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Abstract 

The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete 
comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic 
ground motion due to irregular geological configurations, both of layering and topography. 

The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the 
reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental 
solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By 
means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical 
profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The 
obtained transfer functions show excellent agreement with already published results. 

Keywords: 2D site effects; Irregular multilayered medium; Direct boundary element method 

1. Introduction 

Recent destructive earthquakes have shown significant 
evidences of the effects of surface geology and topography 
on ground motion characteristics at a given site. Among 
these effects we have: amplification and deamplification 
patterns, strong spatial variability of amplification and 
polarization within a small area [1-6] . 

There are several ways of assessing site effects. The 
characterization of a given site can be achieved based on 
instrumental or theoretical—analytical or numerical— 
approaches to the problem. A detailed survey of the 
numerical methods developed for the computation of site 
effects is given by Sanchez-Sesma [7]. Among the various 
techniques, the Boundary Integral Equation Method (BIEM) 
has gone through significant development and offers some 

advantages. There are two main approaches: (1) in the direct 
formulation (DBIEM) one finds the unknown tractions and 
displacements at the boundaries of the domains, while (2) in 
the indirect approach (IBIEM) one formulates the problem 
in terms of force or moment boundary densities. At this 
point there is a terminology issue we want to address: 
because the DBIEM parallels in many aspects the Finite 
Element Method (FEM), the term BEM (for Boundary 
Element Method) was coined naturally in the 1970s by 
Brebbia [8] and is used extensively since then. Therefore, 
the DBEM (or simply BEM which is usually referred to as 
the standard) and the IBEM will stand in this work for the 
direct and the indirect formulations of BEM, respectively. 

Some significant studies carried out using an indirect 
approach were presented by Luco et al. [9] and Luco and de 
Barros [10] in which a 2.5D indirect formulation was 
proposed in order to obtain the 3D response of an infinitely 
long canyon, and a class of cylindrical inclusions embedded 
in layered media, respectively. In Sanchez-Sesma and 
Campillo [11,12], the Indirect Boundary Element Method 



(IBEM) was presented and used to compute the 2D seismic 
response of topographical irregularities on the surface of a 
homogeneous half-space. Pedersen et al. [13] used the 
IBEM to compute the 3D response of 2D topographies, 
while Sanchez-Sesma and Luzon [14] and Luzon et al. [15] 
applied the method to study 3D alluvial valleys and 
topographies. Therefore, the indirect approaches have 
been widely used for this topic. 

On the other hand, several studies have been carried out 
using the direct formulation. For instance, Kawase [16] 
proposed a discrete wavenumber boundary integral equation 
method for 2D scattering problems. This approach 
has been extended to 3D problems by Kim and 
Papageorgiou [17] and to 2.5D elastodynamic scattering 
problems by Papageorgiou and Pei [18]. The Direct 
Boundary Element Method (DBEM) using the full-space 
Green's function allowed Reinoso [19,20] to consider the 
2D and 3D seismic response on homogeneous alluvial 
settings. 

This work is focused on the seismic response of 2D 
irregular topographies (both underground and superficial, 
that shape laterally varying media) under incoming waves. 
For this purpose a DBEM formulation of the problem has 
been developed. The main site categories which are related 
to important local topographical and geological effects 
on seismic ground motion, are addressed in this 
formulation, which stems from the classical weighted 
residual technique; the approach can be regarded as an 
extension to elastodynamics of Betti's classical reciprocal 
theorem of elastostatics. Moreover, it uses the infinite-space 
2D harmonic Green's function [8,21]. Therefore, the 
method is based upon Somigliana's elastodynamic 
equation. The simulations have been carried out in the 
frequency-domain. 

Our approach to these complex site effects issues, is based 
on the development of DBEM formulation for the treatment 
of the two different situations that can take place: the internal 
and the external problems. Hence, the computations are 
carried out in terms of total and diffracted fields, respectively. 
Of course, the boundary conditions on each irregular interface 
between layers are explicitly enforced in our approach. The 
formulation has been systematically implemented on a 
versatile computer code in which the different irregularly 
shaped layers of the studied domain can be considered. This 
implementation of the DBEM is restricted to the in-plane (P-
SV) problem under incidence of elastic plane waves. The 
antiplane (SH) case will be discussed elsewhere. 

As a first test the DBEM results are compared with those 
obtained from the application of the IBEM as presented in 
Sanchez-Sesma and Campillo [11,12]. The verification is 
performed for simple theoretical models of topographical 
reliefs. It is confirmed that these profiles may induce 
significant variations on earthquake ground motion. The 
IBEM is based on a single-layer boundary integral represen­
tation of the diffracted elastic wave field. It can be shown that 
this representation can also be derived from Somigliana's 

identity [11], which is also the departure for the DBEM. 
Therefore, although the two techniques are closely related, 
they approach the site effect problem from different points of 
view. In the case of the IBEM, the computations carried out 
can be regarded as a numerical realization of Huygens' 
principle, which states that every point on a wavefront acts as 
a source. On the other hand, the DBEM can be interpreted as a 
direct consequence of the virtual work theorem, it implies 
relationships of boundary values of both displacements and 
tractions from an energy viewpoint. 

A further testing of the method is performed by the 
comparison between results obtained from the application 
of the DBEM, and the hybrid method presented by Faccioli 
et al. [22] to simulate the response of a real site (a 
multilayered sedimentary basin). While with the DBEM the 
appropriate matrices are generated for each irregular layer 
and then assembled, the hybrid pseudospectral approach 
consists in splitting up the computational domain into 
two disjoint parts, and using the FEM and the Spectral 
Element Method (SEM) on either part. The agreement 
between results (transfer functions at specific sites) is good. 
However, a detailed analysis of the relative performances of 
these techniques is beyond the scope of this work. 

As part of the DBEM's methodology verification, the 
grid optimization has been accomplished by comparison of 
the results derived from different geometric discretization 
criteria. The investigation on the existence of nonphysical 
waves (the so called edge effects) has also being part of the 
validation process. Taking into account all the results 
achieved by the different tests it can be said that, the DBEM 
is a reliable and powerful tool for simulating ground motion 
on irregular multilayered sites. In fact, the said validation 
constitutes a consistency test of the DBEM. The application 
of this technique, to a deeper analysis of the seismic 
response of complex real sites, is being approached. Its 
contribution to the study of seismic site effect, together with 
an optimization of the computation process [23-25] will be 
addressed in subsequent works. 

2. The direct boundary element method 

2.1. Integral formulation for time-harmonic problems 

The DBEM is a numerical technique based on Somiglia­
na's integral representation theorem in elastodynamics (this 
reciprocal theorem is an extension of Betti' s classical result in 
static elasticity). In this work the DBEM formulation is 
presented for time-harmonic problems. There are several 
advantages of the formulation in the frequency-domain. For 
instance: (1) the governing equations are reduced as they have 
less derivatives, (2) the integral representations are simpli­
fied, (3) realistic material damping can be introduced in a 
simple way, and (4) the time-domain response for an arbitrary 
excitation can be computed from a suit of frequency-domain 
responses; this is characteristic of linear systems. 



Consider two elastodynamic states defined over a region 
D (with dD as its boundary). The displacements, tractions 
and body forces for the first state are denoted by uh Tt and/; 
while for the second one we have u!h T'h and/-, respectively. 
The subindex / stands for the in-plane components (/ = 1 
and 2 for directions xx = x and x2 = z, respectively). If both 
states are time-harmonic with the same frequency a) and the 
initial condition values are the same as the steady-state 
values, the reciprocal theorem [21] equals the work done by 
body forces and boundary tractions associated to each state 
over the displacements of the other one. Here and hereafter 
use is made of the summation convention, i.e. the repetition 
of a subindex should be understood as a summation over the 
range of such index. 

In case the second state is the full-space time-harmonic 
fundamental solution or Green's function, that is to say, the 
response of an infinite elastic medium to a harmonic in-
plane unit line load of frequency a>, in absence of body 
forces, the reciprocal theorem becomes Somigliana's 
integral representation in elastodynamics [21] 

Cjt(x, a>)Ui(x, a>) + T^x, y, w)w,(y, a>)dS(y) 
JdD 

Constant 

dD 
[ / kx ,y , ^y , ^ )dS (y ) , (1) 

where Ujt(x, y, co) = Gy(y, x, co) = displacement at point y 
in the direction / due to a unit in-plane line load applied at 
point x in direction/ 7^(x, y, oS) = /th component of traction 
at boundary point y (at dD, with normal assumed to point 
outside D) due to a unit in-plane line load at point x in 
direction/ x G D , y £ dD, and ij = 1 , 2 . The left-hand side 
integral is understood in the Cauchy' s Principal Value sense. 

It can be shown that the kth component of both 
displacements, rfk, and tractions, tf

k, in 2D for a concentrated 
line load along a direction defined by a unit vector e with 
components eh can be written in terms of the corresponding 
Green's functions, or fundamental solutions for a concen­
trated harmonic load, by means of 

uk(x, a)) = Uf
lk(y, x, (o)ei(y), 

and 

4(x, (o) = 7^(y, x, (o)ei(y). 

(2) 

(3) 

The fundamental solutions given by Dommguez [21] in 
terms of the modified Bessel function of the second kind, are 
entirely equivalent to the ones that appear in [11] which are 
written in terms of Hankel's functions. 

2.2. The direct boundary element method 

The analytical solution of the integral equation (1) cannot 
be obtained in general. Here we present its numerical 
solution through the application of the DBEM. The first 
stage consists on the boundary's discretization of the site 
model analysed. It is divided into K constant elements with 

collocation point x = node / 

^ -Constant 

Fig. 1. General scheme of the discretization process of the boundary using 
constant elements. 4> represents a generic variable field [34]. 

the nodes at their centers (Fig. 1). That is to say, 
the unknown values (displacements and tractions) are 
assumed to be constant over each element. 

If such approach is used, the integral equation (1) in case 
of smooth boundary becomes: 

1 K f 
- 8^(1, w) + X ui^ °^ Tji(l> y> o^dsfy) 
* k=l J $Dk 

K r 

= Y ti(k, to) l/jitf, y, (o)ds(y), y^dDk. 
k=l 8ZX 

(4) 

The collocation point or node where the integral equation 
is applied is denoted by /, while k represents a general 
element dDk that contains the k node (Fig. 1). This 
expression represents two equations associated to the j 
axis that can be written 

J HjiV, k)ut(k) = J Gjiil, k)tt(k\ (5) 
k=\ k=\ 

where Hjt and Gjt are the associated integral coefficients to 
the displacement and traction vectors, respectively, along 
the / axis at node k, ut(k), tt(k). 

Repeating Eq. (5) for every node, a set of algebraic 
equations of the type 

H u 
(2KX2K) (2KX1) 

G t , 
(2KX2K) (2KXI) 

(6) 

can be established. The 2K X 2K matrix H and G (where K 
is the total number of nodes or elements on the boundary), 
contains the integral coefficients Hjt and Gj7. Whereas the 
vectors u and t correspond to the displacement and tractions 
values at each of the K nodes. 

Two cases must be discussed when the integral 
coefficients contained in the H and G matrices are 
calculated. These are computed using the Gauss quadrature 
integration formulae, when node / does not belong to the 
element k where the integration is calculated (/ T̂  k). When 
the collocation point is the node of the integration element 
(/ = k), the singularity of the fundamental solution requires 
an analytical integration [21]. 

The application of the boundary conditions, permits the 
rearrangement of Eq. (6), leading to a final linear system of 



2K equations: 

A x = 
(2KX2K) (2KXI) 

F . 
(2KX1) 

(J) 

The vector x represents all unknowns—displacements or 
tractions—within the problem. By solving this last system 
of equations all the boundary values can be calculated. 

The formulation developed is valid for time-harmonic 
viscoelastic problems where traction and strain are linearly 
related. In such cases it has only to be taken into account that 
Lame constants are complex valued [21]. 

3. DBEM applied to site effect estimation 

3.1. Diffraction of elastic waves by local conditions 

Consider a site defined by a complex local geology and an 
irregular free surface, such as the one depicted on Fig. 2. The 
ground motion consists on the superposition of the primary 
and diffracted waves. The primary waves, also called the 
free-field, are the solution in the absence of irregularities— 
that is, the waves inciding on the rock basement—whereas 
the diffracted waves are generated by the interference 
between the primary waves and the irregularities. Therefore, 
the total wave field, written in terms of total displacements 
(ul) and total tractions (tl), is 

u ^ ^ + u^ 

t ^ tV t* 
(8) 

where (u°, t°) denotes the free-field and (ud, td) contains the 
diffracted waves at the irregularities. 

The free-field is analytically known and it is the solution 
of the transmission and reflection of the in-plane problem 
(P-SV waves) at the free surface and boundaries of the 
homogeneous half-space (z ^ 0), see [26]. 

As it is shown in Fig. 2, the formulation has being 
developed to deal with multiregions defined by irregular 

interfaces. In such situations, the solution of the dynamic 
problem is established by the fulfillment of expression (8) 
together with the compatibility and equilibrium conditions 
(continuity of displacements and tractions, respectively), 
along interfaces. Namely, for any (/, / + 1) pair of subregions: 

•*;+i> (9) 

t!=-tl 7+1 ' 

In all situations the DBEM is based on the resolution of the 
Eq. (6). The way to apply it depends on the local conditions. If 
the site considered requires the modelling of an internal 
region, the radiation condition of the actual problem is 
satisfied. In such cases the DBEM is established in terms of 
the total wave field, u\ t\ [26]: 

Hul = Gt\ (10) 

When the computation involves an external problem, it 
has to be transformed because the problem itself does not 
satisfy the radiation condition. The DBEM's implementation 
is done in terms of the diffracted field, which should satisfy 
the radiation condition, leading to [26]: 

H ua = Gta 
(11) 

H(ul - u°) = G(tl t°). 

Considering the various aspects discussed herein, the 
formulation presented will be applied to study models that 
represent geological and topographical conditions of prac­
tical interest in seismic site response estimation. 

3.2. Computation of site effects on multilayered media 
shaped by irregular interfaces 

In general, a realistic DBEM's computation of site 
effects—up to what the geotechnical, geological and 
topographical information gathered allows—has to be 

2500 3000 3500 

distance (m) 

Fig. 2. An example of a multilayered region defined by irregular sub and superficial interfaces. The structure corresponds to a cross-section of the Volvi 
sedimentary basin close to the city of Thessaloniki in Greece [22]. This basin's structure is referred in this work as model I. 



Fig. 3. In the figure is illustrated a scheme of a theoretical site model 
corresponding to an irregular elevation (medium II) embedded in a 
homogeneous half-space (medium I). From the point of view of the 
computation of site effect by the DBEM, medium I corresponds to the 
external problem, whereas medium II to the internal one. 

approached taking into account the formulation of the 
internal and external problems presented in Section 3.1. 

An example of a complex site is shown on Fig. 2. The 
application of the DBEM to this multilayered irregular 
valley, which corresponds to a significant type of site on local 
effects study, consists on the assembly of the solutions arisen 
from the posing of: the external problem—the total wave 
field radiated through the homogeneous semi-infinite space 
which is set as the rock basement (layer R)—and the internal 
problems associated to each of the layers of the medium 
(layers A-G). The assemblence of both problems will be 
done through the establishment of the compatibility and 
equilibrium conditions on the interfaces between layers. In 
the following sections, the formulation of the internal and 
external problems will be presented on a more extensive way. 
The development of it will be based on the theoretical model 
depicted on Fig. 3. It consists of an elevation represented by 
medium 77 (internal problem), embedded on medium I: a 
homogeneous semi-infinite medium (external problem). 

3.2.1. External problem 
Consider the irregular free surface Sl(Sl = Sl

0 U S\) of 
the homogeneous half-space I depicted on Fig. 3. Sl

0 

corresponds to the flat part of the free surface of the semi-
infinite space, whereas S\ defines the irregular part of the 
relief of medium I in contact with medium II. The 
computation of the total motion on the sites along Sl

0 and 
S\ denoted by uli, uli, respectively, is based on Eq. (11). 

0 1 

Therefore, the implementation of the DBEM leads to the 
next expanded matrix formulation: 

(12) 

The displacements, u°i i = 0,1, and tractions, t°i i = 0,1, 
are the values of the free-field motion of the homogeneous 
half-space which, as it has been mentioned, are analytically 
known, and t^ i = 0,1 are the known boundary conditions. 
The unknown of the system are the total displacements 
across the whole border S1, u î i = 0,1. 

3.2.2. Internal problem 
The internal problem is represented on Fig. 3 by medium 

II. It is delimited by its closed boundary S11, (S11 = S1/ U Sf). 
Sl2 is the irregular part of the site's free surface. S1/ coincides 
with Sj but they are associated to different media and hence 
circulated in opposite senses. 

According to Eq. (10) the application of the DBEM, in 
this case, is carried out in terms of the total internal field u^n, 
uln- Thus the posing of the problem is: 

J 2°l °2°2 

(13) 

For the resolution process of this system, the internal and 
external problems (medium I and II) are assembled by the 
enforcement of the compatibility and equilibrium con-

S1/). That is: ditions at the interface (S\ 

uli 

*•>! 

: l l l n , 

_ tsP-

(14) 

3.2.3. Generalization to a multilayered medium 
The DBEM's application process to site effects esti­

mation explained on previous sections can be generalized to 
a multilayered site, e.g. the sedimentary basin of Fig. 2. The 
rock basement subjected to the incidence waves has to be 
treated as an external problem, whereas the rest of the layers 
are internal problems. That is to say, a concise formulation 
of the DBEM (see Eqs. (10) and (11)), based on the 
geometry of Fig. 2 is: 

HR . . t uff 

HGu' 

HAul 

H R i . ° 

GGt' 

GX tg), (15) 

GAt( 
A-

Superindex t, 0 have the same meaning as in previous 
sections: total and free-field. On the other hand, subindex 
j = R,G,...,A hint at the different layers that compose the 
medium. 

4. Testing of the DBEM's formulation developed 

The accuracy of the method has been gauged by testing 
the seismic responses computed by the DEBM at specific 
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Fig. 4. Scattering of in-plane waves by a semi-circular canyon, (a) Scheme of the canyon's model of radius a. The homogeneous half-space is characterized by 
Poisson's ratio 1/3, and damping ratio 1%. The element's length of the models's grid is A/15, where A is the S-wavelength. (b)-(e) Comparison of the seismic 
responses computed on the canyon's surface by the DBEM (lines) with the results of the IBEM (represented by circles). In these figures it is displayed the 
seismic horizontal (lUxl) and vertical (lUzl) responses for P and SV waves with emergency angles e = 60°, 90° (measured from the horizontal). 

sites, with responses stemmed from the application of other 
approaches. Specifically these approaches have been: on 
one hand the numerical technique IBEM developed by 
Sanchez-Sesma and Campillo [11,12], and on the other a 
numerical hybrid method presented by Faccioli et al. [22] 
consisting on the assembling of the FEM and the SEM. 
These methods have been briefly introduced at the 
beginning of this work. They have been widely accepted 
and used in the literature as good techniques for site effect 
analysis. It should be pointed out that the results presented 

should not be interpreted as an investigation of the physics 
of the problem in itself (such type of goal will be addressed 
in future articles), but merely as a measure of validity of the 
method developed in this work. 

In order to show the validation of the method, it is 
presented some of the simulations performed for different 
sites. The first two theoretical models fit two significant site 
categories in the local effect problem: a semi-circular 
canyon and semi-elliptical mountain. The third model is 
also an important site category, but the difference is that it 
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Fig. 5. Scattering of in-plane waves by a semi-elliptical mountain, (a) Scheme of the elevation's model of height 2a. The homogeneous half-space is 
characterized by Poisson's ratio 1/4, and damping ratio 1%. The element's length of the models's grid is A/15, where A is the S-wavelength. (b)-(e) 
Comparison of the seismic responses computed on the mountain's surface by the DBEM (lines) with the results of the IBEM (represented by circles). In these 
figures it is displayed the seismic horizontal (lUxl) and vertical (lUzl) responses for P and SV waves with emergency angles e = 60°, 90° (measured from the 
horizontal). 

represents a real sedimentary basin. These results are part of 
a vast study carried out for different models, under diverse 
radiation characteristics. All results have shown a 
similar good level of agreement on the testing process 
between techniques, therefore the DBEM's formulation is 
validated. 

4.1. Diffraction by a semi-circular canyon 
and a semi-elliptical mountain 

One of the most extended analysed topographical 
irregularities in local wave diffraction is the canyon 
embedded in a homogeneous half-space. Its seismic 
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Fig. 6. (a) In this figure it is shown another mesh corresponding to the semi-elliptical elevation of Fig. 5a. The difference between meshes is the total length 
(Z/p). (b) and (c) Comparison of the simulations performed by the DBEM on the surface of the semi-elliptical elevation represented on Fig. 5a (LT = 3L) and 
Fig. 6a (LT = 5L). 

response has been assessed by many authors through 
different techniques: in Wong [27] a generalized inversion 
technique was applied, Sanchez-Sesma and Campillo [12] 
developed the IBEM, a 2.5D hybrid formulation, which is 
an extension of the discrete wavenumber boundary integral 
equation method, was used by Zhang et al. [28], etc. 
Therefore this site model has been turned into a site-test for 
validating new techniques. 

Next, the response of an elevated topography such as a 
semi-elliptical mountain has been computed. This site is a 
good example to show the validity and ease of the DBEM's 
scheme—presented in Sections 3.2.1 and 3.2.2—for irre­
gular topographies defined by boundaries outside the 
homogeneous half-space. 

4.7.7. Frequency-domain response 
In this section a sample of the spectral seismic response 

computed on the surface of the above mentioned sites is 
presented. Fig. 4 displays results corresponding to the 
scattering of P and SV waves (amplitude unit of incidence) 
by a semi-circular canyon of radius a, embedded in a 
homogeneous half-space characterized by Poisson's ratio 1/ 
3, and slightly dissipative with a 1% hysteretic damping 
ratio. The seismic response illustrated correspond to the 
incidence of P and SV waves with an emergency angle 

e = 60°, 90° measured from the horizontal. The horizontal 
(lUxl) and vertical (lUzl) Fourier amplitudes computed on 
the canyon's surface are plotted vs. a normalized X 
coordinate (x/a). These amplitudes represent the amplifica­
tion factor due to the irregularity. The dimensionless 
frequency r\ = (axzAn-jS), where a) is the angular frequency 
and /3 the S-wave velocity, is assumed to be equal to 1. The 
lines represent the results obtained by the DBEM, while the 
circles correspond to the IBEM computation. As it can be 
seen the convergence between results compare favourably 
both techniques. The discrepancies between them are 
negligible, they can be discussed in terms of details of the 
geometry's discretization. 

Fig. 5 displays the scattering of P and SV waves due to the 
presence of a semi-elliptical mountain with a maximum 
height twice the value of its half-width a, over a 
homogeneous half-space characterized by Poisson's ratio 
1/4, and slightly dissipative with a 1% hysteretic damping 
ratio. The cases illustrated correspond to emergency angles 
e = 60°, 90°, and to a dimensionless frequency r\ = 1.5. 
DBEM's and IBEM's results are plotted by lines and circles, 
respectively. As in the former analysis the agreement found is 
excellent and therefore the formulation is validated. It has 
been found discrepancies between the results, that are larger 
comparing to the ones analysed on the canyon's case, 
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Fig. 7. (a) The mesh shown in this figure corresponds to the semi-elliptical elevation represented in Fig. 5a. On the contrary to the latter, it is designed with 
variable discretization (variable element length h). (b) and (c) Comparison of the simulations performed by the DBEM on the surface of the semi-elliptical 
elevation represented on Fig. 5a (h = A/15) and Fig. 6a (h = A/15, A/25). 

although they still remain insignificant as to the validation of 
the method is concerned. Besides the small details in the 
discretization applied by both techniques—as it has been 
already stood out—these differences can also be attributed to 
the fact that, in the DBEM implementation the input motion, 
that is the free-field, is produced by incident plane waves in 
the boundaries within the half-space where the 
analytical solution is known, whereas the IBEM's free-field 
is extended to the parts of the topography that are not 
included in the reference half-space and provides the 
boundary excitation. 

In other engineering fields the method has revealed an 
important sensitivity to the discretization's criteria adopted, 
therefore a stability analysis of the method has also been 
part of the testing procedure. Several grids where designed 
combining different total discretization lengths—LT = 3L, 
5L where L is the length of the irregular surface. It has also 
been taking into account the use of variable discretization 
along certain parts of the boundary where there is a marked 
change of its geometry (such as the border of the canyons, 
valleys, etc.). Element lengths such as h = A/15, A/25, 
where A is the S wavelength, have been used. In Figs. 6 and 
7 it is shown a sample of the mesh analysis performed. It 
belongs to the simulations carried out on the semi-elliptical 

mountain modelled by meshes with different total lengths, 
see Fig. 6 (incident P-wave e = 50°), and variable 
discretization, see Fig. 7 (incident S-wave e = 60°). As it 
can be seen, it is found a great stability and robustness of the 
seismic response computed over all the grids analysed. 
Other analysis have been carried out involving a larger 
element length (h = A/5), and excellent agreement has been 
found between results. In consequence the discretization 
criteria established, according to computation optimization 
reasons, is LT = 3L and h = A/5. 

4.7.2. Time-domain response 
The test of the formulation presented is completed 

examining the edge effects due to the finite size of the 
discretized boundary. For this aim, synthetic seismograms 
were computed using the FFT algorithm for a Ricker wavelet. 
Time series were obtained from the transfer functions 
estimated at receivers placed along the free surface. Fig. 8 
shows a sample of the synthetic seismograms, computed 
at the surface of the semi-circular canyon shown on 
Fig. 4 (Ricker wavelet's central frequency is 
/p = 1.5/3/2<z = 2.6 Hz, 7] = 1), for the incidence of P and 
SV waves (e = 90°, 70°, respectively). Fig. 9 shows a 
sample of the synthetic seismograms, computed at 
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Fig. 8. Time-domain displacement response of a semi-circular canyon 
(Fig. 4a) to incident P (e = 60°) and SV (e = 70°) waves. The incident time 
signal is a Ricker wavelet with central frequency fp = 1.5/3/2a = 2.6 Hz. 
The stations are located along the free surface of the half-space, at a 
horizontal dimensionless horizontal coordinate xla. 
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Fig. 9. Time-domain displacement response of a semi-elliptical elevation 
(Fig. 5a) to incident P (e = 90°) and SV (e = 60°) waves. The incident time 
signal is a Ricker wavelet with central frequency fp = 5.4 Hz. The stations 
are located along the free surface of the half-space, at a horizontal 
dimensionless coordinate xla. 

the surface of the semi-elliptical elevation shown on Fig. 5 
(Ricker wavelet's central frequency is/p = 5.4 Hz, r\ = 1.5), 
for the incidence of P and SV waves (e = 90°, 60°, 
respectively). As it can be seen, the nonphysical waves are 
negligible on all the examples shown, therefore the seismic 
response is not influenced by the truncation of the free 
surface. This result, together with the other aspects already 
discussed, confirms the efficiency of the DBEM's formu­
lation on site effects estimation. 

The time response also contributes to estimate the range 
of the effects caused by the local conditions. Although as it 
has been already argued, this deeper analysis of the 
diffraction phenomena is beyond the scope of this work, 
synthetics can be taking as an example of the complicated 
interference patterns that can take place. At a first sight it 
can be outlined significant features on the seismic 
response such as: the existence of diffracted waves at the 
edge of the irregularities {xla = —1,1), the creeping waves 
along the irregularity surface, that induce important 
variations of the ground motion at and around the 
irregularity. 

4.2. Diffraction by a multilayer sedimentary basin 

The extension of the DBEM's formulation developed, 
as to the complex sites is concerned, is being validated by 
the computation of the seismic response at a real site such 
as the Volvi sedimentary basin. In recent years, this basin 

has become a test-site for local site effect studies. It is due 
to the detailed information available on the subsoil 
structure, and the existence of a large recorded database 
of small and intermediate intensity earthquakes. There is a 
vast literature published, dedicated to this basin with 
different purposes [22,26,29-33]. Consequently in this 
section the description's site is limited to locate the 
basin, as well as, to propose a model based on the 
published geometry and dynamic properties of soil 
deposits. As it has already been introduced, the DBEM's 
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Fig. 10. Map of the localization of the Volvi sedimentary basin. The NNW-
SSE 2D soil structure of the basin depicted in Fig. 2, is represented, in this 
figure, by the line that joins Profitis (PRO) site to Stivos (STE) site. 
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Table 1 
Properties of the materials that compose the eighth layers of the basin 
shown in Fig. 2 

Layer p (kg/m3) (3 (m/s) Poisson's ratio a (m/s) Qs
a 

A 
B 
C 
D 
E 
F 
G 
R 

1700 
1800 
1800 
2100 
2150 
2200 
2500 
2600 

130 
200 
300 
450 
650 
900 
1250 
2500 

0.408 
0.375 
0.290 
0.285 
0.285 
0.285 
0.280 
0.277 

a <2s value at the reference frequency of 1 Hz. 

computation will be contrasted with results achieved by 
Faccioli et al. [22], by the use of a hybrid pseudospectral 
approach, consisting on the computation of the FEM 
together with the SEM. 

As it is shown in Fig. 10 the Volvi basin—a site of 
5.5 km wide and 200 m deep—is located between the 
Langhada and Volvi lakes in the Mygdonian graben, 
30 km to the east of Thessaloniki in northern Greece. 
The DBEM's computations have been carried out over a 
mesh which is based on the digitization of the 2D 
valley's structure analysed by Faccioli et al. [22]. In Fig. 
2 and Table 1 are shown a cross-section of this 
structure—denoted from now on as model I—and the 
soil properties, respectively. Because of time and 
memory requirements—which are at present being 
optimized for further studies in heavy situations—the 
mesh designed in this work, model II—has been 
simplified. Fig. 11 shows the structure of model II 
analysed. As it is shown, the difference between both 

MODEL II 

-4000 -2000 0 2000 4000 
X(m) 

Fig. 11. Structure of the Volvi sedimentary basin analysed in this work 
and denoted by model II. It has been obtained by the digitation of model I 
in Fig. 2. 

Table 2 
Properties of the materials that compose the six layers of the basin shown in 
Fig. 11 

P (Kg/m3) 

2600 
1800 
2100 
2150 
2200 
2500 

jS(m/s) 

2500 
250 
450 
650 
900 
1250 

V 

0.277 
0.332 
0.285 
0.285 
0.285 
0.280 

a (m/s) 

4500 
498 
820 
1185 
1640 
4500 

Qsa 

200 
25 
25 
50 
60 
100 

a Qs value at the reference frequency 1 Hz. 

models comes down to the merging of layers A-C 
(model I) into layer 2 (model II). In Table 2 is shown 
the soil properties of the last. The material properties 
assigned to layer 2 (model II) correspond to the mean 
values of layers A-C (model I). The comparison 
between techniques will be performed over the seismic 
responses calculated on the five sites located on both 
models: PRO, GRA, FRM, STC, STE. These have been 
approximately located during the digitization process of 
model I. 

The simulations carried out correspond to the vertical 
incidence of a SV wave (amplitude unit) on the rock 
basement (layer 1). In Fig. 12 the horizontal transfer 
functions calculated with the DBEM at the above mentioned 
stations (column a) are plotted vs. the ones published by 
Faccioli et al. [22] (column b). As it can be seen, both 
responses coincide in their main features: amplification 
levels, resonance frequencies. It can be concluded that 
DBEM's calculated response is consistent with the results 
presented by Faccioli et al. 

In a closer analysis of the results, it has to be outlined that 
there have been found larger discrepancies between the 
transfer functions obtained by both techniques in stations 
FRM and GRA, than in the rest of the stations. This difference 
can be attributed to the fact that, FRM and GRA sites 
are located where the local superficial conditions differ 
more between both models, I and II. It also has to be pointed 
out that both stations are strategically situated over two 
vertical faults where, in a deeper analysis that has been 
carried out and which will be presented in a future work, 
is shown that, there is a great variability of the soil response, 
and any uncertainty in the location process may induce 
to differences on the transfer functions simulated by both 
methods. 

5. Conclusions 

It has been presented the adaptation of the formulation of 
DBEM, for computing 2D site effects due to the diffraction 
of in-plane waves at irregular sub and superficial laterally 
varying layered media. The method works directly on 
frequency-domain and uses the exact full-space time-
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Fig. 12. Comparison between the horizontal transfer functions computed by the DBEM at different sites of model II (Fig. 11), and the results obtained by 
Faccioli et al. [22] at the same sites in model I (Fig. 2). 

harmonic fundamental solution. The formulation is 
implemented in such a way that it permits the systematic 
simulation of transfer functions for a certain spectral range 
at any specific site in the regions. 

The validation process has been carried out by 
comparison of the seismic response computed by the 
DBEM on theoretical and real soil models, with those 
obtained by the application of other numerical techniques. 
As results of the tests attained, there has been found an 
excellent agreement between the techniques. Thus, the 
DBEM's formulation presented in this work is validated for 
seismic responses on complex local conditions. It stands out 
the straight-forwardness of the approach to directly obtain 
the dynamical regime—displacements and tractions—with 
no other intermediate source of error, rather than the ones 
stemmed from its own approximate character. The versa­

tility of the method is partly due to its resolution based on 
the fulfillment of continuity conditions of displacements and 
tractions, at boundaries between materials. It is also 
remarkable that the formulation is developed with no 
need of analytical extensions of the free-field beyond the 
half-space, since it is evaluated at boundaries completely 
embedded in it. 

On the other hand, the method has showed a high level 
of stability and robustness, which has not been found in 
former applications of the method for other engineering 
purposes. Therefore it suffices to discretize the site model 
according to the criteria which optimizes the computing 
time and memory requirements: shortest total surface 
length, LT = 3L (L is the length of the irregular surface), 
and the maximum constant element size used h = A/5. As 
it has been shown in the real soil model analysis 



performed (the Volvi sedimentary basin), these criteria 
enables to undertake the estimation of the seismic 
responses at real sites characterized by large dimensions 
and complex media. Nevertheless the application of the 
method in terms of seismic risk analysis—where the high 
frequency information is important—requires an optimiz­
ation of the resolution of the final system of equations. 
This issue is at present being undertaking, and it will 
provide the extension of the DBEM's formulation to the 
3D case. 
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