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A B S T R A C T 

The estimation of modal parameters of a structure from ambient measurements has 
attracted the attention of many researchers in the last years. The procedure is now well 
established and the use of state space models, stochastic system identification methods 
and stabilization diagrams allows to identify the modes of the structure. In this paper the 
contribution of each identified mode to the measured vibration is discussed. This modal 
contribution is computed using the Kalman filter and it is an indicator of the importance 
of the modes. Also the variation of the modal contribution with the order of the model 
is studied. This analysis suggests selecting the order for the state space model as the 
order that includes the modes with higher contribution. The order obtained using this 
method is compared to those obtained using other well known methods, like Akaike 
criteria for time series or the singular values of the weighted projection matrix in the 
Stochastic Subspace Identification method. Finally, both simulated and measured 
vibration data are used to show the practicability of the derived technique. Finally, it 
is important to remark that the method can be used with any identification method 
working in the state space model. 

1. Introduction 

Vibration data are usually recorded in built structures to extract the modal parameters of these structures, among other 
applications. In practice, the modal parameters are often not the final goal for engineers, but only an intermediate result 
that can be used for a wide range of applications: model updating [1,2], structural health monitoring and damage detection 
[3,4], load identification [5,6], and many others. 

When performing vibration tests on large structures it is practically impossible to measure the excitation and the 
measured outputs are the only information that can be used by the system identification algorithms. In these cases it is 
assumed that the unknown input is a realization of a stochastic process, so stochastic system identification algorithms can 
be applied to the data. The terms output-only modal analysis and operational modal analysis are widely used to describe 
this technique where natural frequencies, damping ratios and mode shapes are estimated from output-only vibration data. 



But these identified modal parameters have to be validated, that is, a post-processing phase is needed to extract the real 
(physical) modes from them. Probably, the stabilization diagram is the most used post-processing tool for operational 
modal analysis. The stabilization diagram can be used for different purposes: 

• To distinguish between stable physical modes and spurious modes: if we plot the modes for different model 
orders, the modes that have a similar behaviour at different orders are chosen to be physical modes of the 
structure [7]. 

• To select an order for the system model: by inspection, we choose the order of the system where all the stable 
modes are included, or at least, the modes we are interested in. The modal parameters are computed from the 
stable modes at the same order [8]. 
Fuzzy methods has been used to select the model order and related to this, to select valid system poles [9]. In 
[10], fuzzy clustering was introduced as a tool to automatically assess stabilization diagrams. Several algorithms 
were included, all based on the Fuzzy-C-Means clustering technique. Ref. [11] presented a method for the 
autonomous modal parameter identification and mode tracking by means of FRF measurements. The final model 
was selected using a fuzzy clustering approach, which separates physical from computational modes. 

• Rather than trying to find one order and related state space model where all modes are stable, the modal 
parameters are computed at different orders selected from a stabilization diagram [12]. 

• To remove modes that represent non-white excitation or modes that represent, due to an under-estimation of 
the model order, a combination of several physical modes [13]. 

For these reasons, stabilization diagrams have become a standard tool in operational modal analysis. In this paper 
we propose some other techniques that can be used in the post-processing phase of the modal parameters. Rather than 
replacing the stabilization diagram, they are complementary tools and the joint use of them can give us valuable 
information. 

For instance, the vibration contribution due to each identified mode can be estimated applying the Kalman filter. This is 
an important result if vibration levels have to be reduced by mitigation measures. Preliminary ideas were pointed out in 
[12]. We present here a detailed formulation of the procedure and how it can be used to compute the contribution of each 
mode to the measured vibration. This contribution is interpreted in terms of variance and energy. 

A consequence of this is that we can compute the modal contribution at different model orders, for example, at the 
same orders used in the stabilization diagram. Then, the order of the state space model can be selected from these results. 

The procedure can be used with any stochastic identification method that estimates a state space model from measured 
vibration data. The results presented here have been obtained with the stochastic subspace identification (SSI) method, 
one of the most robust and accurate system identification methods for operational modal analysis of structures. Two 
implementations with similar accuracy are available [12]: a covariance-driven (SSI-cov) and a data-driven (SSI-data) 
implementation. This method is based on the solution of the stochastic realization problem [14] and identifies state space 
models from (input and) output data by applying robust numerical techniques such as QR factorization, singular value 
decomposition (SVD) and least squares. A complete overview of data-driven subspace identification (both deterministic 
and stochastic) is provided in [15]. 

The organization of the text is as follows. In Section 2 it is indicated how vibrating structures can be represented by 
stochastic state space models, and how modal parameters are computed from these models. Section 3 presents a simulation 
structure that is used at different points of the work to check the proposed methods. In Section 4 the procedures to compute 
the contribution of the identified modes and to estimate the optimum order of the state space model are developed. Finally, the 
performance of the method is illustrated with operational data from a steel transmitter mast in Section 5. 

2. Modal analysis in the state space model 

2.1. State space equations 

The equation of motion for a nd degrees-of-freedom (DOF) linear, time invariant, viscously damped system subjected to 
external excitation is expressed as 

Mq(t) + Vq(t) + K,q(t)=Mt) (1) 

where M, T>, K e UndX"d are the mass, damping and stiffness matrices, respectively; J e U"dXn' is the excitation influence 
matrix that relates the nrdimensional input vector u(t) to the nd-dimensional response vector; q(t) is the nd-dimensional 
displacement response vector; dot denotes derivatives with respect to time. 

By defining the state vector x(t) = [q(t) q(t)]T, Eq. (1) can be converted into the continuous state space form 

x(t)=Acx(t)+Bcii(t) (2) 



where 

0 I 
, Bc = 

0 

Mr'1] (3) 

In practice, only a limited number of measurements are available in real structures; therefore, the dimension of the 
measurement output is less than or equal to the total number of degrees of freedom. Assuming we are measuring 
accelerations, the n0-dimensional output vector y(t) can be expressed as 

y(t) = Caq(t) (4) 

where Ca e Mn°x"d is the measurement location matrix corresponding to the acceleration responses of the structural 
system, composed of zeros and ones. We can rewrite the output vector into the continuous state space form 

y(t) = Ccx(t)+Dcu(t) (5) 

where 

Cc = Ca[-M^IC -M^V] Dc = CaM^J (6) 

Eqs. (2) and (5) define the state space equation in continuous time: 

x(t)=Acx(t)+Bcu(t) (7a) 

y(t) = Ccx(t)+Dcu(t) (7b) 

where 

y(f) e Un° is the output vector; 
u(t) e U"j is the input vector; 
x(t) e U"s is the state vector; 
Ac e R"sX"s is the transition state matrix describing the dynamics of the system; 
Bc g R"!xn" is the input matrix; 
Cc e Mn°x"s is the output matrix, which is describing how the internal state is transferred to the output vector y(t); 
Dc e M"°xni is the direct transmission matrix; 

Eq. (7a) is known as the state equation and Eq. (7b) is known as the observation equation. 
The continuous state space formulation is only useful for theoretical considerations because measurements are 

sampled at discrete time instants, so equations must be expressed in the discrete-time state space form. For the sampling 
of a continuous-time equation, we consider the input piecewise constant over the sampling period of length At (Zero-
Order Hold assumption), that is 

Vt e [tk,tk+1) = [feAt,(fe+l)At) =» x(t)=x(tk) = xk, u(t) = u(tk) = uk, y(t)=y(tk)=yk. (8) 

Under this assumption, the continuous time state-space model (7a) and (7b) is converted to the discrete time state-
space model: 

xk+A=Axk+Buk (9a) 

yk = Cxk+Duk. (9b) 

The parameters are related to their continuous-time counterparts as (see for instance [16]) 

A = eA^t, B = {A-I)A-^BC, C = CC, D = DC. (10) 

Up to now it has been considered that the system was only subjected to deterministic and known inputs, uk. However, 
besides these measured inputs, there are always other that, although unknown, contribute to the system response. This 
unmeasurable influence is characterized as disturbance or noise. In system identification, system response disturbance 
might be caused by different phenomena. In any case, noise will always be present in measured data and should be 
therefore always take into account. It is necessary to extend the state space model (9a) and (9b) including stochastic 
components, so a stochastic state space model is obtained: 

xk+-l=Axk+Buk+wk (11a) 

yk = Cxk+Duk + vk ( l ib) 

where wk e U"s is the process noise due to disturbances and modelling inaccuracies; vk e Un° is the measurement noise due 
to noise in sensor and acquisition system. Actually, they are both unmeasurable vector signals, but we assume that they 



are zero mean white noise sequences (discrete-time), with covariance matrices: 

r ! K (12) K vJ] 

where E is the expected value operator and 5pq is the Kronecker delta. 
In the case of output-only testing, only the responses of a structure are measured, while the input sequence uk remains 

unmeasured. Thus, Eq. (11) results in a purely stochastic system: 

xM=Axk+wk (13a) 

yk = Cxk + vk. (13b) 

Due to the stochastic nature of the state space Eqs. (13), it is only possible to predict the response of the system in terms 
of probability. For the state space model, this prediction is accomplished by the construction of the associated Kalman 
filter (see Appendix B). The Kalman filter is a computational scheme to estimate the states of a given state-space model in a 
statistically optimal manner. 

Applying the Kalman filter, alternative equations for the stochastic state-space model (13) that are more suitable for 
some applications can be built: the so-called innovation form representation 

Xk+-i\k=Axklk_-l+Kek (14a) 

yk = Cxk]k_-l+ek (14b) 

where ek are the innovations (B.3) and K is the Kalman gain (B.4) under stationary conditions (see Appendix B); xfeifc_1 is the 
expected value of the state at time instant k given the output measured to time instant fe-1, that is, E [xk | {y 1 ,y2. • • O^-i}]-

2.2. System identification and modal analysis 

System identification can be described, in broad terms, as the construction of a dynamic model for a system based on 
experimental measurements. In the context of vibrating engineering structures, the system refers to structures such as 
buildings and bridges, and identification mostly involves the determination of modal parameters (the natural frequencies, 
damping ratios and mode shapes) [20]. 

System identification methods are classified into parametric model-based and non-parametric methods. Parametric 
model-based structural identification methods involve the use of mathematical models to represent structural system 
behaviour in either time or frequency domain. The benefits of using parametric models for structural identification include 
their direct relationship with physically meaningful quantities such as modal parameters, improved accuracy and 
resolution, and their suitability for analysis, vibrations prediction and control. Popular time-domain parametric models 
used for structural identification purposes include: state space models, ARX models, ARMAX models, etc. [21]. Many 
algorithms are available to estimate the parameters of such parametric models, e.g. prediction error minimization method 
(PEM), least squares estimation (LSE), instrumental variable method (IV), maximum likelihood estimation (MLE), subspace 
methods, and eigensystem realization algorithm (ERA). Non-parametric structural identification methods do not require 
a prior information on the nature of structural model, are very simple to apply but they require a huge amount of 
user interaction for finding the system modes. The most used non-parametric procedures using only ambient vibration 
responses are the peak picking (PP) and the complex mode indication function (CMIF), both in the frequency domain. 

If we choose a state space model as the dynamic model for the structure, modal parameters can be computed from the 
estimated matrices A and C: the natural frequencies and modal damping ratios can be retrieved from the eigenvalues of A, 
and the mode shapes can be evaluated using the corresponding eigenvectors and the output matrix C. So the system 
identification problem when using the state space model given by Eq. (13) can be defined as the determination of the order 
ns and the corresponding system matrices A, C, Q, R and S (up to within a similarity transformation) using the output 
measurements available for N time steps, {y-i ,y2> • • • •3/N)-

The eigenvalues of A come in complex conjugate pairs and each pair represents one physical vibration mode. Assuming 
viscous damping, it is customary to express the eigenvalues of A by (see [20, Section 3[) 

Xj = exp[(-Cjfflj + icoj v/l^cf)At], (15) 

where coj is the natural frequency, (,- is damping ratio, and At is the time step. Therefore 

' At (16) 

r -Really)} 
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Fig. 1. Model of the simulated structure. 

The jth mode shape 4>j e Kn° evaluated at sensor locations can be obtained using the following expression: 

<fy = Cty, (18) 

where i/zj is the complex eigenvector of A corresponding to the eigenvalue Xj. 

3. Simulation example 

3.1. Problem definition 

An eight DOF structure will be used along the paper for doing simulations and for validating the proposed method. The 
simulated structure consists of eight masses and nine springs and dashpots (Fig. 1), and the values chosen for matrices M, 
V and K (see Eq. (1)) are the followings: M is equal to the identity matrix with eight rows and columns: 
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V is built assuming Rayleigh damping by means of 

Z> = 0.68OM +1.743 x 10~4K: f—Y 

The natural frequencies, mode shapes and damping ratios computed from matrices M, V and K, are presented in Fig. 2. 
The output signals have been generated using: 

• Sampling frequency fs = 50 Hz (sampling period At = 0.02 s). 
• Total duration of signals, 100 s (N=5000 time steps). 
• u(t,<)^N(0,l). This input has been applied to all the DOF by mean of matrix J (/ is a column vector composed of ones) 

Mq(tk) + Vq(tk) + K,q(tk) =Ju(tk), k = 1,2, ... ,N. 

where tk = {0,At,2At feAt (N-l)At). 
Although the same input is applied to all DOF, all the modes are excited because the structure is non-symmetric (note 
that, if the structure were symmetric, the anti-symmetric modes would not be excited with this input). 

• In real structures, not all DOF can be measured. In this case, we only use the accelerations of masses 1, 4 and 8. So 
matrix Ca becomes 

" 1 0 0 0 0 0 0 0" 

Ca-- 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 

• The observed values y(tk), k = 1,2,... ,N, are the sum of the structure response at the selected DOF, Caq(tk), and a 
sensor Gaussian noise a(tk) with variance equal to the 20% of the largest acceleration response variance, a2: 

y(tk) = Caq(tk)+a(tk), a(tk)^N(0,Z2), 

Z1 = a2I„oX„0, a2 = 0.20 max(^q(tk)Tq(tk)\. 

3.2. Operational modal analysis from the simulated accelerations 

We have applied the SSI-data method to identify the modal parameters of the simulated structure from the simulated 
acceleration, and the results are shown in Table 1. The state space order used has been ns= 16, twice the number of modes. 
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Fig. 2. Natural frequencies, damping ratios and mode shapes of the simulated structure. 
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Table 1 
Theoretical (subscript th) and identified (SSI-data with order 16) natural frequencies and damping ratios. 

Mode fth (Hz) / i6 (Hz) U (%) Cl6 (%) 

2.94 
5.87 
8.60 

11.19 
13.78 
16.52 
19.54 
23.12 

2.94 
5.86 
8.61 

11.19 
13.79 
16.52 
19.51 
23.06 

2.00 
1.24 
1.10 
1.10 
1.15 
1.23 
1.35 
1.50 

1.50 
1.39 
1.12 
0.95 
1.01 
1.30 
1.49 
1.40 

In this example, the theoretical system order is known in advance, and good modal parameters have been obtained 
using this order. But in real structures we do not know the system order, because for continuous systems the number of 
modes inside the considered frequency interval can be very high. So when we choose an order for system identification we 
can underestimate or overestimate the correct order. In the first case, the identification method can compute wrong modes 
because it might try to fit the response due to close modes with only one. In the second case, we are forcing the 
identification method to compute more modes than the system has, so spurious modes are obtained. Furthermore, 
spurious modes can be obtained at any given order because of modelling errors. 

The most popular tool for differentiating system modes from spurious modes is the stabilization diagram [22]. A 
stabilization diagram is simply a plot of various model orders versus the frequencies identified at each of these orders. The 
motivation is that a system mode should show up with consistent frequency, damping and mode shape at various model 
orders whereas the spurious ones could be expected to show a somewhat more erratic behaviour. 

The actual implementation of this strategy can be executed by initially choosing a sufficiently high order for the state 
space model, and then gradually reduce the order of the model. System identification is performed with every model order 
so this procedure yields a set of modal parameters for each selected order. Parameters that belong to two different model 
orders are then compared according to some preset criteria such as 

\jpi Jq) 

fpi 
< £ / , (19) 



<eC, 

l -MACC^pi .^^f iM/ ic . 

(20) 

(21) 

where 8f, ê , £MAC are tolerance limits to decide if mode i estimated from model order p is the same that mode j estimated 
from model order q (it is usual to take q = p + l, that is, to compare consecutive model orders). MAC (modal assurance 
criterion) shows the degree of correlation between two vectors and it is computed as 

^ 2 | 2 

MAC(«^ 2) = 
(<Pl<Pl)(<P2<p2) 

(22) 

where (»)H means Hermitian operator. 
This procedure is repeated for all available sets of modal parameters identified at each order in a sequential manner, 

and finally, the frequencies are plotted against their corresponding model orders, distinguishing between stable and 
unstable modes. It is usual to add to the graphic the power spectral density plot of a selected channel, or the Averaged 
Normalized Power Spectral Density (ANPSD) 

ANPSD(f) -. PSD(f)t 

EJ^WjOi 

where PSD(f)t is the power spectral density of channel i. In this case, auto-spectra functions are normalized and averaged 
to obtain an average spectra density function from all channels that, normally, shows all resonance frequencies of the 
system. The stable frequencies should be reflected by the peaks of the ANPSD plot. 

Fig. 3 shows the stabilization diagram of the simulated structure, using orders from 2 to 30 by steps of two. The modal 
parameters for each order have been identified using SSI-data. The stable modes, those verifying Ef = 0.02, ef = 0.05, 
EMAC = 0.05 simultaneously, have been plotted with a ©, while the unstable modes have been plotted with a cross +. The 
figure also include the plot of the ANPSD. 

Probably, the stabilization diagram is the most used post-processing tool for operational modal analysis. In the next 
section we propose other tools based on the application of the Kalman filter. 

4. Mode contribution and selection of the order of the state space model 

4.1. Computing the vibration due to the modes 

It is well known that the state vector of a system is not unique because we can transform the state vector xk into 
another one zk by a linear transformation as follows: 

Xk = Tzk. (23) 

10 15 
Frequency (Hz) 

Fig. 3. Stabilization diagram corresponding to the simulated accelerations. The criteria are 2% for frequencies, 5% for damping ratios, 5% for mode shape 
vectors (MAC), e, stable mode; +, unstable mode. The ANPSD is plotted in light gray. 



where T is the transformation matrix. Replacing this condition into (13) and pre-multiplying by T 1 

zk+i =A^zk + T-'[wk 

yk = C-lzk + vk, 

with 

A-i = T^AT, Ci = CT. (24) 

This state representation yields the same input-output behaviour that of (13). An important state vector is defined by the 
transformation xk = Vfik, where V is the matrix of eigenvectors of the eigenvalue problem 

Av = Xv, XeU, veU"*x\ 

The solution of this problem is a set of ns eigenvalues Xj and eigenvectors Vj. It is usual to group the eigenvalues in a 
diagonal matrix A0 and the eigenvectors (by columns) in the matrix V verifying 

AV=VA0 => A, = V~MV (25) 

The state space representation obtained 
rtc+i =A0fik + V-'lwk (26a) 

yk = Caiik + vk (26b) 

is called the state space equations in modal form, because fik are the modal states. The same procedure can be followed 
with the innovation form representation, Eq. (14), obtaining 

rtc+i \k = A)/*k|k_i +Ko£/< (27a) 

yk = CQfiklk_-l+ek (27b) 

where 

*/<|/<-i=^/<|/<-i. Ao = V-*AV, C0 = CV, K0 = V-'K. 

An important advantage of using Eqs. (27) instead of (26) is that we can compute the expected states iik\k_^ using the 
Kalman filter (Appendix B) if we know the matrices (A0,C0,Qo.Ro.So}- On the contrary, we cannot compute the states fik 

because we do not know the error sequences, wk and vk. 
Substituting (27b) into (27a), Eq. (27) can be also expressed as 

rtc+i \k = (A)-KoC0)/*k|k_i +K0yk (28a) 

y/< = CoM/<|/<-i+£/< (2 8 b) 

where the innovations ek are the prediction errors, and C0fikik_^ is the one-step-ahead predicted output. 
On the other hand, taking into account Eq. (18), the matrix C0 = CV is an estimate of the mode shapes, so C0fikik_^ is an 

estimate of the response due to the modes: 

=• yk=yk+yk (29) 

where 

• yf = C0/J.kik_i is the acceleration due to the modes given by the pair {y40,C0}, or what is the same, the modes given by 
{AO. 

• y | = ek is the error term of the acceleration, that is, the acceleration needed by y™ to be equal to yk. 

Since A0 is a diagonal matrix, we can separate the acceleration of each individual mode: the diagonal elements of matrix 
A0 come in complex conjugate pairs and each pair represents one physical vibration mode (see Eq. (15)), what can be used 
to split Eq. (28) as 

yk = C0flk^k_^ +£,< = C0/mi Mk|k-1 +CoJm2/i/<|k-l + • • • +C0Imr,m A*k|k-1 +£/< (30) 

=* yk=yf+vl=vT +yT2 +••• +y?m +vl 

where /mn is a matrix composed of zeros, except the diagonal elements corresponding to eigenvalue n and its complex 
conjugate, which are equal to 1 (so the sum of matrices Jm„ is equal to the identity matrix); y™" represents the output 
values (acceleration in this example) corresponding to the identified mode n at time instant fe; nm is the number of 
identified modes. In principle, these modes should correspond to nm complex conjugate pairs of eigenvalues (nm = ns/2). 
However, some real values can be present in the eigenvalues of A (nm#n s/2), and the matrix Im associated to these 
eigenvalues will have only a diagonal element equal to one. 



In summary, given the measured accelerations {y^,y2, • • • ,yjv}, and the state space model matrices estimated from them, 
{A,C,Q_,R,S}, we can compute the acceleration of the modes present in {A,C} applying the Kalman filter. 

In Fig. 4 we have plotted the acceleration of mass number 1 for the first three modes of the simulated structure 
{theoretical modal acceleration). We have also plotted the acceleration of this mass, but computed using the matrices 
identified with SSI method (ns=16) and the proposed procedure {estimated modal acceleration). 

The theoretical modal acceleration is the acceleration corresponding to each theoretical mode when applying the 
mode-superposition method to solve the equation of motion for an nd-DOF system, Eq. (1). The method consists in defining 
a coordinate transformation 

q(t) = <Pti(t) = [4>, 4>2 

1i(t) ' 
KG) 

(31) 

where t](t) are the normal (modal) coordinates, and <P is the mode-shape matrix (formed by the mode shapes (pn by 
columns). The nd coupled differential equations defined by (1) are then transformed into a set of nd independent second 
order differential equations: 

f/n(t) + 2Cnfflnn/)n(t) + ffl2f?i(t) = (pn(t), n = 1,2 nd, 

where co„, („ are the natural frequency and damping ratio of mode n, respectively; <pn(t) is the row n of the modal forces, 
(<PTM<£)-1 (<PTJu(t)). These nd differential equations can be solved obtaining nd displacements in modal coordinates, t]n(t); 
the solution in the original coordinates, q{t)} is then computed by mean of Eq. (31) and the nd individual solutions t]n(t): 

q(t) = <Pt](t) = 4,,t],(t) + 4,2t]2(t)+ ••• +<j>n/lni(t), q(t) e Un". 

The acceleration is obtained similarly 

q(t) = <l>fi(t) = <f>^^t) + <f>2fi2(t)+ ••• +<f>nifind(t) (32) 

=• q(t) = qmi(t)+q 2 ( t )+-- -+q ""(t) 

where qm"(t) is the theoretical acceleration corresponding to mode n, qm"(f) --
discrete time instants, tk = kAt 

q(tk) = qmi(tk) + qm2(tk)+---+qm"«(tk), k = 0,1,2,... ,N-1 . 
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Fig. 4. Theoretical acceleration and estimated acceleration for the three first modes of the simulated structure (mass number 1). 



The acceleration computed using Eq. (30) constitutes an estimation of the corresponding theoretical modal acceleration, that is 

qm"(t,<)=yT" = CoWkik-i. k = 0 ,1 ,2 , . . . ,N- I . 

Fig. 4 shows that both accelerations, the theoretical and the estimated one, agree quite well for the simulated structure. 

4.2. Contribution of each identified mode to the measured acceleration 

Given the measured accelerations, we can use the SSI method to fit the state space equations (13a) and (13b) to them. 
Modal parameters can be computed from this model (and more specifically from the matrices A and C), and in the 
precedent section we have presented a procedure to compute the acceleration due to each identified mode. The idea now 
is to quantify in some way the importance of this modal acceleration, that is, to quantify the contribution of each modal 
acceleration to the total measured acceleration. 

We propose the following procedure: using Eq. (28) we can estimate the modal acceleration and the error acceleration 
as well for each time step. We need the starting value fi^i0 to perform the iterations; if the algorithm used to estimate 
matrices A,C,QR and S does not estimate this parameter, we can assume /*-, 0 = 0 (that is what we have done in this work). 
Rearranging these values in matrix form 

[yi y2 ••• yN] = \y? y? ••• rf}]+iy\ y\ •••&]=>• 

Y = Ym + Y£. 

Multiplying by the transpose of Y 

YYT = YmYT + Y£YT (33) 

We are interested in the diagonal elements of YmYT and Y£YT: for example, the element (n,n) of matrix YmYT is the 
covariance between the acceleration measured at channel n and the acceleration at channel n due to the modes. Retaining 
only the diagonal elements 

(YYT)D = (YmYT)D + (Y£YT)D 

where («)D is the diagonal operator: (M)D is a matrix consisting of the diagonal elements of the matrix M and zeros 
elsewhere. Normalizing the above equation: 

(YYT)D\YYT)D = (YYT)D\YmYT)D + (YYT)D\Y£YT)D => 

{\}no=Am + A£, (34) 

where 

• {l}„o is a column vector with n0 elements, all equal to one; 
• Am is a column vector formed by the diagonal of matrix (YYT)^(YmYT)L 

• A£ is a column vector formed by the diagonal of matrix (YYT ) ^ (Y£YT )D 

According to Eq. (34), we define the element n of vector Am as the contribution of the identified modes to the channel n of 
the output vector, and Ae(n) as the contribution of the error to the channel n. The contribution of the modes plus the 
contribution of the error (always present due to the approximative nature of the Kalman filter) is equal to one in each 
channel. 

We also define the global contribution of the modes, 5m, and the global contribution of the error, 5£, as the mean value of 
the corresponding vector 

<5m = - ] - f > m ( n ) , S£ = ±- JT Ae(n) ^Sm + S£ = \. (35) 
u n = l u n = 1 

If we use Eq. (30) in place of (28), we obtain the contribution of each mode individually 
y = y m i _|_ y m 2 _|_... _|_ ym"m + Y£ 

and following the same procedure 

{1 }„o = (YYV (Ym> YT)D + (YYT)J (Ym- YT)D +•••+ (YYT)J (Ym- YT)D + (YYT)J (Y£YT)D. 

Retaining only the diagonal of the matrices 

Wn0=Amx+Am2+---+Amilm+A£, (36) 

1 n° nm 
5™k = — Y2 Amki

n) =$ J2 5mk + S£=Sm+S£ = 1. (37) 
" ° n = l k = l 
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Fig. 5. Modal contribution of the identified modes for different model orders. 

These last equations show the contribution of each identified mode to the measured signal: Amt(n) is the contribution of 
the identified mode k to the channel n of the output vector, and <5mk is the total contribution of mode k to the output vector. 
For example, in Fig. 5 we have plotted the contribution of the identified modes at the exact model order (ns=16) and at 
orders lower and higher than the exact. The principal conclusions derived from this figure are as follows: 

• The modal contribution, <5m, increases when we include more modes, but for model orders greater than the theoretical one 
(ns=16), the modal contribution is almost constant (ns = 8-><5m = 0.6135; ns = 16-><5m = 0.7791; ns = 24-> <5m = 0.7820). 

• The simulated signal was created adding 20% of noise to the system acceleration, and the modal contribution obtained 
(the contribution of the modes to the simulated signal) is near to 80%. 

• The modes with greater contribution are those corresponding to the frequencies /-, = 2.94 Hz and f3 = 8.60 Hz. 
• It is important to note that the contribution for one mode remains constant for different model orders. For example, the 

mode corresponding to 2.94 Hz: <5m, =0.3615 at n s=8, <5m, =0.3675 at n s=16 and <5m, =0.3649 at n s=24. 
• At model order n s=24 there are four modes that are spurious (see stabilization diagram, Fig. 3). The modal contribution 

of these spurious modes is almost zero. 
• Mode number 8, fs = 23.12 Hz, is the mode with lower modal contribution, <5ms = 0.0368. In fact, mode 8 is a weakly 

excited mode, the mode with the lower power at the spectrum included in the stabilization diagram. The modal 
contribution measures what is the contribution of the identified modes to the measured signal. The contribution of 
weakly excited modes is obviously low. On the other hand, if the mode is spurious, the contribution to the signal is low 
as well. So it is difficult to difference between spurious and weakly excited modes attending to the modal contribution. 

Contribution can be also thought in terms of variance. Let be, for example, a signal yk obtained as the sum of two other 
signals yk = ak+pk. Multiplying by the transpose of yk and dividing by the total number of data, N 

lE^'i 
i 

N 
var(yk) = cov(yk,ak) + cov(yk,pk). 

So Eq. (33) can be seen as the contribution of the modes and the error to the variance of the measured accelerations, yk. 
Fig. 6 presents this graphically, where five seconds of the accelerations due to the identified modes (ns=16) at channel 
number one (mass number 1) are shown. At this model order the total modal contribution is given only by four modes, 
which are shown in the figure from increasing value of modal contribution and from top to bottom. The left column 
presents the total measured acceleration (in gray) and the acceleration due to each estimated mode (in black); the right 
column presents again the total measured acceleration and the sum of the acceleration of this mode and the precedent 
modes. We see in this figure that the mode with higher modal contribution at channel 1 (that is, Amk(X)) contributes more 
to the variability (or variance) of the total signal. 
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Fig. 6. Total measured acceleration (gray) and estimated acceleration (black) for the three first modes of the simulated structure (mass number 1). 

But the variance of a signal can be computed by mean of the well known formula Var(X) = £(X2)-(£(X))2, where £(X2) is a 
measure of the energy of the signal. In structure vibration it is usual to take zero-mean signals, so Var(X) = E(X2) and the 
modal contribution might be also considered as a measure of the energy added by each mode to the total energy of the 
signal. 

The process of isolating the vibration corresponding to each mode and computing its contribution to the measured 
signal can be used, for instance, as an alternative to the modal transfer norm [13] to remove mathematical modes and 
noise modes from the model. The mode contribution, like the modal transfer norm, is a measure for the error that is made 
when a mode is removed from the model. The mode contribution might also be used in many applications: in the design of 
devices for reducing the dynamic response of the structure, like Tuned Mass Dampers, because we identify the modes that 
are mainly responsible for the observed vibrations; the importance of these modes, both overall and at every sensor point 
is quantified. Another use can be the reduction of the model order, keeping only the modes with higher contributions. 

4.3. Contribution of the error to the measured acceleration and order selection 

For low model orders only a few modes of the system are identified and thus the modal contribution is low. However, 
for very high model orders, all the principal modes (those that sum almost the total modal contribution) are identified. 
Therefore, the modal contribution becomes constant for high order models, because the new identified modes do not add 
significant contribution. 

The contrary happens whether we think in terms of error (the error are the innovations from Eq. (14)), because the 
contribution of the error and the modal contribution are directly related by means of Eq. (34). With low model orders, the 
contribution of the error is high, which means that dynamics are still present in the residuals. Nevertheless, for high order models 
these dynamics have been included in matrices A and C and the error contribution does not decrease although we increase 
the order. 

This observation suggests us that the point where the error contribution (and the modal contribution as well) becomes 
constant is indicative of the model order because at this point all the principal modes have been taken into account, and 
although we increase the model order, we do not reduce the error of the equations. So if we plot the error contribution 
versus the system order we obtain a high value for the lower model orders and, as we increase the model order, the 
contribution of the error decreases until a point where it becomes constant: this point is proposed as the model order for 
the system. Of course, we should say a region instead of a point, because this transition to a constant value might be 
smooth and not sharp, depending on the characteristics of the system and the input. 



Fig. 7(a) shows the error and the modal contribution for the simulated structure and for orders comprised between 2 
and 30. We can distinguish two clear tendencies: from order 4 to order 16, the error contribution decreases; from order 16 
to order 30 the error contribution is constant. In this simulated example, the point where the error contribution became 
constant is ns=16, so this is the proposed system order. In this case, the proposed order match the correct order of the 
system (8 modes). 

The choice of the order for a system when using real data is far from a trivial task. Many procedures have been proposed 
in the literature, and between them we highlight: 

The Akaike criteria (AIC) and Schwarz criteria (SIC) in time series analysis [23-25]. The AIC and SIC have their separate 
theoretical justifications and properties. The AIC is derived by considering the principles of maximum likelihood and 
of negative entropy. The maximum likelihood approach itself cannot be used to choose a model dimension since 
the likelihood is maximised at the highest dimension under consideration. However, the concept of negative entropy 
extends the maximum likelihood approach and is appropriate for model selection. The model having minimum AIC 
should have minimum prediction set error, at least asymptotically. On the other hand, the SIC is minimised at the 
model order having the highest posterior probability, also asymptotically. 
In practice, both criteria differ in terms of the penalty attached to increasing the model order, but SIC usually gives a 
lower model order than AIC. For state space models: 

AIC = -2 log LYN+2P 

SIC = -2 log LyN+2P log N 

where P is the number of free parameters in the model and LYN is the likelihood given N measurements of the outputs 
yN = {y1,y2,.. .,yN}. The likelihood can be computed using the innovations {£1,62, • • •,%} (see for example [17,18]), 
which are defined by Eq. (B.3). The innovations are independent Gaussian random vectors, £t^N(0,Zt), with covariance 
matrix Zt given by Eq. (B.5). Thus, ignoring a constant, the logarithm of the likelihood may be written as 

1 N 

log LYN = - y J2 ( loS I Zk I + 4^ /7 1 £/<). (38) 

Both criteria have been plotted in Fig. 7(b) for the simulated data. We see how AIC has a minimum at ns= 16 and SIC has 
a minimum at n s=14. 

• Singular values of the weighted projection matrix in SI [15]. The order of the system (9) is equal to the number of 
singular values of the weighted projection matrix different from zero. The weighted projection matrix, W^OiW2, is 
computed using the output block Hankel matrices which are built in the formulation of SSI-data [15]. In Fig. 7(c) we 
have plotted the singular values for the simulated accelerations; the first 16 singular values are greater than the rest, 
but there are several singular values different from zero. When using measured data, this method generally does not 
indicate a clearly defined choice of the model order. 

We propose to plot the modal contribution (or the error contribution) and then select the model order from it at the 
point where the plot becomes constant. This procedure has the followings properties: it is very easy to derive and to 
implement, it has a physical meaning, the computational cost is low, and it gives good order estimation. 

This plot is a good complement for the stabilization diagram, like in Fig. 8, where we have added the modal 
contribution on the right of the stabilization diagram. The joint analysis of the stabilization diagram and the modal 
contribution is helpful to better understand the results provided by the identification algorithms. For example, we see that 
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Fig. 7. (a) Modal and error contribution; (b) AIC and SIC criteria; (c) singular values of the weighted projection matrix in SSI. All the plots have been built 
using the simulated data. 



the modal contribution becomes constant at order ns=16, and at this order the identified modes are stable. For higher 
orders, the extra modes obtained with SSI do not contribute to the signal and are no stable. With the exception of a mode 
with frequency next to 14.5 Hz. This mode seems to be stable but the modal contribution is negligible, <5mk = 1.55 x 1CT5, 
and the spectrum do not show a peak at this frequency. In fact, this mode has appeared using SSI and the Canonical Variate 
Algorithm (CVA) with orders higher than the exact; the modes obtained with SSI and the Principal Component algorithm 
(PC) do not include this mode, but other spurious modes with similar behaviour appear (see [15] for details on the CVA 
and PC algorithms). So we should be cautious about modes that are stable in the stabilization diagram but they do not 
contribute to the measured signal. 

5. Applications: steel transmitter mast 

In this section, the modal contribution and the state space order selection are computed from real measured data. We have 
chosen a steel frame structure with antennae attached at the top (Fig. 9). This structure has been deeply analysed in [12,13]. 

10 15 
Frequency (Hz) 

25 0.2 0.4 0.6 0.( 
8m 

Fig. 8. Left: Stabilization diagram corresponding to the simulated accelerations. The criteria are 2% for frequencies, 5% for damping ratios, 5% for mode 
shape vectors (MAC), e, stable mode; +, unstable mode. The ANPSD is plotted in light gray; Right: modal contribution. 
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Fig. 9. Steel mast with sectorial antennae at the top. 



Model Setup 1 Setup 2 Setup 3 

Fig. 10. Steel mast grid and description of the three setups of sensors (the arrows indicate sensor position and measured direction). 
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Fig. 11. Stabilization diagram corresponding to the setup 1. The criteria are 2% for frequencies, 5% for damping ratios, 5% for mode shape vectors (MAC). 
©, stable mode; +, unstable mode. The ANPSD is plotted in light gray. 

On March 26, 1998, the structure was subject to ambient vibration measurements. The aim of the test was to 
investigate the structure's modal damping in the frequency range 0-5 Hz. Seventeen degrees of freedom, all horizontal 
accelerations, have been measured in three setups using three reference degrees of freedom that were common to each 
setup (Fig. 10). Three horizontal accelerations have been measured at a height of 6.17,12.17,18.17, 24.17 and 29.90 m. The 
two orthogonal accelerations at the top of the mast (at height of 33.00 m) have been measured as well. 



The data were sampled at a rate of 100 Hz. The cut-off frequency of the anti-aliasing filter that was used was set to 
20 Hz. The number of samples was set to N=30 720, which resulted in a measurement time of approximately 5 min. 
Afterwards, the data were digitally filtered with a low-pass filter with a cut-off frequency of 5 Hz and resampled at 
12.5 Hz, which reduced the number of samples to N=3840. 
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Fig. 12. Stabilization diagram corresponding to the setup 2. The criteria are 2% for frequencies, 5% for damping ratios, 5% for mode shape vectors (MAC). 
®, stable mode; +, unstable mode. The ANPSD is plotted in light gray. 
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Fig. 13. Stabilization diagram corresponding to the setup 3. The criteria are 2% for frequencies, 5% for damping ratios, 5% for mode shape vectors (MAC). 
®, stable mode; +, unstable mode. The ANPSD is plotted in light gray. 



We have plotted the stabilizations diagrams for setups 1, 2 and 3 in Figs. 11-13. These stabilization diagrams also 
include the plot of the modal contribution on the right. We highlight the following aspects: 

In setup 1, the modal contribution increases from 0.58 to around 0.96. Therefore, the final contribution of the error is 
0.04: the mathematical model we have fitted to the data explains 96% of the measured data. 
The modal contribution becomes approximately constant from n s=16, what means that there are eight modes which 
provide nearly all the modal contribution. 
In setup 2, the modal contribution increases from 0.44 to 0.92. Therefore, the contribution of the error is 0.08. The order 
from which the modal contribution become constant is n s=14. 

Table 2 
Modal contribution by measured DOF, direction and setup. 
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1 
2 
2 
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5 
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8 
8 
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Fig. 14. Modal contribution of the modes identified at model orders ns — 10, 18 and 30 for setups 1, 2 and 3. 



Setup 2 is a clear example of the interaction between stabilization diagram and the modal contribution plot: observing 
the latter, we should choose an order equal to 14. However, at this order the two first modes are not stable at the 
stabilization diagram, and they do not become stable until order 18, so this is the model order we chose for setup 2. 
In setup 3, the modal contribution increases from 0.47 to 0.94, so the error contribution is 0.06. The order from which 
the modal contribution become constant is n s=14. 
In setup 2, the transition between the increasing values and the constant values is very sharp. However, in setups 1 and 3 
this transition is smooth. 
It is interesting to point out that the contribution of the modes to the measured vibration is different for each setup: 
0.96, 0.92 and 0.94, respectively. To understand the differences, we show in Table 2 the contribution of the modes to 
the vibration measured at each DOF (<5m,(): 
o The modal contribution at nodes 1 and 2 (the DOF present in the three setup) is high and similar for the three setups. 
o Nodes 13 and 14 are also common to setups 2 and 3. The modal contribution is a bit different between setups but 

the pattern is the same: the modal contribution is higher in the Y-direction, and in the X-direction, it is higher at 
node 14. 
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Fig. 15. (a) Modal contribution, Sm; (b) AIC criteria; (c) singular values of the weighted projection matrix in SSI. 



Mode 2. 
M o d e l f = 1 18Hz C = 0 69°/ Mode 3. Mode4. 

f = 1.17Hz.? = 0.37% •<, • o f = 1 g 5 H z ? = 0 6 0 o / o f = 2.60Hz. ? = 0.50% 

Mode 5. Mode 6. Mode 7. 
f = 2.71Hz. £ = 0.18% f = 3.69Hz. £ = 0.35% f = 4.63Hz. C, = 0.17% 

Fig. 16. Identified modes using the optimum state space order: 16, 18 and 16 for setups 1, 2 and 3, respectively. The natural frequencies and damping 
ratios are the mean values of the three setups. 



o The vibration measured at nodes located at the top of the steel mast (nodes 1, 2, 4, 5 and 19) is mainly due to the 
identified modes because the modal contribution is near to one. However, the nodes at the center of the steel mast 
(noes 7, 8, 10, 11, 13 and 14) have lower modal contribution, so the identified modes do not reproduce so well the 
vibration at these points. 

o The Y-direction is better excited because the modal contribution is high at the nodes measured in this direction. 

Figs. 14 and 15 are the equivalent to Figs. 5 and 7, but now computed using real measured data, the steel mast data. 
Fig. 14 shows the modal contribution of the modes identified at model orders ns=10, 18 and 30 for setups 1, 2 and 3. 
Taking into account a given setup, the modal contribution of a single mode identified at n s=10 can be different than the 
modal contribution of the same mode identified at n s=18 or n s=30. However, the modal contribution is the same for 
n s=18 and n s=30. This is why the modal contribution of all the modes becomes constant. On the contrary, modes with 
modal contribution near zero, specially those identified for ns=30, correspond to spurious modes in the stabilization 
diagram. Fig. 14 is important because shows that this also happens taking into account experimental data and different 
sensor configurations. 

With respect to a given model order, the modal contribution of a single mode varies from one setup to the next, but 
the pattern is the same at the three setups: the mode around 2.7 Hz has the higher contribution, followed by the ones 
at 1.2 Hz. 

Fig. 15 shows the model order criteria for the steel mast data. The results obtained with the SIC criteria are similar to 
the ones obtained using the proposed method: n s=16 for setup 1, n s=14 for setup 2 and n s=14 for setup 3. In the case of 
the singular values of the weighted projection matrix, the selection of a model order is not so straightforward. We observe 
that there is a change of the singular values behaviour between n s=10 and ns=20, but this transition is soft and it is not 
easy to derive the system order. 

Finally, Fig. 16 shows the modes identified from the measured data. We have compared all the modal parameters 
estimated at n s=16 in setup 1, at n s=18 in setup 2 and at n s=16 in setup 3: mode i and mode j estimated at setup p and 
setup q, respectively, correspond to the same structural mode, if they verify 

Ifpi-fcol ^ f t 0 5 > 
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l -M4C(0 p i ,^)<O.lO, 

(the MAC values have been computed using only the reference sensors). It is important to note that, given the chosen order 
for each setup, we can automatize this procedure of gluing mdes. That is what we have done in Fig. 16. 

The natural frequencies and damping ratios included in the figure are the mean value of the modal parameters 
estimated in the three setups. 

The modes of the steel mast have been previously estimated in [12,13]. The modes obtained in this work using the 
selected orders for each setup (Fig. 16), match quite well the ones presented in those works. 

6. Conclusions 

In this paper we have presented some post-processing tools for operational modal analysis. First, we have estimated the 
vibration response corresponding to each identified mode by mean of the Kalman filter. Then, we have developed a 
procedure to quantify the contribution of this modal vibration to the measured vibration. Two important aspects related 
to this procedure were investigated: the relative importance of the estimated modes and the order of the state space 
equations. 

In operational modal analysis it is common to estimate the modal parameters at different state space orders and then 
to construct the stabilization diagram. We have proposed to compute the modal contribution at the same orders 
used in the stabilization diagram, and then to plot the modal contribution next to the stabilization diagram. The joint 
analysis of both plots is very useful for modal estimation and order selection. For example, we have found that the modal 
contribution becomes constant from a certain order, which means that at this order we have estimated the modes with the 
highest modal contribution. For this reason we have proposed to estimate the modal parameters of the structure at 
this order. 

On the other hand, the modal contribution and the selected order can be used for gluing the modes estimated at different 
configurations of sensors. The point is that, once the order is selected for each configuration, we can glue automatically the 
modes. Moreover, it would be even possible to select the state space order automatically, so the whole process could be 
performed without user help. 



The accuracy and practicability of the techniques have been illustrated with representative simulation and real-life 
vibration data. 
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Appendix A. Nomenclature 

Symbol Description 

ndxnd 

ndxnd 

ndxnd 

U] 

Defined at Eq 

(3), (10) 
(3), (10) 
(4) 
(6), (10) 
(6), (10) 

(1) 
(1) 
(B.4) 

(1) 
(1) 
(22) 
(12) 
(12) 
(12) 

Ac, A 
BC,B 

Ca 
Cc,C 
c,D 

V 

J 
K 
K 
M 
MAC(vf, Vj) 

0 
J? 

S 

fs 
nd 

«• 

n„ 
ns 

9(0 
u(t), uk 

Vk 

wk 

x(t), xk 

xfelfc-l 

y(t). yk 

yl 
y\ 
Am(ri) 
•4mt(n) 
At 
Ae(ri) 
Sm 
Smk 

<5e 

£k 

h 

Q 

+1 

transition state matrix in continuous and discrete time 
input matrix in continuous and discrete time 
measurement location matrix for accelerations 
output matrix in continuous and discrete time 
direct transmission matrix in continuous and discrete time 
damping matrix 
excitation influence matrix 
Kalman gain 
stiffness matrix 
mass matrix 
Modal assurance criterion between vector vt and vector Vj 
variance matrix of wk 

variance matrix of vk 

covariance matrix between wk and vk 

sampling frequency (Hz) 
number of degrees of freedom 
number of inputs in the state space equations 
number of outputs in the state space equations 
number of states in the state space equations 
n^-dimensional displacement response vector 

input vector in continuous and discrete time 

measurement noise vector 

state noise vector 

state vector in continuous and discrete time 

expected value of xk given the output measurements {yt ,y2, • • • ,yk-\} 

output vector in continuous and discrete time 

output vector due to the identified modes 

output vector due to error 

contribution of the identified modes to the measured vibration at channel n 
contribution of the identified mode k to the measured vibration at channel n 
sampling period (s) 
contribution of the error to the measured vibration at channel n 
global contribution of the modes 
global contribution of mode k 
global contribution of the error 
innovations 

tolerance limits for frequency, damping ratio and MAC, respectively 
eigenvalue j of matrix A 
natural frequency of mode j (rad/s) 
damping ratio of mode j 
j th mode shape evaluated at sensor locations 

eigenvector of matrix A corresponding to eigenvalue Aj 

N 
N 
N 
N 

R""x 

R"'x 

R""x 

R"'x 

R"'x 

R"'x 

R""x 

R"»x 

R"»x 

[0,1] 
[0,1] 
R + 
[0,1] 
[0,1] 
[0,1] 
[0,1] 
R""x 

R + 
C 
R + 

[0,1] 
R"»x 

C"'x 

(1) 

(1) 

(11) 

(11) 
(7), (9) 

(7), (9) 
(29) 

(29) 

(34) 
(36) 

(34) 
(35) 
(37) 
(35) 
(B.3) 

(19)-(21) 
(15) 
(16) 

(17) 
(18) 

Appendix B. The Kalman filter 

The following notation has been used in all the expressions where the Kalman filter is involved. Given the output data 
for s time steps Ys = {y^}y2, • • • ,ys}, it is defined: 

x t is = E[xt|ys] 

= E[(x t l-x t ,s)(x t2-x t ,s)
T|ys] 



where E[«|«] is the conditional expectation operator. When U =h = t, Ptut2\s
 w ' " ^e written Ptis: 

Pt[s = E[(xt-xt,s)(xt-xt|s)
T | Ys] = Var[xt \ Ys] 

Property 1 (The Kalman Filter). For the state space model specified in (13) x-,i0 and P1i0, for k = 1,2,... ,N, 

*k+\\k=AXk\k-i+Kk£k (B.l) 

Pk+1 \k = AP,c\k-X + Q.-KkZkK
T

k (B.2) 

where 

£k=yk-Cxk]k_-l (B.3) 

Kk = (flPklk_^CT+S)^ (B.4) 

Zk = \/ar(£k) = CPk|k_1C
T+R (B.5) 

Kfc is called the Kalman gain and ek are denominated the innovations. The filter values are given by 

xk\k = */<|/<-i +Pk\k-,C\CPk]k_,CT + RT'ek+, (B.6) 

Pk\k = Pk|k-i -Pk|k-i CT(CP t M CT +R)-1 C P t M (B.7) 

The demonstration of the above property can be found, for example, in [17]. Under stationary conditions (see for 
instance [19]), 

limPkik_, = P > 0 (B.8) 

k^co 

where 

P = APAT + Q_-(APCT +S)(CPCT+ R)-^ (APCT +S)T (B.9) 
K = (APCT +S)(CPCT +R)-1 (B.l 0) 

Eq. (B.9) is called a discrete algebraic Riccati equation (DARE) and it is a steady-state version of Eq. (B.2). These stationary 
conditions are satisfied in linear time invariant (LTI) systems. 
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