 
0 
0 
0 
0 

-03 
-03 

-4.624E-01 
-5.091E-02 

Tm;new 

0 
0 
0 
0 
0 
0 
0 
4.968E-02 
4.830E-02 
3.849E-02 
1.264E-02 
1.414E-03 
1.145E-04 
2.925E-04 
0 
0 
0 
0 
0 
0 
0 
4.143E-01 
4.067E-01 
3.457E-01 
1.256E-01 
1.414E-02 
1.145E-03 
2.925E-03 
0 
0 
0 
0 
0 
0 
0 
1.403E + 00 
1.397E + 00 
1.346E + 00 
1.412E-01 
1.145E-02 
2.925E-02 
0 
0 
0 
0 
0 
0 
-4.143E-01 
-1.256E-01 



Table A.1 (continued) 

«m 

1 
-1 
-1 
-1 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

ZJ 

-0.5 
-0.5 
-0.5 
-0.5 
0 
0 
0 
0 
0 
0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0 
0 
0 
0 
0 
0 
0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0 
0 
0 
0 
0 

V 

27 
0.111 
3 
27 
0.333 
1 
3 
9 
27 
18 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
1 
3 
9 
27 
18 
0.111 
0.333 
3 
9 
27 
0.111 
0.333 
3 
9 
27 

( i 

0.3 
0.3 
0.3 
0.3 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 

{¿sim 

-5.48E + 02 
-1.009E + 00 
-1.50E + 00 
-5.50E + 02 
-1.79E-02 
-7.65E-02 
-3.33E-01 
-2.54E + 00 
-2.28E + 01 
-1.01E + 01 
-1.79E-02 
-7 .65E-02 
- 3 . 3 3 E - 0 1 
-2.54E + 00 
-2.28E + 01 
-1.01E + 01 
9.07E-02 
7.20E-02 
1.34E-02 
- 2 . 4 3 E - 0 1 
-2.45E + 00 
-2.27E + 01 
-1.00E + 01 
9.09E-02 
7.23E-02 
1.36E-02 
- 2 . 4 3 E - 0 1 
-2.45E + 00 
-2.27E + 01 
-1.00E + 01 
9.12E-02 
7.24E-02 
1.35E-02 
-2.43E-01 
-2.45E + 00 
-2.27E + 01 
-1.00E + 01 
9.90E-01 
9.61E-01 
8.74E-01 
5.95E-01 
-1.58E + 00 
-2.18E + 01 
-9.10E + 00 
9.07E-02 
7.21E-02 
- 1 . 8 2 E - 0 1 
-1.03E + 00 
-4.72E + 00 
9.12E-02 
7.26E-02 
- 1 . 8 2 E - 0 1 
-1.02E + 00 
-4.72E + 00 

Ufiair 

-6.435E + 02 
-1.009E + 00 
-1.454E + 00 
-6.455E + 02 
-1.847E-02 
-8.276E-02 
-3.623E-01 
-2.328E + 00 
-2.285E + 01 
- 9.493 E +00 
-1.847E-02 
-8 .276E-02 
-3 .623E-01 
-2.328E + 00 
-2.285E + 01 
- 9.493 E +00 
9.069E-02 
7.153E-02 
7.241E-03 
-2 .723E-01 
-2.238E + 00 
-2.276E + 01 
-9.403E + 00 
9.069E-02 
7.153E-02 
7.241E-03 
-2 .723E-01 
-2.238E + 00 
-2.276E + 01 
-9.403E + 00 
9.069E-02 
7.153E-02 
7.241E-03 
-2 .723E-01 
-2.238E + 00 
-2.276E + 01 
-9.403E + 00 
9.907E-01 
9.715E-01 
9.072E-01 
6.277E-01 
-1.338E + 00 
-2.186E + 01 
-8.503E + 00 
9.050E-02 
7.071E-02 
-2 .100E-01 
-1.025E + 00 
-4.487E + 00 
9.050E-02 
7.071E-02 
-2 .100E-01 
-1.025E + 00 
-4.487E + 00 

{¿.new 

-5.539E + 02 
-1.015E + 00 
-1.699E + 00 
-5.559E + 02 
-1.798E-02 
- 7.933E-02 
-3.699E-01 
-2.640E + 00 
-2.290E + 01 
-1.024E + 01 
-1.798E-02 
-7 .933E-02 
-3 .699E-01 
-2.640E + 00 
-2.290E + 01 
-1.024E + 01 
9.074E-02 
7.202E-02 
1.067E-02 
-2 .799E-01 
-2.550E + 00 
-2.281E + 01 
-1.015E + 01 
9.071E-02 
7.192E-02 
1.045E-02 
-2 .801E-01 
-2.550E + 00 
-2.281E + 01 
-1.015E + 01 
9.061E-02 
7.163E-02 
9.785E-03 
-2 .806E-01 
-2.550E + 00 
-2.281E + 01 
-1.015E + 01 
9.837E-01 
9.513E-01 
8.564E-01 
5.615E-01 
-1.662E + 00 
-2.191E + 01 
-9.251E + 00 
9.075E-02 
7.217E-02 
-1 .868E-01 
-1.034E + 00 
-4.732E + 00 
9.070E-02 
7.204E-02 
-1 .872E-01 
-1.034E + 00 
-4.732E + 00 

Lm;sim 

-1.18E-03 
4.62E-01 
1.78E-01 
1.18E-03 
0 
0 
0 
0 
0 
0 
5.00E-03 
4.70E-03 
3.20E-03 
1.10E-03 
6.00E-04 
6.40E-04 
0 
0 
0 
0 
0 
0 
0 
4.99E-02 
4.96E-02 
4.70E-02 
3.09E-02 
1.12E-02 
4.00E-03 
5.80E-03 
9.97E-02 
9.90E-02 
9.39E-02 
6.16E-02 
2.20E-02 
7.37E-03 
1.12E-02 
8.40E-01 
8.37E-01 
8.05E-01 
5.88E-01 
2.22E-01 
7.40E-02 
1.11E-01 
0 
0 
0 
0 
0 
9.97E-02 
9.95E-02 
8.36E-02 
6.55E-02 
4.28E-02 

Lm;Bair 

-3.062E-04 
4.624E-01 
5.091E-02 
3.062E-04 
0 
0 
0 
0 
0 
0 
4.992E-03 
4.496E-03 
1.942E-03 
6.511E-04 
2.170E-04 
3.256E-04 
0 
0 
0 
0 
0 
0 
0 
4.997E-02 
4.989E-02 
4.493E-02 
1.941E-02 
6.507E-03 
2.169E-03 
3.254E-03 
9.975E102 
9.959E-02 
8.969E-02 
3.875E-02 
1.299E-02 
4.330E-03 
6.495E-03 
8.409E-01 
8.395E-01 
7.561E-01 
3.266E-01 
1.095E-01 
3.650E-02 
5.475E-02 
0 
0 
0 
0 
0 
9.988E-02 
9.982E-02 
7.287E-02 
5.062E-02 
3.510E-02 

Lm,new 

-1.145E-03 
4.143E-01 
1.256E-01 
1.145E-03 
0 
0 
0 
0 
0 
0 
4.932E-03 
4.472E-03 
2.773E-03 
1.085E-03 
3.694E-04 
5.522E-04 
0 
0 
0 
0 
0 
0 
0 
4.986E-02 
4.926E-02 
4.469E-02 
2.773E-02 
1.085E-02 
3.694E-03 
5.522E-03 
9.936E-02 
9.819E-02 
8.918E-02 
5.545E-02 
2.169E-02 
7.387E-03 
1.104E-02 
7.857E-01 
7.819E-01 
7.487E-01 
5.365E-01 
2.168E-01 
7.387E-02 
1.104E-01 
0 
0 
0 
0 
0 
9.978E-02 
9.939E-02 
8.215E-02 
6.009E-02 
4.196E-02 
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