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The current I to a cylindrical Langmuir probe with a bias Up satisfying b � eUp=mec2 � Oð1Þ is

discussed. The probe is considered at rest in an unmagnetized plasma composed of electrons and

ions with temperatures kTe � kTi � mec2. For small enough radius, the probe collects the

relativistic orbital-motion-limited (OML) current IOML, which is shown to be larger than the non-

relativistic result; the OML current is proportional to b1=2 and b3=2 in the limits b� 1 and b� 1,

respectively. Unlike the non-relativistic case, the electron density can exceed the unperturbed

density value. An asymptotic theory allowed to compute the maximum radius of the probe

to collect OML current, the sheath radius for probe radius well below maximum and how the ratio

I/IOML drops below unity when the maximum radius is exceeded. A numerical algorithm that

solves the Vlasov-Poisson system was implemented and density and potential profiles presented.

The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers

are discussed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729662]

I. INTRODUCTION

Langmuir probes1 have been used for decades to make

plasma diagnostics in laboratory and space conditions. The

method rests on theoretical models, which provides the link

between certain plasma parameters, such as density and tem-

perature, and the measured current-voltage characteristics.

Probe modeling also applies to space electrodynamic bare

tethers, which freely collect charge from the ambient plasma

and act like a giant Langmuir probe (lengths of the order of

kilometers) under bias arising from the motional field vrel �
B induced by the relative tether-plasma motion (vrel is the rel-

ative velocity and B is the ambient magnetic field). Langmuir

probe analysis received great attention in the past and the cur-

rent collection and sheath structure have been determined for

both monoenergetic2,3 and Maxwellian4–6 distribution func-

tions for the attracted species. Different effects, involving the

ambient magnetic field7 and the self-field in the tether case8,9

or the relative velocity between the probe and the plasma10,11

have been also studied.

Relativistic effects, which become important when the

probe potential Up is high enough to have eUp � mec2, are

typically negligible for Langmuir probes operating in labora-

tory plasmas and also for bare tethers flying around the

Earth. However, the situation is different for a recently pro-

posed mission to Jupiter12; a bare tape-tether would attain a

circular orbit below the Jovian Radiation Belts and the Halo

ring by using the Lorentz drag on the passively induced cur-

rent to first brake the spacecraft into a near-parabolic orbit

with perifocus around 1:4RJ and then progressively lower

the apojove through a series of drag arcs around the perijove

passes. Such a scheme, as opposite to previous missions to

Jupiter like Pioneer 10 and 11, Voyager 1 and 2, Ulysses,

Cassini, and New Horizons, would allow to slowly descend

in equatorial orbit through the inner magnetosphere of Jupi-

ter over a period of months and provide a wealth of knowl-

edge about Giant planets.

A tether with length L ¼ 50 km and flying in a near

parabolic, prograde orbit with perijove rp ¼ 1:4RJ after cap-

ture would find a typical magnetic field value B � 4:2
�ðRJ=rpÞ3 � 1:5� 10�4 T and tether-to-plasma relative ve-

locity vrel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lJ=rp

p
� XJrp � 33 km=s. The tether poten-

tial, slightly reduced by ohmic and B tilt-related angle

effects, would be around Up ¼ vrelBL. 0:25 MV; here lJ

and XJ are the Jupiter gravitational parameter and spin ve-

locity, respectively. The ratio b � eUp=mec2 would be near

0.5, thus, making for sensible relativistic effects. Independ-

ently of corrections to the collected current, which are dis-

cussed in this work, the penetration length of energetic

electrons into materials raises an issue for a tether mission at

Jupiter. For 0.2 MeV electrons the penetration length in alu-

minum can be as high as 0.25 mm (Fig. 6.4 in Ref. 13), thus

suggesting to reduce the length of the tether and increase its

width. This constraint must then be considered together with

the originally discussed tether bowing and tensile stress,

heating and radiation dose.14

Since electrons would then reach the anodic tip with

moderately relativistic velocities, it is required to extend the

orbital-motion-limited (OML) regime of cylindrical Lang-

muir probes to a relativistic subregime. In Sec. II we con-

sider those relativistic effects that can be determined from

simple OML-regime basics, in particular a modified OML-

current law itself. In Sec. III we use the asymptotic theory

presented in Refs. 5 and 6 to compute the maximum probe

radius-to-Debye length ratio for the OML regime to hold, the

sheath radius for thin probes and the current collected when

the maximum radius is exceeded. In Sec. IV we numerically

derive potential and electron density profiles using a coupled

Vlasov-Poisson solver. Conclusions are discussed in Sec. V.

II. THE RELATIVISTIC OML REGIME

Although a tape would be more efficient in a possible

mission, we here consider for simplicity a cylinder of radius
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R at bias Up immersed in a collisionless, unmagnetized,

Maxwellian plasma of unperturbed density N0. The cylinder

is sufficiently long to ignore edge effects and the plasma is

composed of electrons and ions with temperatures Te and Ti,

respectively. In the situation of interest here, eUp � mec2

� kTi � kTe, the determination of the current collection

involves the consistent solution of (i) the Poisson equation in

cylindrical coordinates (z is along the probe axis),

k2
Di

r

d

dr
r

d

dr

eU
kTi

� �
¼ Ne

N0

� Ni

N0

� Ne

N0

� exp � eU
kTi

� �
; (1)

with boundary conditions U ¼ Up at r ¼ R and U! 0 as

r !1 and (ii) the stationary relativistic Vlasov equation for

the electron distribution function f ðr; vÞ

vr
@f

@r
þ vhph

r
þ e

@U
@r

� �
@f

@pr
� vhpr

r

@f

@ph
¼ 0; (2)

with f ðr; vÞ ! fMðv1Þ (undisturbed Maxwellian) as r !1.

In Eq. (1), the Boltzmann law holds for the ion density Ni at

the case of interest eUp � kTi whereas the electron density

Ne requires integrating f ðr; vÞ in velocity space. Here kDi is

the ion Debye length. Velocity and momentum are related

by p ¼ mecv where c is given by

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj

2

m2
ec2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jp?j

2

m2
ec2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z

m2
ec2 þ jp?j

2

s

� c?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z

m2
ec2 þ jp?j

2

s
(3)

and p? is the momentum transverse to the z-axis.

As in Ref. 5, the Vlasov characteristic equations show

that the distribution function f ðr; vÞ, the energy

E ¼ mec2ðc� 1Þ � eU, the angular momentum J ¼ rph, and

pz are all conserved along the orbits. Therefore, ignoring

possible trapped particles, we can set f ðr; vÞ ¼ fMðv1Þ if the

r, v orbit traced back in time reaches infinity and f ðr; vÞ ¼ 0

otherwise. This property extremely simplifies the calculation

since it allows to write the electron density as

Ne

N0

¼
ð

dp

ð2pkTemeÞ3=2
� exp

�E

kTe

� �

¼
ð

dp?

ð2pkTemeÞ3=2
� exp

mec2 þ eU
kTe

� �
� Q; (4)

where

Q �
ðþ1
�1

exp �mec2c?
kTe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z

m2
ec2 þ jp?j

2

s !
dpz: (5)

Since mec2 � kTe, the square root inside the exponential in

Eq. (5) can be expanded in a Taylor series to yield

Q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkTemec?

p
exp �mec2c?

kTe

� �
: (6)

Using Eq. (6) and defining E? � mec2ðc? � 1Þ � eU, which

is also conserved, make Eq. (4) read

Ne

N0

¼
ð ffiffiffiffiffi

c?
p

expð�E?=kTeÞdp?
2pkTeme

(7)

and with the change of variables ðpr; phÞ ! ðE?; JÞ become

Ne

N0

� 1þ eU
mec2

� �3=2ð ð dE?
2pkTe

dJexpð�E?=kTeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

r ðE?Þ � J2
p : (8)

In Eq. (8), we took into account the limit of interest mec2 �
kTe to ignore the term E?=mec2 in the parenthesis that

appears outside the integral. As compared with the non-

relativistic calculation,5 the electron density is modified by

the factor outside the integral and by the JrðE?Þ definition

J2
r ðE?Þ � m2

ec2r2 1þ eUþ E?
mec2

� �2

� 1

" #
: (9)

Following Ref. 5, where a detailed discussion about integral

limits and possible orbits can be found, we carry out the

J-integral to find

NeðrÞ
N0

¼ 1þ eU
mec2

� �3=2ðþ1
0

dE?
pkTe

exp � E?
kTe

� �

� 2 arcsin
J	r ðE?Þ
JrðE?Þ

� �
� arcsin

J	RðE?Þ
JrðE?Þ

� �� �
; (10)

where the function

J	r ðE?Þ � minimum½Jr0 ðE?Þ; r0 
 r� (11)

is introduced to exclude electrons with an angular momen-

tum too large to reach the position r. We remark that the defi-

nitions of E?, J, and Jr give r2p2
r ¼ J2

r � J2. Therefore,

electrons in the range J	r ðE?Þ < J < JrðE?Þ would have p2
r

negative at some r0 in the range r < r0 <1 and do not con-

tribute to the density at the position r. This is called an effec-

tive potential barrier at r for energy E?.

In the absence of potential barrier and sink (probe radius

satisfying R=kD ! 0), Eq. (10) gives Ne=N0 ¼ ð1þ eU=

mec2Þ3=2
, which can be considered the relativistic extension

of a well-known and simple result found in Ref. 15; unlike

the classical result in Ref. 15, relativistic effects allow to

have an electron density over N0 for two-dimensional poten-

tial wells and isotropic distribution functions at infinity.

Again, with a pz integration and the change

pr; ph ! E?; J, one finds the current collected by the probe

I ¼ 2pRLe

ð
vrfdp

¼ 2RLecN0

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ð1
0

exp � E?
kTe

� �
J	R

Rmec

dE?
kTe

; (12)

with b � eUp=mec2. Since J	RðE?Þ � JRðE?Þ, current is

maximum under the condition J	RðE?Þ ¼ JRðE?Þ, for

0 � E? <1; this is the OML regime corresponding to no
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potential barriers for radius R. We note that J	RðE?Þ¼ JRðE?Þ
in the entire range 0�E?<1 is fulfilled if J	Rð0Þ¼ JRð0Þ.
Taking into account Eqs. (9) and (11), the condition J	Rð0Þ
¼ JRð0Þ requires the potential to satisfy

U
Up


�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ð1þ bÞ2 � 1�ðR=rÞ2

q
b

(13)

and far away from the probe r=R� 1

U
Up

 ð1þ bÞ2 � 1

2b
R

r

� �2

>
R

r

� �2

; (14)

which recovers the non-relativistic condition U=Up 
 R2=r2

at low b.5 The OML current is obtained using J	RðE?Þ
¼ JRðE?Þ � JRð0Þ in Eq. (12) to find

IOML ¼ 2RLecN0

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 1

q
: (15)

In the non-relativistic limit b� 1, Eq. (15) becomes the

well known formula I ¼ 2RLeN0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eUp=me

p
(I �

ffiffiffi
b
p

)

whereas for b� 1 we have I ¼ 2RLeN0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eUp=me

p
� eUp=ffiffiffi

2
p

mec2 (I � b3=2) [see panel (a) in Fig. 1]. From Eq. (10),

we find the OML electron density at the probe,

Neðr ¼ RÞ
N0

����
OML

¼ 1

2
ð1þ bÞ3=2: (16)

Equation (16) is the relativistic extension to the formula

given in Ref. 15, where very general results are presented for

arbitrary convex cross section probes with isotropic distribu-

tion functions at infinity. The relativistic effects increase

both the OML current and the electron density at the probe

[see panels (a) and (b) in Fig. 1].

III. ASYMPTOTIC ANALYSIS

This section presents an extension to relativistic conditions

of the asymptotic analysis carried out in Refs. 5 and 6. The dif-

ferent domains that appear in the analysis can be seen in Fig. 2

[panel (a)] that shows U=Up versus ðR=rÞ2. Decreasing the ra-

dius from infinity to the probe we find the following domains:

(i) r > r0 quasineutral plasma without potential barriers, (ii)

r0 > r > r1 quasineutral plasma with potential barriers, (iii)

transitional layers at r1 and r2, and (iv) r2 > r > R correspond-

ing to the sheath. Domains (i) and (ii) make up the presheath.

The asymptotic method solves Eqs. (1) and (10) in the different

domains by retaining only the dominant terms in each case and

taking into account the appearance of potential barriers.

A. Basic formulation

1. Quasineutral presheath

Far away from the probe, one has eUðrÞ � mec2 and the

relativistic effects play no role. Equations (9) and (10) become

J2
r ðE?Þ � 2mer2ðE? þ eUÞ; (17)

Ne

N0

�
ð1

0

dE?
pkTe

exp � E?
kTe

� �

� 2 arcsin
J	r ðE?Þ
JrðE?Þ

� �
� arcsin

J	RðE?Þ
JrðE?Þ

� �� �
: (18)

The condition of no potential barrier at r now reads

r2UðrÞ < r02Uðr0Þ for r < r0 <1.5 Since the results from

the non-relativistic analysis can then be directly applied in

FIG. 1. Comparison of relativistic and non-relativistic normalized collected

current [panel (a)] and normalized electron density at the probe [panel (b)]

versus eUp=mec2.

FIG. 2. Panel (a) shows U=Up versus R2=r2 for a probe with a radius larger

than the maximum radius for the OML regime. The relativistic separatrix

[Eq. (13)] is also shown. The plasma is quasineutral below point 1 and there

is no potential barriers below point 0. The figure is not drawn to scale (points

0, 1, and 2 would occur near the origin). Panel (b) displays the r-lines (solid

lines) J2
r ¼ J2ðE?Þ at the probe radius and at points 0, 1, and m indicated in

panel (a). The envelope (dashed line) of the r-lines in the range r1 < r < r0

and the energy Ec where the envelope cuts the R -line are also shown.
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this region, we will just give the essential equations required

to find the collected current without a thorough justification.

The details of the method and a discussion can be found in

Refs. 5 and 6. As shown in Fig. 2, decreasing the radius from

1, the following layers appear.

a. Quasineutral region without potential barriers.

Faraway from the probe the plasma is quasineutral; making

Ne � Ni one finds U � 1=r and there are no potential bar-

riers. There exists a radius r0 with potential value U0 where

a potential barrier first appears [see panel (a) in Fig. 2]. We

then can write J	r ðE?Þ ¼ JrðE?Þ in Eq. (18) and find the

potential U0 in terms of r0 by using Ne � Ni, reading

exp � eU0

kTi

� �
¼ 1�

ð1
0

dE?
pkTe

� exp � E?
kTe

� �

� arcsin
J	RðE?Þ
Jr0
ðE?Þ

� �
: (19)

The determination of J	RðE?Þ in Eq. (19) requires a detail ex-

amination of the family of r-lines in the E� J2 diagram [see

panel (b) in Fig. 2]. In Ref. 6, it was demonstrated that

J	RðE?Þ takes the form

J	RðE?Þ ¼ JenvðE?Þ for 0 < E? < Ec; (20)

J	RðE?Þ ¼ JRðE?Þ for E? > Ec; (21)

where the function JenvðE?Þ in Eq. (20) is the envelope of

the family of r-lines in the range r1 < r < r2.2 A simple but

accurate approximation of this function is5

J2
envðE?Þ � J2

r1
ðE?Þ �

2mee2ðr2
1U1 � r2

0U0Þ2

eðr2
1U1 � r2

0U0Þ þ ðr2
0 � r2

1ÞE?
; (22)

with r1 and U1 given below by Eqs. (24) and (25). The

energy Ec appearing in Eq. (20) corresponds to the intersec-

tion of the envelope JenvðE?Þ and the JRðE?Þ line in the J2 �
E? diagram [see panel (b) in Fig. 2] or

JenvðEcÞ ¼ JRðEcÞ � JRð0Þ: (23)

b. Quasineutral region with potential barriers. If the

radius is decreased beyond r0, the potential can still be com-

puted with the quasineutrality relation Ne � Ni but the condi-

tion JrðE?Þ ¼ J	r ðE?Þ does not hold in general because of

the appearance of potential barriers. For each r, the relation

J	r ðE?Þ ¼ JrðE?Þ applies in Eq. (18) for E? above the

point where the r-line touches the envelope and J	r ðE?Þ ¼
JenvðE?Þ otherwise.6 This set of equations is only valid up to

a radius r1 where the electric field diverges, (dU=dr
! �1). The radius r1 and the potential U1 can then be

determined using the quasineutrality relation and the deriva-

tive of the quasineutrality relation with respect to U at r1

(where dr=dU vanishes). These two equations read

1 ¼ exp
eU1

kTi

� �ðþ1
0

expð�E?=kTeÞdE?
pkTe

� 2 arcsin
JenvðE?Þ
Jr1ðE?Þ

� �
� arcsin

J	RðE?Þ
Jr1ðE?Þ

� �� �
; (24)

1 ¼ exp
eU1

kTi

� �ðþ1
0

Tiexpð�E?=kTeÞdE?
2pTeðE? þ eU1Þ

� 2JenvðE?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

r1
ðE?Þ � J2

envðE?Þ
q � J	RðE?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2
r1
ðE?Þ � J	2R ðE?Þ

q
2
64

3
75;
(25)

where we used J	r1ðE?Þ � JenvðE?Þ. Equations (19), (23),

(24), and (25) give eU0=kTi, eU1=kTi,

rj �
mec2

kTi

ð1þ bÞ2 � 1

2

R

rj

� �2

; j ¼ 0; 1 (26)

as a function of Te=Ti and Ec=kTe.

2. Transitional layers

Following Refs. 3 and 5, we now introduce two transi-

tional layers:

a. First layer of non-quasineutral plasma with potential

barrier. Due to the singularity at r1, it is necessary to solve

Poisson equation with the right-hand side expanded around

point 1. Solving for the structure of this layer shows that the

potential itself diverges at a point 2 given by

r2�
mec2

kTi

ð1þbÞ2�1

2

R

r2

� �2

� r1 1þ6:9
2r2

1

kl

� �1=5
kTi

mec2

2

ð1þbÞ2�1

 !2=5
kDi

R

� �4=5
2
4

3
5;

(27)

where l and k are functions of Ec=kTe and Te=Ti,

l �
ð1

0

expð�E?=kTeÞdE?
pkTe

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

envðE?Þ
J2

r1
ðE?Þ � J2

envðE?Þ

s"

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J	2R ðE?Þ
J2

r1
ðE?Þ � J	2R ðE?Þ

s #
; (28)

k � �exp � eU1

kTi

� �
þ
ð1

0

kT2
i expð�E?=kTeÞdE?

4pTeðE? þ eU1Þ2

� 2JenvðE?Þ
3J2

r1ðE?Þ � 2J2
envðE?Þ

½J2
r1ðE?Þ � J2

envðE?Þ�
3=2

"

� J	RðE?Þ
3J2

r1ðE?Þ � 2J	2R ðE?Þ
½J2

r1ðE?Þ � J	2R ðE?Þ�
3=2

#
: (29)

b. Second layer of non-quasineutral plasma with

potential barrier. The blow up of the potential at point 2

requires a second layer to smoothly match the outer and

inner solutions. An analysis of Poisson equation but retaining

the full expression for Ne and Ni reveals that U � ðr2 � rÞ4=3

as r ! r2.
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We remark that all the integrals involving J	RðE?Þ must

be split in energy ranges according to Eqs. (20) and (21).

Note also that, even though the structure of the outer solution

is similar to the one found in Ref. 6, the JRðE?Þ term has rel-

ativistic effects. This feature is the origin of the slightly dif-

ferent definitions of r0, r1, and r2 with respect to the non-

relativistic case.

3. Sheath structure

The inner solution extends from the radius r2 to R and

requires retaining relativistic effects. In this region we have

(i) eU=kTi � 1 and the ion density can be neglected, (ii) the

approximation J	r ðE?Þ � JenvðE?Þ is valid, and (iii)

JenvðE?Þ � JRð0Þ � JrðE?Þ � Jrð0Þ (the arcsin functions in

the electron density are approximated by their arguments).

The Poisson equation reads

k2
Di

r

d

dr
r

d

dr

eU
kTi

� �
� jR

pr
1þ eU

mec2

� �3=2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 1

1þ eU
mec2

� �2

� 1

vuuuut ; (30)

with j a function of Te=Ti and Ec=kTe

j �
ð1

0

dE?
kTe

exp � E?
kTe

� �
2

JenvðE?Þ
JRð0Þ

� J	RðE?Þ
JRð0Þ

� �
: (31)

Introducing the new variable u and the parameter a

u � ln
r2

r
; (32)

a � R

kDi

r2

kDi

j
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 1

q
: (33)

Eq. (30) becomes

d2

du2

eU
kTi
¼ ae�u

1þ eU
mec2

� �3

1þ eU
mec2

� �2

� 1

2
6664

3
7775

1=2

: (34)

B. Results

1. Maximum radius for OML conditions

The maximum radius of the probe that still collects

OML current is very important for bare-tether technological

applications. Such a radius is obtained by setting Ec ¼ 0 in

the asymptotic analysis and integrating Eq. (34) as a bound-

ary value problem with R=kDi the shooting variable. This

dimensionless radius is varied until a numerical integration

of Eq. (34) with initial condition U ¼ 0 and dU=du ¼ 0 at

u ¼ 0 (matching with the top of the second thin layer where

the potential behaves as U � u4=3 as u! 0) gives U ¼ Up at

u ¼ lnðr2=RÞ. The solution of this problem gives Rmax=kDi as

a function of kTi=mec2, Te=Ti, and eUp=kTi. Panels (a) and

(b) in Fig. 3 display the normalized maximum radius

Rmax=kDi versus eUp=kTi for different temperatures ratios

and kTi=mec2 equal to 10�4 and 10�5, respectively. The com-

parison of these panels with Fig. 6 in Ref. 5 shows that the

relativistic effects make the ratio Rmax=kDi to present a maxi-

mum in addition to the minimum also found in Ref. 5.

2. Sheath radius for R � Rmax

In the case of a mission in Jupiter, we have R� Rmax

and we can set Ec ¼ 0. From a numerical point of view, the

calculation is similar to the case of the maximum radius.

However, now the ratio R=kDi is given and r0 is taken as

shooting variable to solve the boundary value problem. The

result is the sheath radius, say r1=kDi, as a function of R=kDi,

Te=Ti, kTi=mec2, and eUp=mec2.

Figure 4 shows the ratio r1=kDi versus eUp=mec2 for two

different values of kTi=mec2 and parameters Te=Ti ¼ 1 and

R=kDi ¼ 0:01. These results can be compared with non-

relativistic calculations that give the following law for the

sheath radius rs:
16

1:53 1� 2:56
kDi

rs

� �4=5
" #

rs

kDi

� �4=3

ln
rs

R

� 	
� eUp

kTe
: (35)

The above formula, which is valid for R� Rmax and high

bias, is plotted in Fig. 4 using thin black lines. The results

practically overlap the relativistic calculations, indicating a

weak impact of the relativistic effect on the sheath radius.

FIG. 3. Asymptotic analysis results:

Rmax=kDi versus eUp=kTi (bottom hori-

zontal axis) or eUp=mec2 (top horizontal

axis) for several values of temperature

ratio Te=Ti. Panels (a) and (b) corre-

spond to kTi=mec2 equal to 10�4 and

10�5, respectively.
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3. Current beyond the OML regime

Even though a bare tether in orbit around Jupiter would

find a Debye length and Te=Ti ratio varying along the orbit,

it would normally operate under OML conditions. However,

we give here for completeness the current beyond this re-

gime. The numerical calculations are similar to the case of

the maximum radius except that now Ec 6¼ 0 and Eq. (23)

must be included. For convenience, we choose the energy Ec

as the shooting variable. This procedure gives the ratio

I=IOML as a function of R=kDe, eUp=kTi, kTi=mec2, and Te=Ti.

Fig. 5 shows I=IOML versus R=kDe for eUp=kTi ¼ 4000,

kTi=mec2 ¼ 10�4 (b � eUp=mec2 ¼ 0:4), and different Te=Ti

ratios. A comparison with Fig. 4 in Ref. 6 reveals a weak

impact of the relativistic effects on the ratio I=IOML. How-

ever, since IOML is enhanced by the relativistic effects [see

Fig. 1 and Eq. (15)] the current collected by the probe

beyond the OML regime is higher as compared with the clas-

sical result. Similarly to the nonrelativistic case, the lines in

Fig. 5 can approximately be obtained from each other by a

horizontal displacement which only depend on the tempera-

ture ratio Te=Ti. This property would allow to simplify the

parametric dependence of I=IOML and find a more simple law

for design considerations.6 On the other hand, when the pa-

rameter eUp=mec2 is varied for fixed values of kTi=mec2 and

Te=Ti (not shown in Fig. 5) a weak effect in I=IOML is

produced.

IV. NUMERICAL VLASOV-POISSON SOLVER

This section presents numerical solutions of the relativ-

istic Vlasov-Poisson system with an algorithm similar to the

one implemented in Refs. 4 and 11. The method truncates

the semi-infinite domain ½R; 1Þ up to a maximum radius

rmax. The interval ½R; rmax� and the potential U are discretized

with N points according to ri ¼ Rþ iðrmax � RÞ=ðN � 1Þ
and Ui ¼ Uðr ¼ riÞ, i ¼ 0; :::N � 1. The potential U at the

mesh points is found by looking with a Newton method for

the zero of a vector-function of components FiðUÞ ¼
Ui � ~Ui (i¼ 0,…, N�1). Given a potential profile U, the

electron density is computed with Eq. (10) and then used to

find a new potential ~U by solving Eq. (1) with the boundary

conditions ~U ¼ Up at r ¼ R and ~U � 1=r at rmax. We remark

that the Newton algorithm requires the computation of the

Jacobian of FðUÞ (carried out numerically) and the solution

of a linear system of size N. Hereafter we fix kTi=mec2 ¼
10�4 and Te=Ti ¼ 1.

The number of grid points N was 200 or greater and rmax

took values up to 250kDi. To validate the Vlasov-Poisson

solver by comparing with the asymptotic analysis, we set

eUp=kTi ¼ 4000 (b ¼ 0:4) and computed the collected cur-

rent for R=kDi ¼ 1; 2:5; 5; and 10. We found I=IOML ¼ 0:99;
0:93; 0:70; and 0.42, respectively, in very good agreement

with the results shown in Fig. 5. Similar to the non-relativistic

calculations,11 the Vlasov-Poisson solver gives a ratio I=IOML

slightly greater than the asymptotic theory.

As shown in Sec. III [see panel (a) in Fig. 2], a plot of the

potential versus ðR=rÞ2 readily reveals the current collection

regime of the probe: if the potential is above the separatrix

given by Eq. (13) (that simplifies to U=Up ¼ ðR=rÞ2 in non-

relativistic conditions) the probe collects the OML current. To

illustrate this feature, Fig. 6 displays the potential profile

FIG. 5. Asymptotic analysis results: current ratio I=IOML versus R=kDe for

eUp=kTi ¼ 4000, kTi=mec2 ¼ 10�4, and different Te=Ti ratios.

FIG. 6. Vlasov-Poisson solver results: normalized probe potential versus

ðR=rÞ2 for two R=kDi ratios. Other parameter values are kTi=mec2 ¼ 10�4,

Te=Ti ¼ 1, and eUp=mec2 ¼ 0:4. The relativistic (see Eq. (13)) and non-

relativistic OML separatrices are also displayed. The thin solid lines in the

inset, which is a zoom close to the origin, correspond to potentials propor-

tional to r�1.

FIG. 4. Asymptotic analysis results: sheath radius r1=kDi versus eUp=mec2

for kTi=mec2 ¼ 10�4; 10�5. Other parameter values are Te=Ti ¼ 1 and

R=kDi ¼ 0:01. The thin solid lines, which practically overlap with the thick

lines, correspond to the nonrelativistic calculations [Eq. (35)].
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computed with the Vlasov-Poisson solver for eUp=mec2

¼ 0:4. A look at the behavior of the potential far away from

the probe (see inset in Fig. 6) reveals that the potential with

R=kDi ¼ 1 is practically tangent to the separatrix whereas the

potential for R=kDi ¼ 2:5 cuts it. This intersection explains the

drop of the ratio I=IOML ¼ 0:93 below one for R=kDi ¼ 2:5.

On the other hand, the soft transition between the numerical

solution and the potential U � r�1 (see dashed black lines)

indicates the goodness of the value rmax taken to carry out the

calculations; the value was large enough to impose the bound-

ary condition U � r�1 when we solved the Poisson equation.

The inset in Fig. 6 highlights the importance of large computa-

tion domains in this type of calculations.

The electron density profiles that correspond to the

potentials of Fig. 6 are shown in Fig. 7. A maximum in the

electron density, already detected numerically11,17 and

explained theoretically16 for non-relativistic conditions, can

be clearly seen for the cases R=kDi ¼ 1 and R=kDi ¼ 2:5 (see

inset in Fig. 7). We also point out that the electron density

reaches values above N0 for the case R=kDi ¼ 1. This result,

that would be impossible within the non-relativistic frame-

work,15 is in agreement with the discussion made in Sec. II.

V. CONCLUSIONS

The impact of the relativistic effects on the current col-

lection by a cylindrical Langmuir probe has been analyzed.

This relativistic correction, which is typically very small in

laboratory conditions and also for space mission with bare

electrodynamic tethers around the Earth, can be important

for a recently proposed mission to Jupiter12 due to the higher

ambient magnetic field, relative plasma-tether velocity, and

required tether length arising from constraints on radiation at

the Jovian Belts. For typical tether, orbit, and ambient

plasma parameters, the dimensionless number that measures

the importance of the relativistic effects, eUp=mec2, could

reach value of order 0:4� 0:5.

Simple OML-regime calculations showed an enhance-

ment of the collected current when relativistic effects are

included [see Eq. (15) and Fig. 1]; i.e., around 35% for

b � 0:5. Equation (10) [also Eq. (16)] shows that, unlike the

classical theory,15 the electron density could reach values

above the unperturbed density. On the other hand, an exten-

sion to relativistic conditions of the asymptotic analysis for

high bias carried out in Refs. 5 and 6 yielded the maximum

radius Rmax of a round tether for the OML regime to

hold, the sheath radius at low R=Rmax, and the current for

R > Rmax (or w > 4Rmax for a thin tape of width w, Ref. 5).

A comparison of Fig. 6 in Ref. 5 and Figure 3 reveals a

trending shift at moderate b values of the ratio Rmax=kDi ver-

sus eUp=kTi. The value Rmax=kDi for b � 0:4� 0:5 is not sig-

nificantly changed and, since the Debye length in Jupiter

plasmasphere would typically be 1 m, the tether would oper-

ate well within the OML regime. Concerning the sheath ra-

dius and the ratio I=IOML, Fig. 4 and a comparison of Fig. 5

with Fig. 4 in Ref. 6, show a weak impact of the relativistic

effects. We point out, however, that the collected current

beyond the OML regime would be enhanced due to the pre-

viously mentioned dependence of IOML with b.

The asymptotic theory has been complemented with

some numerical results using a Vlasov-Poisson solver. This

tool allowed us to compute density and potential profiles and

illustrate some differences between the classical and relativ-

istic calculations, in particular the previously mentioned den-

sity values above the unperturbed plasma density (see Fig.

7). Figure 6, which shows U=Up versus R2=r2 and the rela-

tivistic OML separatrix given by Eq. (13), reveals whether

or not the probe operates under OML conditions. The inset

in this figure also stressed the importance of using large com-

putational domains to obtain correct results.

Possible electron trapping in energy troughs (not consid-

ered in our work) as discussed in Ref. 2 involved collisions;

collisional effects, which in a lab may affect collection due

to the slow U � 1=r decay for a cylindrical probe, are typi-

cally negligible for tethers in space. A. V. Gurevich first

showed, however, how adiabatic trapping may occur as

troughs develop in time.18 In the case of a tether, trapped

electrons can escape through its ends, or absorbed by the

tether, as they move parallel to it and find a radial potential

structure lengthwise dependent. Trapping of electrons can

only then exist if driven, which the tether-to-plasma relative

motion can actually do, as recently pointed out.10,19 Orbital

velocity is typically highly subsonic for electrons, but super-

sonic for ions at Earth orbits well below 1000 km. As shown

in Ref. 15, Ne < N0 holds for non-relativistic conditions,

whereas the ion ram motion will result in Ni > N0 over some

large front region, breaking quasineutrality in the presheath.

It is not yet clear whether this may affect collection. In the

relativistic case, however, Ne can also exceed N0, making

driven trapping less of a problem.
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