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Abstract: In the recent decades, meshless methods (MMs), like the element-free Galerkin
method (EFGM), have been widely studied and interesting results have been reached when solv-
ing partial differential equations. However, such solutions show a problem around boundary
conditions, where the accuracy is not adequately achieved. This is caused by the use of
moving least squares or residual kernel particle method methods to obtain the shape functions
needed in MM, since such methods are good enough in the inner of the integration domains, but
not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity them-
selves, can solve this problem with the same accuracy in the inner area of the domain and at their
boundaries.

Keywords: meshless, shape functions, Bernstein curves, element-free Galerkin method

1 INTRODUCTION

When numerical methods were needed to solve par-

tial derivative equations, around 1950, several solu-

tions were considered. Three methods were mainly

used, based in their simplicity: finite element

method [1], finite volume method [2], and finite dif-

ference method [3].

A few years later, with the appearance of com-

puters, mainly since 1970s, these principal three

numerical methods were improved and programmed

to solve all problems found by engineers.

Finally, the complexity of such problems has led to

a point in which computers are not enough, even with

their increased capacity and improved processors, to

solve some problems. In some cases, such problems

can be solved, but the time consumed is so long that

it is not efficient for common industrial uses. We

are talking of problems like crack growth, large

deformations, phase transformations, etc. All of

them have the same difficulty: finite elements, vol-

umes or differences are rigid enough; so redefinition

(remeshing) of the domain is required because if it is

not done the solution is not accurate. This means that

the base of traditional methods is the limit of the

methods.

In the earlier 1990s, some authors [4] developed

several meshless methods (MMs) or meshfree meth-

ods (MF). These are methods in which the approxi-

mate solution is constructed entirely in terms of a set

of evaluation points, and no elements or characteri-

zation of the interrelationship of the evaluation

points (meshfree or meshless) are needed to con-

struct the discrete equations. It is then possible to

develop discrete equations from a set of evaluation

points and a description of the internal and external

surfaces of the model. For the latter purpose, a

CAD description, such as a model in three dimen-

sions, may be used, so MMs may overcome many of

the difficulties associated with meshing for three-

dimensional (3D) analyses. Although significant

progress in meshing techniques has been achieved,

meshing still represents a very daunting task.
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The earliest of this class of methods was smooth

particle hydrodynamics (SPH), developed by Lucy

[5] and Gingold and Monaghan [6]. It was used in

the modelization of astrophysical phenomena with-

out boundaries such as exploding stars and dust

clouds. Compared to other methods, the rate of pub-

lications was very modest for many years, limited

mainly to the papers of Monaghan and co-workers

[7, 8]. Only recently there have been some contribu-

tions to the development of this method.

Based on the use of moving least squares (MLS)

approximations, another class of methods have

appeared recently. The approximation technique

itself was first proposed by Lancaster and

Salkauskas [9], but it was not until much later that

Nayroles et al. [10] employed the MLS approximants

in a Galerkin method. They called their method the

diffuse element method (DEM). This method was

refined by Belytschko et al. [11] and the modified

method was called the element-free Galerkin

method (EFGM). The methods based on MLS approx-

imants are generally more robust and accurate than

SPH; however, they are more computationally

demanding.

Further information about all MMs can be found in

reference [4], where other common methods such

as meshless local Petrov–Galerkin method are

explained. Some of these methods are based on an

alternative to MLS, named residual kernel particle

method, explained in the previously referred

reference.

This new family of methods provides powerful

tools for dealing with problems not easily solvable

by the finite element methods. Particularly, in aero-

nautical engineering problems, MMs are used, e.g.,

in solving simple analysis, such as loaded beams

[11], thin plates [12], or thin shells [13]. On the

other hand, more specific problems are analyzed,

problems dealing with the boundaries of finite ele-

ment method, where difficulties appear: crack

growth in panels [14], large deformations, composite

plates analysis, etc.

In references [15] to [17], the behaviour of EFGM

when varying internal parameters is analysed.

However, in all cases, it can be observed that the

main contribution to the numerical error of the

method is reached in boundaries of the domain.

This is because this method is based on the use of

shape functions that conform a Partition of Unity

(PU) [4] by creating them with MLS that does not fit

solution to the boundaries.

Bernstein curves, however, obtain an improved

accuracy in boundaries without deteriorating the

solution in the inner domain, due to the fact that in

boundaries, nodal displacements are equal to nodal

parameters (all Bernstein polynomials are zero but

extreme polynomials). This way, global error is

almost neglected and numerical solution is practi-

cally exact. This property is not accomplished

by MLS-based EFGM because truncation of shape

functions is obtained at boundaries. Besides, some

parameters could complicate the selection of the

best MLS approximation, such as weight functions,

support radius, or the disappearance of order of the

polynomial base of the analysis. Finally, from the

computing point of view, Bernstein curves are poly-

nomials, which are a PU; so computing them gives

low-cost shape functions.

In the following paragraphs, the theoretical

background of Bernstein polynomials is introduced.

Then, such theoretical basis is applied to EFGM.

Finally, two examples of Bernstein polynomial-

based EFGM are developed; a first problem analyzes

a static case, and the second one shows a dynamic

application.

2 BERNSTEIN POLYNOMIALS

Bernstein polynomials are a family of polynomials

defined in the following way

Bi
n xð Þ ¼

n
i

� �
xi 1� xð Þ

n�i
ð1Þ

where x 2 ½0, 1�; i¼ 0,1,. . ., n; n is the order of the poly-

nomial family. Graphically, the family of Bernstein

curves of the order n is given as follows (Fig. 1).

Bernstein polynomials are a PU of order 1. This

means that the following expression is applicable to

Bernstein polynomials

Xn

i¼0

Bi
n xð Þ � xm

i ¼ xm ð2Þ

Here, m¼ 0, 1; and xi are the positions of the points in

which Bernstein polynomials are applied. Such loca-

tions are considered as those in which maxima are

reached for Bernstein polynomials

dBi
n xð Þ

dx
¼

i � nx

x 1� xð Þ
Bi

n xð Þ ¼ 0 ð3Þ

xi ¼
i

n
ð4Þ

Solution (4) is only true when x 6¼ 0, 1, where a max-

imum is reached, but slope is not 0. In Fig. 2, expres-

sion (2) is numerically determined for m¼ 0, 1 and

n¼ 10.

For higher orders of the PU and different orders of

the Bernstein polynomials, it can be easily checked

Bernstein polynomials in EFGM 1809
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that only PU condition is reached at extremes of [0,1]

interval, or for high values of n.

Another important property of Bernstein polyno-

mials is that their derivatives constitute a partition

of nullity (PN); that is

Xn

i¼0

d�Bi
n xð Þ

dx�
� xm

i ¼ 0 ð5Þ

As commented in Section 1, Bernstein polynomial-

based EFGM allows the solution to reach its exact

value at boundaries. This is because at extremes,

Bi
n ¼ 0, except for i¼ 0 and i¼n, where B0,n

n ¼ 1.

Therefore, in enforced boundaries, solution is exact.

3 BERNSTEIN-POLYNOMIAL-BASED EFGM

According to properties shown in Section 2, Bernstein

polynomials, therefore, can be used as shape func-

tions for EFGM MM when zeroth or first-order solu-

tions are looked for. Such shape functions are those

functions that allow the expression of the solution of

the equation in the following way

uh xð Þ ¼
XN

k¼1

�k xð Þ � uk ð6Þ

where uh(x) is the numerical approximation to the

solution; N the number of evaluation points, k(x) the

shape function associated to evaluation point k; and

uk the nodal parameter associated to the evaluation

point k (note that this value is not the nodal solution

of uh in xk, which is the main difference between FEM

and EFGM).

In the case of an elastostatic analysis, as found in

reference [11], the general equation of the problem

considering a Galerkin implementation is shown in (7)

Z
�

� Luð ÞT C Luð Þd��

Z
�

�uT bd��

Z
�t

�uT t0d�

�

Z
�u

�kT u� u0ð Þd��

Z
�u

�uT kd� ¼ 0 ð7Þ

Fig. 1 Bernstein polynomials of (a) order 5; (b) order 10; (c) order 50; and (d) order 100
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where � is the domain where solution is to be

obtained; �t the contour of the domain where loads

(t0) are applied; �u the contour of the domain where

solution is imposed to have a predefined value (u0);

j the set of Lagrange multipliers to be considered in

order to be able to accomplish with boundary condi-

tions; C is the structure compatibility matrix [1]; and

L the differential operator defined as follows for a 3D

analysis

L ¼

@=@x 0 0

0 @
�
@y 0

0 0 @=@z
@
�
@y

@=@x 0

@=@z 0 @=@x
0 @=@z

@
�
@y

2
6666666664

3
7777777775

ð8Þ

Inserting (6) and (8) in (7), the following equation is

reached

XN

i¼1

XN

k¼1

�uT
i

Z
�

L�ið Þ
T C L�kð Þd� � uk

�
XN

i¼1

�uT
i

Z
�

�T
i bd��

XN

i¼1

�uT
i

Z
�t

�T
i t0d��

Xnl

i¼1

XN

k¼1

�lT
i

Z
�u

N T
i �kd� � uk � u0ð Þ

�
XN

i¼1

Xnl

k¼1

�uT
i

Z
�u

�T
i Nkd� � lk ¼ 0

ð9Þ

Here, j is the column vector of Lagrange multipli-

ers, whose number is n� boundary conditions, shown

in the following expression

k ¼ Nklk½ � ð10Þ

Nk functions of expression (10) are to be considered

as those used in reference [18]

N0 sð Þ ¼
s � s1

s0 � s1

N1 sð Þ ¼
s � s0

s1 � s0

ð11Þ

Once this point is reached, the way to solve (9) only

depends on the shape function. In references [15] to

[18], MLS-based shape functions are obtained; but

such functions lead to a solution with a low accuracy

in contours due to the lack of PN property at such

boundaries.

When Bernstein polynomial-based shape functions

are used, PN property of order 1 can be reached at all

evaluation points of the domain, including those

located in boundaries. Therefore, solution is more

accurate than the one obtained by traditional MLS-

based EFGM.

For a tridimensional analysis, Bernstein polyno-

mials can be written as follows for a domain in

which x, y, z 2 ½0, 1�

Bijk ¼Bi,j,k
n,m,p x, y, z

� �
¼ Bi

n xð Þ � Bj
m y
� �
� Bk

p zð Þ

¼
n

i

� �
xi 1� xð Þ

n�i
�

m

j

� �
yj 1� y
� �m�j

�
p

k

� �

zk 1� zð Þ
p�k

ð12Þ

where nþ 1, mþ 1, and pþ 1 are the number of eval-

uation points in x, y, and z directions.

This way, inserting (12) in (9), Galerkin implemen-

tation converts to

XN

ijk¼1

XN

rst¼1

�uT
ijk

Z
�

Bijk � Brst

� �
AT

ijk CAijkd� � urst

�
XN

ijk¼1

�uT
ijk

Z
�

BT
ijkbd��

XN

ijk¼1

�uT
ijk

Z
�t

BT
ijk t0d�

�
Xnl

i¼1

XN

rst¼1

�lT
i

Z
�u

N T
i Brst d� � urst � u0ð Þ�

XN

jki¼1

Xnl

r¼1

�uT
ijk

Z
�u

BT
ijkNr d� � lr ¼ 0

ð13Þ

where

Aijk ¼

�i
n xð Þ 0 0

0 �
j
m y
� �

0

0 0 �k
p zð Þ

�
j
m y
� �

�i
n xð Þ 0

�k
p zð Þ 0 �i

n xð Þ

0 �k
p zð Þ �

j
m y
� �

2
666666664

3
777777775

ð14Þ

Fig. 2 10th-order Bernstein polynomials, according to
equation (1). Straight line for 0th-order PU,
according to equation (2), and dashed line for
1st-order PU, according to equation (2)
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being

�b
a tð Þ ¼

b � at

t 1� tð Þ
ð15Þ

So, combining (14) and (15) and inserting in (8)

L�i ¼

@=@x 0 0

0 @
�
@y 0

0 0 @=@z
@
�
@y

@=@x 0

@=@z 0 @=@x

0 @=@z
@
�
@y

2
666666666664

3
777777777775

�i ¼

@=@x 0 0

0 @
�
@y 0

0 0 @=@z
@
�
@y

@=@x 0

@=@z 0 @=@x

0 @=@z
@�
@y

2
666666666664

3
777777777775

Bijk ¼ Aijk � Bijk

ð16Þ

(13) can be expressed as a matrix product equation

system, according to reference [18], in the following

way

K G
GT 0

� �
U
�

	 

¼

F
q

	 

ð17Þ

where

Kijk,rst ¼

Z
�

Bijk � Brst

� �
AT

ijkCAijkd�

Fijk ¼

Z
�

BT
ijk bd�þ

Z
�t

BT
ijk t0d�

qrst ¼

Z
�u

N T
i Brst d� � u0

Gijk ¼�

Z
�u

BT
ijkNr d�

ð18Þ

In free vibration analysis, (13) is slightly modified to

reach the next equation

XN

ijk¼1

XN

rst¼1

�uT
ijk

Z
�

Bijk � Brst

� �
AT

ijk CAijkd� � urst

�
Xnl

i¼1

XN

rst¼1

�lT
i

Z
�u

N T
i Brst d� � urst�

XN

jki¼1

Xnl

r¼1

�uT
ijk

Z
�u

BT
ijkNr d� � lr

� !2
XN

ijk¼1

XN

rst¼1

�uT
ijk

Z
�

� Bijk � Brst

� �
d� � urst ¼ 0

ð19Þ

whose matritial equation is

K � !2M G
GT 0

� �
U
�

	 

¼

0
0

	 

ð20Þ

where

Mijk,rst ¼

Z
�

� Bijk � Brst

� �
d� ð21Þ

As can be seen in (13) and in (19), only two param-

eters are kept from those identified in traditional

MLS-based EFGM [16]:

1. Number of evaluation points. This is an intrinsic-

to-the-MM parameter. When Bernstein polyno-

mials are considered as shape functions, this

parameter defines the order of the polynomial.

Let N be the number of evaluation points.

Bernstein polynomial order is one order lower

than this value, that is, N� 1.

2. Gauss quadrature order. This is an extrinsic-to-

the-MM parameter and it is considered only

when Gauss quadrature is the scheme used for

solving numerical integrals in (13). If another

numerical integration method is applied, some

other(s) parameter(s) will appear. Hence, better

than Gauss quadrature order, it should be consid-

ered as a numerical integration scheme with

extrinsic parameter.

In the following sections, this theoretical back-

ground is developed in order to be applied to some

particular cases, and they will be compared to the

results obtained with traditional MLS-based EFGM.

4 CASE 1. TWO-DIMENSIONAL ELASTOSTATIC
ANALYSIS

The first case to be solved in these pages consists in

the Timoshenko’s beam, which is the common case

that has been solved in literature for MLS-based

EFGM [18]. In this case, analytical solution is consid-

ered for comparing results and to obtain error.

In Fig. 3, a scheme of the domain and boundary

conditions is shown.

Fig. 3 Numerical case 1. Dimensions, applied loads
and boundary conditions for Timoshenko’s
beam

1812 O F Valencia, F J Gómez-Escalonilla, D Garijo, and J L Dı́ez
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Governing differential equation

r� ¼ 0

Boundary conditions are

u x ¼ 0, y
� �

¼ 0

v x ¼ 0, y ¼ 0
� �

¼ 0

v x ¼ 0, y ¼+D=2
� �

¼ 0

�xx x ¼ L, y
� �

¼ 0

�xy x ¼ L, y
� �

¼ P D2=4
� �

� y2
� �

= 2lð Þ

ð22Þ

where u is the displacement in x direction; v the dis-

placement component in y direction; �xx the stress

component in x direction; �xy the shear stress com-

ponent; P the applied load at boundaries; D the

Timoshenko’s beam width (in y direction); L the

Timoshenko’s beam length (in x direction); and t

the Timoshenko’s beam thickness (in z direction).

Analytical solution for (22) is expressed in (23)

u x, y
� �

¼ �
Py

6EI
6L � 3xð Þx þ 2þ vð Þ y2 �

D2

4

� �� �

u x, y
� �

¼ �
Py

6EI
3vy2 L � xð Þ þ 4þ 5vð Þ

D2x

4
þð3L � xÞx2

� �
ð23Þ

where E is the Young’s modulus of Timoshenko’s

beam material; � the Poisson’s modulus of

Timoshenko’s beam material; and I the inertia

moment of the Timoshenko’s beam section.

For MLS-based EFGM solution, Dolbow’s results

are taken for comparison [18]. In such a reference,

the error of the numerical solution is taken as the

following expression as the rate of convergence in

energy

energy norm ¼
1

2

Z
�

"num � "exactð Þ
T C "num � "exactð Þd�

	 
1
2

ð24Þ

where C is the characteristic matrix of the material

and " the symmetric gradient of the displacement.

In order to compare the results with reference [18],

a parameter h is defined as the horizontal distance

between the nodes in the model. In reference [18],

an MLS-based EFGM is used, with a cubic spline

shape function, whose dmax value is 2.0 [16, 18]. In

reference [18], results show a minimum value of

energy norm equal to 0.1.

Results obtained for Bernstein polynomial-based

EFGM can be seen in Fig. 4.

In Fig. 4, it can be seen that the rate of convergence

is lower than that obtained with MLS-based EFGM,

as shown in reference [18]. Minimum error in dis-

placements at end for MLS-based EFGM, as shown

in reference [18], is 0.01 per cent when 175 nodes are

considered. However, when 10 nodes are used,

reference [18] shows an error of 8.7 per cent.

When Bernstein polynomial-based EFGM is applied,

exact solution is reached with a low number of nodes.

5 CASE 2. ONE-DIMENSIONAL VIBRATION

ANALYSIS

A second case is to be solved in these pages. A one-

dimensional (1D) vibration problem as shown in ref-

erence [19], where MLS-based EFGM is considered to

obtain the numerical solution, and where analytical

expression is evaluated.

In Fig. 5, a scheme of the domain and boundary

conditions is shown.

Governing differential equation is

m
@2u

@t 2
� EA

@2u

@x2
¼ 0 ð25Þ

The boundary conditions are

uð0Þ ¼ 0

u,xðLÞ ¼ 0

Fig. 4 Rate of convergence in displacements for
Bernstein polynomial-based EFGM

Fig. 5 Numerical case 2. Dimensions and mechanical
properties for an axially loaded beam in vibra-
tion analysis

Bernstein polynomials in EFGM 1813

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

 at Univ Politecnica Madrid on May 17, 2013pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


The analytical solution for the natural frequencies

of (25) is expressed in (26), as obtained from reference

[19]

!n ¼
	

2
2n � 1ð Þ

ffiffiffiffiffiffiffiffi
EA

m

r
n ¼ 1, 2 ð26Þ

The error considered is the rate of natural frequen-

cies, comparing numerical results of natural frequen-

cies, shown as num, and those taken from (26),

marked as exact solution

En ¼
!num

n � !exact
n

����
!exact

n

ð27Þ

The error is better shown as the log(En) in Table 1,

where solutions for MLS-based (Figs 6 and 7) shape

functions and Bernstein (Fig. 8) polynomial-based

shape functions are considered. For MLS-based

ones, two options have been obtained, one with

dmax¼ 2.0 (Fig. 6) and another one with dmax¼ 6.0

(Fig. 7).

From previous figures, it can be pointed out that, in

general, increasing the number of evaluation points

improves the accuracy of results in several orders of

magnitude. This fact is not effective when Bernstein

polynomials are considered to obtain shape functions

mainly because a problem of truncation error occurs:

when the number of evaluation points is increased,

the order of the polynomial is raised too. Therefore,

when a certain order is reached, the truncation error

appears and the error is increased. It is clear that a

number of evaluation points higher that 40 is not ade-

quate because of that for Bernstein polynomial-based

EFGM. However, for a high number of evaluation

points (higher than 40), if no truncation of decimal

positions could be achieved, the solution would be

better than those coming from a lower number of

evaluation points.

If computer-aided analysis is used, when the

number of evaluation points is below 30, Bernstein

polynomial-based EFGM is a more accurate solution

than MLS-based one, and such a solution can be con-

sidered as the exact (the order of the error is below

�20 for the three first natural frequencies).

Fig. 6 Natural frequencies for MLS-based EFGM,
dmax¼ 2.0

Fig. 8 Natural frequencies for Bernstein polynomial-
based EFGM

Fig. 7 Natural frequencies for MLS-based EFGM,
dmax¼ 6.0

Table 1 Maximum error (logarithmic values) in three

first natural frequencies

Number of
evaluation points

MLS-based
(dmax¼ 2.0)

MLS-based
(dmax¼ 6.0) Bernstein-based

n¼ 11 �7 �11 �17
n¼ 21 �9 �14 Exact
n¼ 31 �10 �16 Exact
n¼ 41 �11 �17 0.5
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6 CONCLUSIONS

When it is intended that a numerical solution has to

be obtained for a structural analysis, elastostatical or

dynamical problems, several methods are applicable.

If EFGM MM is considered, a shape function is

needed. This shape function can be obtained by sev-

eral ways.

Typically, MLS-based method is used. However, a

complicated and time-consuming algorithm is

required in MLS-based EFGM. Therefore, Bernstein

polynomials, which constitute a PU of order 0 and,

in case evaluation points are uniformly distributed

along domain of integration, of order 1 too, can be

an alternative and easy-computing way of obtaining

and evaluating such shape functions.

When analytical solution is a zeroth-order or first-

order one, numerical solution is much more accurate

than MLS-based EFGM, and analytical solution is

exactly obtained with numerical one (except of trun-

cation errors).
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