A computer program for the analysis of the dynamic bending-torsion coupling in bridges using a minicomputer

R. PICON
ETS Ingenieros Industriales, Universidad de Sevilla, Seville, Spain
E. ALARCON
ETS Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid 3, Spain

Abstract

The analysis of modes and natural frequencies is of primary interest in the computation of the response of bridges. In this article the transfer matrix method is applied to this problem to provide a computer code to calculate the natural frequencies and modes of bridgelike structures. The Fortran computer code is suitable for running on small computers and results are presented for a railway bridge.

INTRODUCTION

The analysis of modes and natural frequencies is of primary interest in the computation of the response of bridges. In the case of simple beams in which the load is applied eccentrically the torsion modes are very important (Fig. 1). If the applied loads are through the torsion centre and parallel to one of the principal inertia axes of the section, there is a displacement in the force direction and vibrations can be easily studied.
If the loads have a general direction then the displacement can be obtained adding the components in the two principal directions. In general the load is not at the torsion centre and then, there is a complex phenomenon of bending and torsion (Fig. 2). The method of working is the use of an equivalent system: a force through the torsion centre and a torsion moment in it.

COUPLING THROUGH SHAPE FUNCTIONS

The energy method is very well adapted to the use of orthogonal shape functions. If y and θ are the displacement and twist in the torsion centre, the response can be approached setting:

$$
\begin{gather*}
y(x, t)=\sum_{1}^{m} Y_{i}(x) \cdot q_{i}(t) \tag{1}\\
\theta(x, t)=\frac{1}{e_{0}} \sum_{m+1}^{m} Y_{i}(x) \cdot q_{i}(t) \tag{2}
\end{gather*}
$$

This leads to a matrix system as:

$$
\begin{equation*}
\mathbf{A} \ddot{\mathbf{q}}+\mathbf{B} \mathbf{q}=0 \tag{3}
\end{equation*}
$$

in which typical elements are:

$$
\begin{align*}
a_{r i} & =\int_{0}^{L} m Y_{r} Y_{i} \mathrm{~d} x \tag{4}\\
\left(k_{r i}\right)_{f} & =\int_{0}^{L} E I Y_{r}^{\prime \prime} Y_{i}^{\prime \prime} \mathrm{d} x \tag{5}
\end{align*}
$$

Figure 1.

Figure 2.

Figure 3.

Figure 4.

$$
\begin{equation*}
\left(k_{r i}\right)_{t}=\int_{0}^{L} \frac{G J}{e_{0}^{2}} Y_{r}^{\prime} Y_{i}^{\prime} \mathrm{d} x \tag{6}
\end{equation*}
$$

The analytical evaluation of integrals is difficult and the derivatives make worse approximation than the original functions.

Nevertheless, as it is well known, the use of locally defined shape functions leads to the finite element method (FEM).

COUPLING THROUGH TRANSFER MATRICES

The use of transfer matrices ${ }^{1}$ was overpassed by the FEM boom. Nevertheless in some problems, just like this under study, its use can be very fruitful.

As is known, the masses of the beam are lumped in some nodes which are related by elastic bars. In free vibrations loads are only inertial, therefore the general transfer matrix is subdivided in a point matrix which relates forces between both sides of every mass and a field matrix, which refer to both ends of every bar.
If

$$
\mathbf{Z}=\left\{\begin{array}{l}
y \\
\alpha \\
M \\
Q \\
\hdashline \cdots \\
\hdashline \\
M_{t}
\end{array}\right\}
$$

contains the characteristic features in every node, then

$$
\begin{equation*}
\mathbf{Z}_{i}^{r}=\mathbf{U}_{p i} \mathbf{Z}_{i}^{l} \tag{8}
\end{equation*}
$$

where $\mathbf{U}_{p i}$ is the point matrix and the superior index refer to the 'right' and 'left' words.

In every field:

$$
\begin{equation*}
\mathbf{Z}_{i+1}^{l}=\mathbf{U}_{f i} \mathbf{Z}_{i}^{r}=\mathbf{U}_{f i} \mathbf{U}_{p i} \mathbf{Z}_{i}^{l} \tag{9}
\end{equation*}
$$

If one defines the transfer matrix in section i as:

$$
\begin{equation*}
\mathbf{Z}_{i+1}^{l}=\mathbf{U}_{i} \mathbf{Z}_{i}^{l} \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbf{U}_{i}=\mathbf{U}_{f i} \mathbf{U}_{p i} \tag{11}
\end{equation*}
$$

For the simple beam case, the field matrix is:

$$
\mathbf{U}_{i}^{F}=\left(\begin{array}{cccc}
1 & L_{i} & L_{1}^{2} / 2 E I_{i} & L_{i}^{3} / 6 E I_{i} \tag{12}\\
0 & 1 & L_{i} / E I_{i} & L_{i}^{2} / 2 E I_{i} \\
0 & 0 & 1 & L_{i} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

If there is only torsion:

$$
\mathbf{U}_{i}^{T}=\left(\begin{array}{cc}
1 & L_{i} / G J_{i} \\
0 & 1
\end{array}\right)
$$

where G is the shear modulus and J the polar moment of inertia of the bar cross-section.

As the coupling is a dynamic one ${ }^{2}$ it will only appear in the point matrices, so in general:
$U_{c i}=\left(\begin{array}{cccc:cc}1 & L_{i} & L_{i}^{2} / 2 E I_{i} & L_{i}^{3} / 6 E I_{i} & 0 & 0 \\ 0 & 1 & L_{i} / E I_{i} & L_{i}^{2} / 2 E I_{i} & 0 & 0 \\ 0 & 0 & 1 & L_{i} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0 & 1 & L_{i} / G J_{i}^{\prime} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
and

$$
\left\{\begin{array}{c}
 \tag{14}\\
y \\
\alpha \\
M \\
Q \\
\theta \\
M_{t}
\end{array}\right\}_{i+1}^{1}=U_{c i}\left\{\begin{array}{c}
y \\
\alpha \\
M \\
\theta \\
M_{t}
\end{array}\right\}_{i}
$$

To establish the point matrix it is worth remembering that coupling appears because of the lack of coincidence of the torsion centre and the centroid.

The equilibrium is:

$$
\begin{equation*}
Q_{i}^{r}=Q_{i}^{l}+p^{2} m_{i} y_{i}^{m} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
M_{t}^{r}=M_{t}^{l}-p^{2} m_{i} y_{i}^{m} e_{i}-p^{2} J_{i} \theta_{i} \tag{16}
\end{equation*}
$$

where $y_{i}^{m}=$ centroid displacement, $p=$ natural circular frequency, $e_{i}=$ eccentricity, $J_{i}=$ polar mass moment.

The torsion centre displacement is:

$$
\begin{equation*}
y_{i}=y_{i}^{m}-e_{i}-\theta_{i} \tag{17}
\end{equation*}
$$

and then

$$
\begin{gathered}
Q_{i}^{r}=Q_{i}^{l}+p^{2} m_{i} y_{i}+p^{2} m_{i} e_{i} \theta_{i} \\
M_{i}^{r}=M_{t}^{l}-p^{2} m_{i} e_{i} y_{i}-p^{2} J_{i} \theta_{i}-p^{2} m_{i} e_{i}^{2} \theta_{i}
\end{gathered}
$$

The point matrix is:

$$
\mathbf{U}_{p i}=\left(\begin{array}{cccc:cc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
p^{2} m_{i} & 0 & 0 & 1 & p^{2} m_{i} e_{i} & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 & 0 \\
\left(-p^{2} m_{i} e_{i}\right) & 0 & 0 & 0 & -p^{2}\left(m_{i} e_{i}^{2}+J_{i}\right) & 1
\end{array}\right)
$$

The $\mathbf{U}_{c i}$ and $\mathbf{U}_{p i}$ products is the transfer matrix \mathbf{U}_{i} for the i knot (shown in equation 19).

HAMA subroutine, whose argument define the masselement unity.

The only remaining task is to apply the boundary conditions from which the frequency determinant is obtained. The value of the last (RE) is the final product of the program and, when this value is zero, we know that it is a natural mode of vibration.
Though the program is for the analysis of natural modes with coupling, it is also possible to compute bending frequencies (by the residuals 1 to 6) or torsion frequencies (by residuals 7 to 9).

In these cases it is only necessary to put the eccentricity (EX) equal to zero and to define with a non-zero number (1 , for instance) the necessary data to circumvect a divide by zero.
If one is studying non-circular sections it will be necessary to define the adequate connection factor (FACT).
In the circular case $\mathrm{FACT}=1$.
As an application we have considered the following boundary conditions $i_{p} e$: hinged ends for bending and built-in ends for torsion. It is a simple matter to establish other kinds of conditions.
The following step in the program is the change of sign detection in (RE) to get the number of modes established in the input (NFN).

$$
\mathbf{u}_{i}=\left(\begin{array}{cccc:cc}
\left(1+\frac{p^{2} m_{i} L_{i}^{2}}{6 E I_{i}}\right) & L_{i} & \frac{L_{i}^{2}}{2 E I_{i}} & \frac{L_{i}^{3}}{6 E I_{i}} & p^{2} m_{i} e_{i} L_{i}^{3} & 6 E I_{i} \tag{19}
\end{array}\right] 0
$$

It is worth noting that if $e_{i}=0$ there is no coupling and both phenomenon are independent.

COMPUTER PROGRAM

Using the previous theory a computer program to be used in a Hewlett-Packard 21 MX has been prepared.

There are a variable number of masses, with a maximum of 200. The program allows $\binom{\mathrm{K} 1=1}{\mathrm{~K} 1=2}$ different elements of uniform cross-section. (Numbers in brackets refer to program variables.)
Automatically masses are lumped at the ends of every element. Then mass and constant characteristics of every element are read (D1, D2, D3, D4, D5, D6).

Using the data, transfer matrices are formed, starting with the last mass-element unity (a fictitious element of zero length is added for preventing the symmetry of the procedure). Matrix products gives the transfer matrix which relates the ends of every element.
The transfer matrices formation is completed by the

The INPUT-OUTPUT units are defined by an internal subroutine (RMPAR) which establishes the correspondence between the LOG and INPUT units and between the NPR and the OUTPUT. Variables to define input and output are provided through the keyboard in the same order as they are executed in the program.

Figure 5. Single track bridge: bending

Figure 6. Double track bridge: two trains bending

Figure 7. Double track bridge: one train bending $(E X=0)$

Input data

If $\mathrm{K} 1=1$

1. Header card, columns $1-80$
2. Column 5: K1(1)

Columns 9-10: number of the sought residue, after boundary conditions (see program listing)
3. Columns 8-9-10: number of masses Columns 10-20: number of sought natural modes.
4. Beam length (LT), beam mass (MW), frequency increment (INW), initial frequency (WINI) and correction factor for the inertia polar moment (FACT) in 10 columns fields with point.
5. Inertia bending moment (1), radius of gyration of the masses (RGIR), called D2 in the reading of data), polar moment (MIP). Young's modulus (E), shear modulus (G) and eccentricity (EX) in 10 columns fields with point.
If $K 1=2$, everything is the same but the 5 th and following cards in which we define the properties of masses and bars in 10 columns fields with point, with a maximum of 7 fields every card.

The input order is: inertia bending moments (l), polar mass moments (MIMPA), polar cross-section moments (MIP), elasticity modulus (E), shear modulus (G), eccentricity (EX), element length (L) and mass (M).

If there are 20 masses there will be 3 cards (7, 7 and 6) with bending inertias, then 3 polar mass inertias, etc.

Figure 8. Double track bridge: one train torsion $(E X=0)$

Figure 9. Double track bridge $=$ one bending-torsion coupling ($E X=0$)

Output

The program produces the following output: Echo-check of first card and number of masses, listing of frequencies and residuals.

Example

The example presented here (Fig. 2) corresponds to the characteristics of a prestressed precast bridge of Barton ${ }^{3}$. The Figure is of one-track bridge but a double one will be built with two of them.

The span is 13 m and we have taken the train-mass as 10 t / ml. There is also a ballast layer of 40 cm .

The residuals for the first two frequencies have been plotted in Figs. 5, 6, 7, 8, 9. Number of lumped masses was 5 and it is worth noting that an increase to 20 masses affects results very slightly (about 32).

REFERENCES

1 Pestel and Leckie, Matric Methods in Elastomechanics - McGrawHill, New York.
2 Hurty and Rubinstein, Dynamics of Structures, Prentice-Hall, Englewood Cliffs.
3 R. M. Barton, Prestressed precast concrete railroad bridges, J. Struct. Div. ASCE, 1968, (12).

```
d001 FTN4,L
OGO2 FROGRAM PGTR
040% C
0064 E
0005 C
OGOG C * FROGRHM TO COIGPUTE THE NATURHL FRECUENCIES GF A
OGOT B : CBNTINUDUS SYSTEM USING THE TRANSFER NATRIK METHOL,
```



```
0009 C
00:0 C
00115
0):2
00:3
0644 
0015 C
0%16
0017
0018
0019 1
0020
0021
0022
002
0024
0025
0026
002?
0%28
0029
9030
043:
0032
0033
0634
9035
0036 口
0037 B
0038 E
0030 O
0%4%
004!
0042
0043
0044
0045 C
0045 C
0447 C
0048 EIMENSION IFAR<5:
0949 CHLL RMPARCIFAR?
0050 LDG= 1PAR(1)
0051 NFR=[FMRC2%
IFCLDG LE 0; LOG=1
005.3
0%55 C INITIAL VALUES OF THE COHSTANTS
005 C
0057 C=1
0056 NMO=0
```

0059 C
OOEO E REAC TITLE
9061 C
REACCLDG，102）A
$\begin{array}{lr}0062 & \text { REACGLOGSO } \\ 0063 & 102 \\ 0.0 R O R T(40 A 2)\end{array}$
0064 D
0065 0
006E D
0067
0068
0069
0676
0671
0072
0.97

0674
6075
0076
$00 ? 7$
0078
6079
0080
698：
0902
9083
909． 4
6005
0986
0687
0088
8489
9090
0801
01092
0.943

0094
0695
0696
9097
0698
0690
0100
0.6
$0102 \quad \mathrm{C}$
9：13
9104
0.05

0106
0107
a 108
0110 E
0 ± 6
014
04.2

4123
0.14

0125
0156
0187 E
$0: 8 \mathrm{C}$

L．

C

43 FORMAT（215）
FEACOLOG， 10 INM，NFH，LT，MY，INW，WINI，FACT

GQ TO（46，41）K1
41 REAC（LOG，21）（I（J），J＝1，NM）
［ CH 明 $\mathrm{C}=1$
READCLOG，21：（MIFMACd：$J=1$ ，NM：
REAC＜LDG，21：（MIP（Jン，$=1, N M)$
MIF（NM）＝ 1
REGE（LDG，21；（E $(J), j=1, N M)$
REAC（LDG，21：（G（J），$s=1, N M)$
FEACREQG，21；EXCS：$J=1$ ，NG：
READ（LDG，21）（LCJ），$j=1, N M$ ）
21 FDRFAT（7F10．2）
LC日M：
READCLDG，21； $\operatorname{MCJ}, j=1, N M$ ）
GO TG GUO
$40 \mathrm{HN}=\mathrm{A}$ 的－1
［0］ $3 \quad J=1$ ，NN
$3 \mathrm{LC} \cdot=\mathrm{LT}$（CNM－I）

$00 \quad 4 \quad 3=2, \mathrm{HN}$

READ：LDG，21，001，02，02，04，05，06
$0070 \quad j=1, \mathrm{MM}$
IO $x=02$
MPFAG（J）＝M（j）＊C2＊＊2
MIPCJ $=03$
$E(d)=04$

1
I．
BOO bRITE（NPR，20）A：NM

－
Fory the first transfer matrix using the initial freguenci．
C
$42 \quad \mathrm{~b}=\mathrm{HIN}$
59 M二隌
CALL HAMACH：
［1］ 5 II $=1$ ， 6
$006 \quad d j=1,6$
EUCII，JJ）＝UN（II，JJ）
5 Contimije

```
4129
0,20 C
421 OO 7 LL=2,NM
422
012z
0.24
0.25
426
012?
O128
0}2
0.30
0:31
4.32
0133
0.34
9.35
9136
013?
) 138
0:39
%4%
0141
0+42 C
G:4Z COMPUTE RESIDUE DEFENEIMG ON EOUHDARY CONDITIONS.
O144 G FRIHT FBECUEHCY GNO RESIOHE
0:45 0
0.46
0.4,
0:40 0
1440}
4-50
4:51
0.52 0
0.53 E
0154 0
0155
0.56
0.57 0
0):59 C
0.5% 0
0,160
&&b
0162 C
9.63 6
6:64 0
0.6.5
4.66
0.67 0
$168 G
4-69 6
0, {%;
0.71
0.72 5
0173 0
0.74 C
0175
0.76
0%7% 
GIO C TORSIONGL FFEE ENGS EEAM. - - -
```

$0: 79$ 0180 0101 8.82 0183 $0: 24$ に 0185 4186 $010 ?$ 91080 0.89 C 0.90 6191 0.92 C 0193 E $0.94 \quad 0$ 0195 0196 $6: 97$ 0.98

6199 $0200 \quad 1$ 0201 C $0202 \quad 1$ 9203 820 4205 0206 020,7 6208 020 42to 42ti 422 $92: 3$ 0214
0215 02 E
0227
92：8
228
9226
0221
9222
0223
a2e
0225
6226
9227
0229
0229
0230
0231
0232
6233
0234
0235
0236
0237
0238
C

E

C

C

C

C ．

0

C
$53 \mathrm{RE}=1(5,5)$ G日 1097

TORSIONAL FIXEO ENOS EEAM．－8－
$55 \mathrm{RE}=0(5.6)$
60 T0 97
C TORSIONHL CANTILEVER EEAM．－－
$56 R E=11(6,6)$ GOT0 97

E COUFLIMG FLEXURAL SIMFLY－SUPFBRTEQ．TOREIOMAL FIXEL ENDS．－ $10-$

500 FORHACEX，E13．6，10X，E13．E）
C DETECT GHGMGEG OF SIGN．IHCREASE FRECUENEY AND GO BACK IN THE D ITERHTIGG PROCESS $E=R E$ IFCE）82，84：83
E3 $G=W+\mathrm{H} H$ $C=R E$ COTG19
Q2 $440=4 \mathrm{Ma}+1$ IFCH190－NFN： $83,18,15$
64 RE＝ BOTR 82
28 ETOF ENB

FORM THE TRANSFER MATRICES
SUERGUTINE HAMACN：

 UR $\mathrm{B}(1,8)=0$
 15 K（ 2,2 ）＝ 1 UH（2， 3 ）$=(\mathrm{L}(\mathrm{N})$ ）（E（N）＊T（N）：

 13 an $(2,6)=0$
 $1 \mathrm{n}=(3,2)=0$. UN（ 3,3$)=1$ ． $11 \mathrm{H}(3,4)=\mathrm{L}(\mathrm{N}$ ）
 Uト $(3,6)=0$ ． $U N(4,1 \geqslant=(W * * 2 * M(N)$ ）
$+$
$U N(4,2)=0$
UR (4, 3) = $=0$
UN(4, 4)=1

UN(4,5)=0

UN(5, 2) $=0$
UN $5.5,3:=0$.
15 (5 5, 4) =0

UNC 6,2$)=0$
$13 \mathrm{H}(6,3)=0$

13日 $(6,6)=1$.
RETURH:
EHO

