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Abstract. Many diseases have a genetic origin, and a great effort is being

made to detect the genes that are responsible for their insurgence. One of the
most promising techniques is the analysis of genetic information through the

use of complex networks theory. Yet, a practical problem of this approach is

its computational cost, which scales as the square of the number of features
included in the initial dataset. In this paper, we propose the use of an iterative

feature selection strategy to identify reduced subsets of relevant features, and

show an application to the analysis of congenital Obstructive Nephropathy.
Results demonstrate that, besides achieving a drastic reduction of the compu-

tational cost, the topologies of the obtained networks still hold all the relevant
information, and are thus able to fully characterize the severity of the disease.
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1. Introduction. The analysis of genetic information, and specifically of levels of
genetic expressions [1], has been the center of a large number of studies in the last
decades, as it allows a better understanding of the root causes beyond many diseases
[2, 3, 4], as well of the cellular mechanisms responsible for the response of living
systems to internal and external stimuli [5]. In the last years, a new paradigm has
been proposed to address this problem, that is, the use of a network representation
[6]. Specifically, the complex network approach [7, 8], has been successfully applied
to a great variety of problems, where the importance of the interactions between
the different elements composing the system is the same, or even greater, than that
of each single element [9]; the interested reader can find a complete review in Refs.
[7, 10].

Clearly, the study of how different genes interact can unveil new relevant knowl-
edge, which usually cannot be gathered from the analysis of the behavior of indi-
vidual and isolated genetic expressions. Following this principle, several works have
analyzed co-expression networks, where nodes represent individual genes, and pairs
of nodes are connected whenever there is a correlation in their expression [11]. Re-
cently, a complementary strategy has been proposed, consisting in reconstructing
connections between pairs of nodes when their expressions are outside the range
observed in a reference condition. This generates networks that carry on informa-
tion on the abnormal behaviors of genes’ expressions [12]. Indeed, by applying this
methodology to a set of control data (for instance, healthy subjects) and a set of
subjects likely affected by a given disease, such a strategy allows to extract infor-
mation on: i) whether a given subject is suffering from the studied disease, and ii)
which elements (genes) of the graph are the main responsible for the pathological
condition.

Still, this approach presents some practical drawbacks, the most relevant of which
being the computational cost associated with the case of a large amount of genetic
data, which results in the need of reconstructing very large networks. In this paper,
we propose the application of a well-known data-mining tool, i.e. the iterative
feature selection [13, 14], to select those genes that are genuinely relevant for the
analysis. Besides reducing the quantity of information to be processed (and thus the
computational cost), the elimination of noisy genes results in an overall improvement
of the accuracy of the method. Moreover, reducing the number of genes also reduces
the dimensionality of the problem, thus improving the statistical significance of
the results. The proposed methodology is validated by performing the iterative
feature selection on a dataset of genetic information, related to the problem of early
diagnostic of the Obstructive Nephropathy, a congenital kidney disease and one of
the most-important causes of renal insufficiency in children.

The remainder of the paper is structured as follows. Section 2 introduces how the
networks are constructed from the data. Section 3 describes how the methodology is
applied to the dataset under study, including control subjects and patients affected
by Obstructive Nephropathy, and what is the relationship between genetic data
and the severity of the disease. Section 4 describes the different techniques used for
performing the iterative feature selection, whose results are presented in Section 5.
Finally, conclusions and future perspectives are discussed in Section 6.

2. Construction of the networks. As already introduced, the aim of this contri-
bution is to improve the analysis of genetic information through complex networks,
by applying a data mining approach for features selection. Therefore, the first step
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is the preprocessing of available data aimed at eventually reconstructing a network
for each target subject, i.e., for each person whose state (healthy or ill) is not known
in advance. For that purpose, it is previously necessary to process information about
some control subjects, that is, persons that are known to be healthy, in order to
extract the normal relations between each pair of genes.

The information corresponding to this first step is represented by n different
features, that is, genetic expression levels, measured for m different control subjects.
This information is organized in a matrix D of size n ×m; the i-th feature of the
s-th subject is represented as dsi . For each pair of features i and j, a linear fit is
calculated; therefore, for each subject s, the expression of gene j (i.e., dsj) can be
seen as a linear function of that of gene i, plus an error term:

dsj = aij + bijd
s
i + εsij . (1)

In this equation, aij and bij are the two coefficients resulting from a linear fit
of the values of di against dj , for all m control subjects. ε is a vector containing
all the m errors of the fit. Notice that, the mean values of this error vectors (εij)
and their standard deviations (σij) are relevant quantities that will be used for the
reconstruction of the network. For the sake of exemplification, Fig. 1 schematically
illustrates the process. Black circles are the fictitious expression levels for healthy
persons, and the dashed blue line represents the linear fit - following the above
convention, aij is the intersection of the fit line with the vertical axis, and bij its
slope.

!

Gene!i!

Gene!j!

!!"! !

Lineal!fit!

Figure 1. Example of the construction of a fictitious network.
As a first step, the data corresponding to healthy subjects (black
circles) are fitted to a linear function (blue dashed line); afterward,
anomalous data of patients are identified by the distance from the
linear fit (i.e., εsij of Eq. 1, represented by the red vertical arrow).

The next step is the creation of a network for each target subject. We consider a
dataset T , where each element tvi corresponds to the i-th feature of subject v. For
simplicity, we also consider that the features encoded in this second dataset T are
the same as those in D, and that all values are available (therefore, no invalid value
is expected).
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Now, let us consider the expression values tvi and tvj for a given subject v. In
principle, it should be expected that these expressions are well described by the
previously calculated corresponding linear fit. The error associated to such an
approximation (from now on called evij) can be calculated as:

evij = aij + bijt
v
i − tvj . (2)

e represents how separated the value for the subject v is with respect to the
linear fit, as calculated for the healthy subjects. Notice that, from now on, ε
represents the fit error for control subjects (initially used for extracting the ground
truth about the system), while e is the error fit for target subjects (i.e., those under
analysis). Going back to Fig. 1, this is represented by the vertical red arrow.
We are interested in networks representing the abnormal relation between pairs of
genetic expressions, e.g., those situations where the linear fit does not significantly
represent the observation for the target subject, or, in other words, where etij is
greater than σij . This abnormality is better represented by the absolute value of
the Z-Score, defined as:

Zv
ij =

∣∣evij − εij
∣∣

σij
(3)

Using the above expression, it is possible to construct a network for each target
person v, where nodes represent the n different features, and the weight of the link
connecting each pairs of nodes i and j is given by Zv

ij ; in other words, this network
is a clique (a graph in which all pairs of nodes are connected by a link), where the
weight of each possible link is codified in a weight matrix W = Z.

To further simplify, each clique can be transformed in a unweighted graph by
applying a threshold τ ; consequently, the associated adjacency matrix A is defined
as: {

1 if Zv
ij > τ

0 if Zv
ij ≤ τ

(4)

In summary, our method is based on the creation of networks, one for each
subject, where nodes represent genes, and two nodes are connected when the relation
between them is outside the range expected in control subjects (more precisely, when
the separation from the expected value is at least τ times larger than the standard
deviation found in control subjects).

The analysis of the structure (or topology) of the obtained networks may furnish
relevant information. On the one side, if the data corresponds to a healthy person,
we expect all pairs of values to be as close to the linear fit as the data from the
control set: therefore, the network corresponding to this subject will have very
few links, mostly due to noise in the measurement, and consequently a random
topology. On the other side, persons suffering from a genetic-related disease will
have abnormal values in some of these relations; the resulting topologies will be then
easily identified by an abnormally high number of links, and by star-like structures,
whose centers will point to the genes responsible for the disease [12].

3. Application to Obstructive Nephropathy. We use the same dataset studied
in a previous work [12], containing genetic information associated to 10 control
(healthy) subject and 10 persons suffering from Obstructive Nephropathy (ON) [15,
16]. ON is one of the most complex renal diseases, with devastating consequences
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for the health of many new-borns. Childs affected by this disease suffer from a
partial or complete blockage of the urinary tract, preventing a normal urinary flow;
this, in turn, results in an accumulation of urine in the kidney. As a consequence,
important lesions can appear in this organ that, in many cases, requires surgical
intervention and even transplant. The genetic information available includes the
expression levels of 834 microRNA, small RNA chains that block the transcription
of other genes, and therefore regulate the metabolism [17, 18]. Furthermore, the
dataset also includes, for each subject, the pelvic diameter, that is, a measure
considered as a good proxy of the severity of the disease.

In the original work [12], it was shown how the topology of the networks created
using the proposed method can unveil if a target subject is suffering, or not, from
the disease; furthermore, some topological metrics of the networks were associated
to two different measures of the severity of the illness, namely the differential renal
function and the pelvic diameter.

Here, we focus on the relation between the structure of the networks and the
pelvic diameter. The global structure of the network will be quantified by its effi-
ciency [19], originally introduced to quantify how effectively information can cross
a given graph. This metric is defined as:

E =
1

n(n− 1)

∑
i,j∈G

1

d(i, j)
, (5)

where n is the number of nodes (in this case, the number of features), i and j are two
nodes of graph G, and d(i, j) is the length of the shortest path (geodesic distance)
between nodes i and j. Notice that, if the network is composed of a small number
of links, the distance d(i, j) will be infinite in most of the cases, thus resulting in a
very small efficiency.

4. Feature selection methods. While it is possible to work directly with all the
834 features, i.e., microRNA expression levels, we are interested in the problem
of feature selection, that is, the initial selection of a set of relevant features to be
included in the analysis. Reducing the size of the initial dataset has three important
advantages. Firstly, the computational cost, which approximately scales as the
square of the number of features, is drastically reduced. Secondly, the elimination of
features not relevant for the final result may improve the outcome of the algorithm,
by reducing the quantity of noise it has to cope with. Finally, the reduction of
the number of features implies that the number of dimensions of the space of the
possible solutions is also reduced: this, in turn, improves the significance of results,
thus leading to a more statistically relevant analysis.

In what follows, two different strategies for feature selection are presented: a
first one based on the goodness of the linear fit of Eq. 1, and an alternative one
based on a measure of mutual information between different features. In both cases,
the process of feature selection starts by creating a ranking of features. We start
by considering an initial network composed of 20 nodes, corresponding to the 20
features that display the highest scores in the ranking. Afterwards, new features are
added, one at a time, following the ranking created at the beginning of the process
- what is called a greedy algorithm [20].

4.1. Goodness of linear fit. The first method is based on the first step of the
proposed approach, i.e., the linear fit performed between each pair of features. From
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Eq. 1, we can derive the goodness of the fit, that is, the corresponding Pearson’s
coefficient of determination R2 [21]:

R2
ij = 1 −

∑
s

(
dsj − d̃sj

)2
∑
s

(
dsj − dj

)2 , (6)

where i and j are two different features, dj is the mean value of feature j for

all subjects, and d̃sj is the value of feature j and subject s calculated with the
parameters of the linear fit, that is:

d̃sj = aij + bijd
s
i . (7)

As is well known, R2 usually lays between zero and one, where R2 = 1 means
that the values are perfectly described by a line.

Using this metric, a value S is assigned to each feature, defined as:

Si =
1

n

∑
k

R2
ik. (8)

While intuitively the opposite solution might appear more logical, the features
that should be selected are the ones with a higher S, which means that the expres-
sion levels of these microRNAs fit well, on average, with the expression levels of
other genes. When two features are completely uncorrelated, and thus the R2 of
their fit is close to zero, even in healthy subjects, no significant information can be
extracted when patients are included in the analysis, as it would be masked by the
general noise. On the other hand, perfectly correlated features (in healthy persons)
can easily identify abnormal values corresponding to ON patients. Therefore, the
ranking is created according to the value of S, and networks are constructed by
including features with the highest Si.

4.2. Mutual information. Mutual information is a well-known measure of mu-
tual dependance between random variables [22]. If one considers the expression
levels of two microRNA as two random variables (di and dj), the two marginal
probabilities distribution functions [p(di) and p(dj)] and the joint probability dis-
tribution function p(di, dj), the mutual information I for features i and j is defined
as:

Iij =

m∑
l=1

m∑
k=1

p(dli, d
k
j ) log2

(
p(dli, d

k
j )

p(dli)p(d
k
j )

)
. (9)

I measures, in bits, how much information is shared by two features, i.e., how
much the knowledge of one of them reduces the uncertainty about the other. As
in the previous case, we are interested in selecting those features that, in the case
of healthy persons, share much information with the others, thus not just codifying
noise. Therefore, in a way similar to the goodness of fit, we create a metric defined
as:

S′i =
1

n

∑
k

Iik. (10)

The initial network is created with the 20 nodes with higher S′i; afterwards, the
network is expanded by including the following features, one at a time.
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5. Results. Fig. 2 presents the evolution of the results as a funcion of the number
of features included in the analysis (the number of nodes in each network). The
performance of the methodology is represented by the goodness of fit between the
efficiency of the constructed networks and the pelvic diameter, a proxy for the
severity of the disease. Therefore, the complete evaluation of both algorithms is
performed as follows. First, for a given set of features, a network is created for
each person (both healthy and ON); afterwards, the efficiency (see Eq. 5) of each
network is computed, and these latter values are fitted against the pelvic diameter
by means of a second-order polynomial. Finally, the goodness of all the process (and,
thus, the relevance of the selected features) is estimated through the coefficient of
determination R2 of the fit.
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Figure 2. Performance of the two feature selection algorithms:
(Left) goodness of linear fit and (Right) mutual information. The
black solid lines represent the score (i.e., the goodness of the polino-
mial fit - see the text for further details) as a function of the number
of features included in the analysis; blue dashed lines indicates the
value of the metric (R2 and Mutual Information I) associated with
the feature included in each step.

As can be noticed from Fig. 2, both algorithms perform well for the scope of se-
lecting the relevant features under which the results of the analysis are significant.
An optimal result is obtained with a smaller number of features - the maximum
of the R2 corresponds to 300 features for the goodness of linear fit, and 280 for
the method based on mutual information; therefore, two thirds of the initial fea-
tures have been eliminated, thus reducing the computational cost by a factor of 10.
Furthermore, and not surprisingly, the highest score achieved by both methods is
higher than the score obtained by analyzing the whole dataset. This is due to the
nature of the feature selection, as the least important features (which are, in the
end, not codifying relevant information) are excluded from the analysis.

In Fig. 3 we represent the second-order polynomial fits corresponding to networks
created with five different numbers of nodes, selected according to the mutual in-
formation criterion. It can be noticed that the last three plots, corresponding to
145, 280 and 834 nodes respectively, are depicting a clear relation between the
characteristics of the networks and the pelvic diameter.

6. Conclusions. We report the results of the application of iterative feature se-
lection in the construction of complex networks, with a specific application to the
biomedical problem of relating levels of expression of microRNAs with the degree of
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Figure 3. Comparison of the results obtained with different num-
bers of features: from left to right, top to bottom, 28 (R2 = 0.482),
50 (R2 = 0.841), 145 (R2 = 0.864), 280 (R2 = 0.871), and 834 (the
full dataset, R2 = 0.850). Black squares (red diamonds) represent
values of control (ON) subjects.

severity of Obstructive Nephropathy. While this family of data-mining algorithms
has been extensively studied in the last decades, less attention has been devoted to
them from the community of researchers working with complex networks. Yet, the
reduction of the number of features, and thus the reduction of the number of nodes,
can drastically minimize the computational cost of the analysis, while, at the same
time, improving the significance of the obtained network. The proposed approach,
therefore, would be extremely useful in future genetic studies based on complex net-
works, where the quantity of available information (up to 20.000 expressions levels
per subject) represent a computational challenge.
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