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A B S T R A C T 

This paper presents the Expectation Maximization algorithm (EM) applied to opera­
tional modal analysis of structures. The EM algorithm is a general-purpose method for 
maximum likelihood estimation (MLE) that in this work is used to estimate state space 
models. As it is well known, the MLE enjoys some optimal properties from a statistical 
point of view, which make it very attractive in practice. However, the EM algorithm has 
two main drawbacks: its slow convergence and the dependence of the solution on the 
initial values used. This paper proposes two different strategies to choose initial values 
for the EM algorithm when used for operational modal analysis: to begin with the 
parameters estimated by Stochastic Subspace Identification method (SSI) and to start 
using random points. 

The effectiveness of the proposed identification method has been evaluated through 
numerical simulation and measured vibration data in the context of a benchmark 
problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of 
the benchmark structure have been estimated using SSI and the EM algorithm. On the 
whole, the results show that the application of the EM algorithm starting from the 
solution given by SSI is very useful to identify the vibration modes of a structure, 
discarding the spurious modes that appear in high order models and discovering other 
hidden modes. Similar results are obtained using random starting values, although this 
strategy allows us to analyze the solution of several starting points what overcome the 
dependence on the initial values used. 

1. Introduction 

System identification can be described, in broad terms, as the construction of a dynamic model for the system based on 
experimental measurements . In the context of vibrating engineering structures, the system refers to structures such as 
buildings and bridges, and identification mostly involves the determinat ion of modal parameters ( the natural frequencies, 
damping ratios and mode shapes). Modal parameters are computed from the identified system model so a good 
identification method influences the quality and the quanti ty of modal parameters that can be estimated. This explains the 
increasing interest in accurate system identification methods for modal analysis. 

Classic identification algorithms are based on inpu t -ou tpu t relationships where a known input is applied to a system 
and then the system response is recorded (called Experimental Modal Analysis). The difficulty concerning the application 



of this procedure to civil structures is mainly due to the impossibility of conducting experiments on real structures under 
controlled conditions. Consequently, the tests usually have to be performed in situ under operating conditions, and in this 
case the measurement of the dynamic forces is generally not possible. This concern led to the idea of using the ambient 
vibrations, which arise due to environmental factors such as wind and traffic under the operational conditions of the 
structure, and for this reason is called Operational Modal Analysis. 

In this paper, we investigate the application of the Expectation Maximization (EM) algorithm to operational modal 
analysis of structures. The EM algorithm is a well-known tool for the computation of maximum likelihood estimates. It 
consists on an E-step (evaluating a conditional Expectation) and later on a M-step (which Maximizes the previous 
expectation) in an iterative loop until the convergence is reached. 

The name EM was given by Dempster et al. [1 ], who presented the general formulation of the EM algorithm, established 
its basic properties and provided many examples and applications. However, the EM algorithm applied to the 
mathematical model written in the state space form was mainly developed by Shumway and Stoffer [2,3]. 

A review of the applications of the EM algorithm in many different contexts can be found in the monographs of Little 
and Rubin [4] and McLachlan and Krishnam [5]. The method is mainly used in a variety of incomplete-data problems 
arising in standard statistical situations such as linear models, contingency tables and loglinear models, random effects 
models and general variance-components models, time series and stochastic processes, among others. But these 
algorithms have also been profitably used in engineering, psychometry, econometrics, epidemiology, genetics, astronomy, 
etc. However, as far as we know, the application of the EM algorithm to maximum likelihood estimation of modal 
parameters in structures was not used before the present study. 

The characteristics of the EM algorithm are well documented (see for instance [5]). It leads in general to simple 
equations, has the property of increasing the loglikelihood at each iteration until convergence and it derives sensible 
parameter estimates, and consequently it is a popular tool to derive maximum likelihood estimation. However, the EM 
algorithm is known to converge slowly in some situations. This important aspect has received much attention recently and 
many algorithms have been proposed to speed up the convergence of EM algorithm while preserving its simplicity (see [5, 
Chapter 4]). 

The second important drawback of EM algorithm is that its solution can highly depend on its starting position and, 
consequently, produce sub-optimal maximum likelihood estimates. We propose in this paper two strategies designed to 
overcome this limitation: 

1. The first strategy is to apply the Stochastic Subspace Identification (SSI) method and the EM algorithm jointly (this can 
be done if the starting point of the EM algorithm is the solution given by SSI). The reason is evident: we think that the 
solution of SSI is near to the global maximum, so the EM algorithm will convergence to it and not to a local maximum. 

2. The second strategy consists in generating random starting points for the EM algorithm in an easy and fast way. Each 
random starting point provides a set of estimated modes: if a mode is present at several starting points, we propose it 
as a mode of the system. 

The paper is organized as follows. In the next section, stochastic state space models of vibrating structures are 
presented, as well as the relationship between its parameters and the modal parameters. A complete description of the EM 
algorithm for state space models is presented in Section 3. In Section 4 we propose different alternatives to build starting 
values for the EM algorithm. Next, the results obtained from the analysis of both the simulated and the experimental data 
from a steel frame used as a benchmark structure proposed by the ASCE Task Group on Health Monitoring [6] are 
discussed. The conclusions are summarized in the last section. 

2. Modal analysis in a state space model 

2.1. State space equations 

A vibrating structure can be represented by a discrete-time stochastic state-space model given as (see Appendix A) 

x t + 1 =Axt+But+wu (la) 

yt = Cxt+Dut + vu (lb) 

where t denotes the time instant, of a total number N, measured with constant sampling time At; yt e Un" is the measured 
output vector; ut e U"j is the measured input vector; xt e U"s is the state vector; n0, n,- and ns are the number of outputs, 
inputs and the order of the state vector, respectively. A e R"sX"s is the transition state matrix describing the dynamics of 
the system; B e R"!xn' is the input matrix; C e un°x"! is the output matrix, which is describing how the internal state is 
transferred to the output measurements yt; D e Mn°xnj is the direct transmission matrix. The noise vectors comprise 
unmeasurable vector signals; wt e U"s is the process noise due to disturbances and modelling discrepancies, while vt e Un" 
is the measurement noise due to sensor inaccuracy. Both are assumed to be zero-mean, white noise sequences with 
covariance matrices 0_ and R, respectively. 



In the case of ambient vibration testing, only the responses of a structure are measured, while the input sequence ut 

remains unmeasured. Thus, Eq. (1) results in a purely stochastic system: 

xt+i=Axt+Wt, (2a) 

yt = Cxt + vt. (2 b) 

However, the white noise assumptions of these noise terms cannot be omitted and if the input contains also some 
dominant frequency components in addition to white noise, these frequency components cannot be separated from the 
eigenfrequencies of the system and they will appear as poles of the state matrix A. 

2.2. System identification and modal analysis 

The system identification problem investigated here can be defined as the determination of the corresponding system 
matrices A, C, () and R (up to within a similarity transformation) using the output measurements {y, ,y2, • • • .yjv) available for 
N time steps. 

The natural frequencies and modal damping ratios can be retrieved from the eigenvalues of A, and the mode shapes can 
be evaluated using the corresponding eigenvectors and the output matrix C. 

The eigenvalues of A come in complex conjugate pairs and each pair represents one physical vibration mode. Assuming 
proportional damping, the second order modes are uncoupled and the jth eigenvalue of A has the form: 

Xy = exp[(-Cjfflj + iffljV1 ~&Atl (3) 

where a>j is the natural frequency, (,- is damping ratio, and At is the time step. Therefore 

1 At (4) 

_ -Real[ln(^)] 
ij~ cojAt • w 

The jth mode shape D,- e W" evaluated at sensor locations can be obtained using the following expression: 

VJ = Cil/j, (6) 

where >j/j is the complex eigenvector of A corresponding to the eigenvalue Xj. 

3. Maximum likelihood estimation using the EM algorithm 

In this section we present the proposed identification method for estimating the parameters of the stochastic state 
space model given by Eq. (2), that is, A, C, () and R. This method maximize the likelihood applying the iterative Expectation 
Maximization algorithm. 

3.1. Evaluation of the likelihood function for Gaussian state-space models 

Given N measurements of the outputs YN = {y^,y2,.. .,yN], the likelihood is computed using the innovations 
{£i,£2, • • -,£(v}. which are defined by Eq. (B.6). The innovations are independent Gaussian random vectors, £t^N(0,Zt), 
with covariance matrix Zt given by Eq. (B.7). Thus, ignoring a constant, the logarithm of the likelihood may be written as 

1 N 

W^-nEH^+eK^Ker1^)). (7) 
z t = l 

where it has been emphasized the dependence of the innovations on the vector 6. This vector represents the unknown 
parameters of the model (2) assuming the initial state is normal, x0^N(n0,Z0): 

e^iA.CQ.R^Zo). 

A wide range of numerical search algorithms are available for maximising the loglikelihood (7), and many of these are 
based on Newton-Raphson's algorithm. In addition to Newton-Raphson, Shumway and Staffer [3] presented a 
conceptually simpler estimation procedure based on the Expectation Maximization algorithm. The EM algorithm is 
simple to apply since at each iteration the optimal solution for the unknown parameters can be obtained from explicit 
formulas. 



3.2. Expectation Maximization algorithm 

The basic idea is that if the states, XN = {x0,x^,x2, ...,xN), could be observed in addition to the observations, 
YN = {y^,y2, ••• ,yN}, then the complete data could be considered, with the joint density: 

fe(^Yt)=fe(Xt\Yt)-fg(Yt). 

The likelihood is computed as 
N N N 

Y[fe(Xt,Yt)= Hfe(Xt\Yt)- Y[fe(Yt), 
t= 1 t = 1 t = I 

LXN,YN(ff) = LXNlYN(ff)-LYN(ff). 

And the logarithm of the likelihood 

log LWN(8) = log LXN]YN(8)+log lYll{6), 

But lxN,yN(ff) and /xNiyN(0) are functions of the states XN, which are unknowns: the method proposes to replace them with 
theirs expected values. So given a value for the parameters at step j , and calling them Oj, it is defined 

G(8\8})=E[1WN(8)\YN,8}], 

H(8\8})=E[1XNIYN(8)\YNMJI 

Thus 

lY„(6) = G(.6\6j)-H(6\6j), (8) 

because of E[lY„(0)\YN,Oj] = lYtl(8). From (8), we have that 

W„(6j+i)-Mfy) = (<K6j+118j)-G(8}18}))-(H(8}+, 18})-H(8}10,)). 

But taking into account Jensen's inequality and the concavity of the logarithm function, 

H(8}+,\8J)-H(8J\8J)<Q. 

So if we develop a procedure which verifies 
G(dj+,\dj)>G(8j\dj)} 

then automatically it is achieved 

and we will reach a maximum for Eq. (7), too. The Expectation Maximization algorithm just provides an iterative method 
for maximize successively the conditional expectation G(0\0j), which is equivalent to maximize the likelihood lYfl(0) (7). 
Each iteration of the EM algorithm consists in the following two steps, repeated until 6>j+1 and Oj are closed each other: 

1. The first step (E step) is to compute G(0\0j) = E[lxN,Yfl(O)\YN,0j]. 
2. The second step (M step) consists in maximizing G(8\8j) obtaining 0J+1. 

3.2.2. Expectation step 

Property 1. The complete likelihood LxN,Yfl(0) is computed taking into account that 

xQ~*N(fi0,Zo), 

w t =x t + 1 -A^c w t^N(0,Q), 

vt=yt—Cxt, vt^N(0,R), 

with probability density functions 

1 
/ ^ „ ( x o ) = 2exp - - ( X Q - M O ) ^o (xo- f t ) ) ) . 

(2n) '' \ZQ\ V z / 

/ A Q ( W t ) =
 ( 2 7 l )ns/2 I o I V2 g X P (~ \ (Xt-^-0TT1 (Xt-Axt_^ , 



fcAvt) = — „ ,-,, ,1/2exP -n(yt-cxtyR '(yt-cxt) 

and it is defined by 

N N 

LXN,YJ0) = / ^ 0 ( * O ) I I /AQ(*N) I I fcjL&N.Y*)- (9) 
t= 1 t= 1 

So, the log-likelihood IXN,YN(&) = logLxNiyN(0) can be written as a sum of three uncoupled functions 

lxN,YN(e) = -&h(llo,Zo) + l2(A,Q) + l3(CM\, 

where ignoring constants are 

h(H0,Z0) = log\?.0\+(x0-n0)
T?.o\x0-n0), (10) 

N 

l2(A,Q_) = N\og\Q\ + Y,(Xt-Axt-tfQT\xt-Axt-i), (11) 
t = l 

N 

!3(C,R) = Nlog|R|+ ^(y t-Cx t)
TR-1(y t-Cx t). (12) 

The function G(6\6j) is the conditional expectation of the sum of Eqs. (10)-(12), and it depends on the parameters 
e = (A,C,CL,R,IJ-0,Zo). 

Property 2. Given the value of the parameters Oj at iteration j , we introduce the following notation to define the conditional 
expectations: 

xf = E[xt|yN>e,-], (13) 

pf = E[(xt-xf)(xt-xff)T|yN,eJ], (14) 

P* _, = E[(xt-xf)(xt_i -xJ'_1)
T | VN,0/], (15) 

which can be evaluated with the well known Kalman filtering and smoothing shown in Appendix B (Properties 6-8). From the 
previous conditional expectation, it is possible to compute G(0\0j) as follows: 

G(e|eJ) = E[!XN,yN(e)|yN,ej] = E[!1(Ju0,i:o)|yN,ej]+E[!2(Aa)|yN,ej]+E[!3(c,R)|yN,eJ], 
with 

E[h(^,Z0)\YN,ej] = \n\Z0\+tr(ZQ'[P^ + (x'S-fi0)(x'S-fJ.0)
T]), (16) 

E[/2(AQ)|yv,ej] =N log a +tr(Q_-'[Sxx-SxbA
T-ASbx+ASbbA

T]), (17) 

E[l3(C,R)\YN,6j]=Nlog\R\ + tr(K-1[Syy-SyxC
T-CSxy + CSxxC

T]), (18) 

where 

N 

s X x = E ( p f + x W ) T ) . s«, = £(*?-,+*F-,(*F-,)T). s y y = $ > y [ ) , (19) 
t = l t = 1 t = 1 

N 
S*f> = E < t - i +x?(xF-i)T). Sbx = SX

T„, (20) 
t = 1 

N 

Syx=X> t(x?)T) , S*y=Sy*- (21) 
t= l 

and tr(A) is the trace of matrix A. 

3.2.2. Maximization Step 
Maximizing G(0\0j) with respect to the parameters 6 at iteration j , constitutes the M-step. This is the strong point of the 

EM algorithm because the maximum values, obtained equating to zero the corresponding derivatives of the expectations 
(16)-(18), are obtained from explicit formulas. 



Property 3. The maximum of E[l](p.0,Z0)\YN,6j] is attained at 

£o=*o. (22) 

Z0=P$. (23) 

Property 4. The maximum O/E[/2(AQ.)|YN,0;] is attained at 

A=SxbSbb\ (24) 

Q = ^ ( S ^ - S ^ - A S t e +AsbbA
T). (25) 

Property 5. The maximum ofE[l3(C,R)\YN,8j] is attained at 

C = SyxS~x , (26) 

R = ^(SyySyxC
T -CSxy + CSxxC7). (27) 

3.3. Overall procedure 

The overall method can be summarized as an iterative procedure as follows: 

• Initialize the procedure 0=0) selecting starting values for the parameters 60 = (A0,C0,Qo.Ro.Mo'-^o) and a stop tolerance 5. 
• Repeat 

l . j = j + l . 
2. Perform the E-Step. Apply the Kalman filter (Properties 6-8 of Appendix B) to obtain the expected values xt, Ft, and 

Pft_1 with 0j_i as data. Use them to compute the matrices Sxb, Sbb and Sxx given by (19)-(21). 
3. Perform the M-Step. Update the parameters 0,- = (A,C,Q_,R,fiQ,i:0) using (22)-(27). 
4. Compute the incomplete-data likelihood, /yN($j) with (7). 

until \iYN(.eJ)-iYN(eJ-i)\/\iYN(eJ-i)\<5. 

4. Choosing starting values for the EM algorithm 

The initial step for the EM algorithm is to choose a starting value for the parameters 60 = (A0,Co>Q.o>Ro>IJ-o>Zo)- This 
is a crucial step because, like in other iterative procedures, depending on the starting point, a local maximum can be 
reached instead of the global one (see for example [7,8]). In this section we present the approaches that we have 
considered: 

1. Using other estimation methods: A natural choice is to begin with estimates obtained by other identification methods. 
There are several techniques to realize system identification (see for example [9]), but among them, we have chosen the 
Stochastic Subspace Identification method because it is a well known method of structural system identification. This 
method is based on the solution of the stochastic realization problem [10] and identifies state space models from (input 
and) output data by applying robust numerical techniques such as QR factorization, SVD and least squares. A complete 
overview of data-driven subspace identification (both deterministic and stochastic) is provided in [11]. 
As we shall discuss in the numerical simulations, the likelihood of the solution given by SSI can be improved using the 
EM algorithm. So the SSI method provides a good starting point for the EM, or from another point of view, the EM can 
be used to refine the solution given by SSI. This is not new, and for example, Ljung [9, Section 7.3] proposes improving 
the quality of SSI by using the estimated model as an initial estimate for the prediction error method (PEM). Indeed, 
MATLAB uses the algorithm N4SID (which is a variant of SSI) as initialization method for the PEM. 
However, using only a starting point could lead to a sub-optimal solution: if the solution given by SSI method is near to 
a local maximum of the likelihood function, the EM algorithm may be not able to leave this area. 

2. Random initialization: This is probably the most employed way of initializing the EM algorithm and for this reason we 
have considered this strategy too. Matrices A,C,Q,R are built using random numbers. Especial attention must be paid to 
matrices () and R: they are symmetrical definite positive matrices. 
Random initialization can be a good strategy for the EM algorithm in low-dimensional problems. However, we have 
found some difficulties when using completely random starting values in the state space models of high order, as is our 
case, leading to unstable system and inaccurate solutions in some cases. Moreover, with random values we do not take 



advantage of the available information of the problem: measured outputs, frequencies rank analyzed, typical values of 
the damping ratios, and so on. 
For this reason, we propose in this paper a more sophisticated strategy to build random starting values that overcomes 
these cited problems. Our technique use random frequencies, random damping ratios and random mode shapes as the 
unique random parameters required to build the initial values. The rest of the section is devoted to define how to build 
this random initial values for the EM algorithm. 

4.1. Procedure to build random starting values 

The complete procedure to build random initial values for the parameters 60 = (A0,C0,Q.0,R0.Ao^o) ' s outlined here ((•) 
means random values or generated from random values). 

1. Given the order ns for the state space model (2), generate nd = ns/2 random values for the natural frequencies <&,- , nd 

random values for the damping ratios (,-, and a random full matrix $ e U"dX"d with columns linearly independent (if the 
natural frequencies are all distinct, the mode shapes are linearly independent [12]). To ensure the generated random 
starting point lies inside the unit circle, admissible values for natural frequencies go from 0 to Nyquist frequency, and 
for damping ratios are comprised between 0 and 1. In essence, we are defining an imaginary structure with modal 
parameters equal to <&,-, (,- and <P. 

2. Using the above random values, build the matrices A and C for the state space model (2). One possibility is to use the 
expressions included in Appendix A, Eqs. (A.16) and (A.20): 

A = exp At 
0 / 

-Q2 -2QZ 
C = Cai>[-Q2 -2QZ], (28) 

where Q and Z are diagonal matrices formed by the random natural frequencies and the random damping ratios, 
Qjj =&j5tj and Z,j = IjSy (<5,j being the Kronecker delta). Ca is the measurement location matrix corresponding to the 
acceleration responses of the structural system; we take Ca = jn°xn<i (a n0 x nd matrix with ones on the diagonal and 
zeros elsewhere). 

3. Matrices R and Q_ of the state space model (2) can be estimated after compute the discrete states associated with 
matrices A and C given by (28). This states are the modal coordinates (see Eq. (All)) , which can be computed as 

<Z> 1 0 1 I'oQt 
o -F1 hQt 

(29) 

where qt and qt are the discrete displacement and velocity, respectively, and can be obtained from the measured 
accelerations yt using numerical integration (Simpson's rule, for example). J0 is a nd x n0 matrix with ones on the 
diagonal and zeros elsewhere, and it is used for matrix order compatibility; we take /0 = C„. 

(a) The value of R is obtained computing the covariance matrix of the noise vector calculated from the observation 
equation (2b) 

1 N 

yt = Czt + vt =*-vt=yt-Czt ^>R = j^^Vti)]. (30) 

(b) In the same way, the value of Q_ is obtained using the noise calculated from the state equation (2a) 

1 N 

zt+i =Azt+wt =4> w t = z t + 1 - A z t =4> Q.= TfXl w tw[. (31) 

4. For numerical reasons, it is preferred that the elements of matrix Q_ were close to one. Therefore, we use the state 
transformation zt = rS t , being T a diagonal matrix with diagonal elements equal to the standard deviation s,- of the ith 
component of the noise w t. Taking into account this last transformation, the random initial values for the EM algorithm 
are computed by 

A0 = rAr"1, C0 = CT-\ Q_0 = TQ_TT, R0=R. (32) 

5. jig, E0 will be zero. The steady solution of the dynamic system is taken as initial condition. 

Other random initial values can be used. However, most of tests we have made led to singular matrices in some steps of 
the iterations what cause the algorithm was interrupted unexpectedly (especially when we used experimental data). This 



means that not any matrix A, C, Q_ and R can be used to start the algorithm because they are all interrelated by means 
of Eq. (2b). 

The procedure explained above is easily implemented with low computational cost and gets very good results. 

4.2. Proposed method for operational modal analysis with the EM 

In essence, we have two different procedures to perform Operational Modal Analysis of structures with the EM 
algorithm. The first one is the combination of the SSI method and the EM algorithm. This is probably the simplest approach 
and can be summarized as follows: 

1. Generate the initial matrices for EM algorithm using the SSI method. 
2. Run the EM algorithm until convergence. 
3. Compute the modal parameters from this solution. 

In the presence of multiple local minima, using only one starting point for the EM algorithm can lead to sub-optimal 
solutions because the solution can depends on the initial point (this is a drawback of all iterative methods, and of course, of 
the EM too). Therefore, the EM solution would be conditioned by SSI solution. This difficulty can be overcome by 
generating different starting values with the procedure described in Section 4.1. The problem arising now is that we need 
to choose a final solution between all the solutions obtained with each initial position. A first option is to choose the 
solution with the highest log-likelihood (Eq. (7)). A similar strategy has been used for the EM algorithm in mixture models 
[7] and can be described as follows: 

1. Generate p initial positions (Section 4.1). 
2. Run the EM algorithm at each initial position with a fixed number of iterations. 
3. Select the solution providing best likelihood among the p trials, say 6* (in the final comparison we recommended to 

include the solution provided by SSI + EM). 
4. Compute the modal parameters from this solution. 

The solution obtained this way will have the highest likelihood but not always is the best in the sense of estimated 
modal parameters. Moreover, due to EM algorithm always increase the likelihood at each iteration, the final likelihoods 
computed for each initial value are quite similar. For these reasons we propose an alternative strategy: 

1. Generate p initial positions (Section 4.1). 
2. Run the EM algorithm at each initial position (so we have p different solutions). 
3. Compute the modal parameters from each solution and select those which are more repeated. 

The latter is not a trivial step. We recommend using a similar approach to that used in the stabilization diagrams (see 
for example [13]) to decide if two parameters correspond to the same mode, that is 

^ ^ < e f f l , (33) 

|Cpi-C,j|<£c (34) 

1 -MACivpi.Vqj) < sMAC, (35) 

where effl, ef, eMAC are tolerance limits to decide if mode i estimated from initial point p is the same that mode j estimated 
from initial point q. MAC (modal assurance criterion) shows the degree of correlation between two vectors and it is 
computed as 

MAC(vuv2)= J " 1 " 2 ! V (v^v-l)(vqv2) 

where (»)H means Hermitian operator. 
Actually ef is defined in relative terms in literature (in the same way that effl), but it is well known that the damping is 

estimated with greater variability than the natural frequencies, so we prefer to use ef in absolute terms. This means that if 
two modes identified from different starting point have similar natural frequencies and similar mode shapes, but with 
damping ratios differing in, for instance, 0.02, we think they correspond to the same mode. 

5. Numerical examples 

We have evaluated the performance of the EM method for Operational Modal Analysis using the data provided by the 
ASCE benchmark problem for structural health monitoring [6]. This benchmark studies consist in Phase I and Phase II, and 



Fig. 1. Model of the benchmark structure and location of the 16 measured nodes. 

each phase is divided into simulated and experimental problems. The benchmark structure is a four-story, two-bay by 
two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of 
British Columbia, Canada (Fig. 1). The January 2004 issue of the Journal of Engineering Mechanics contains the results of six 
different studies of the Phase I simulated benchmark problems, together with a definition and overview paper [14]. 

We have selected this example because it has analytical and experimental part, Matlab subroutines for simulations as 
well as experimental data are available on the internet [6], and results can be compared with those of other researchers. 

5.2. Simulated data 

A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site [6] has been used 
to simulate the dynamic response of the prototype structure. Two finite-element models based on the actual test structure 
were developed by the Task Group to generate the simulated structural response data: a 12DOF shear building model and 
a more complex 120DOF model. We have used the former because of its simplicity (there are three DOF per floor): the 
floors move as rigid bodies, with translation in the x and y directions and rotation 6 about the center column. The natural 
frequencies and the mode shapes of this model are given in Fig. 2. 

In this work we have used the horizontal acceleration of 16 nodes of the structure. These nodes are located at the center 
of each side of the structure, two in the x and two in the y directions per floor (called y^,y2> • • •3'i6 m Fig- !)• 

The structure response has been generated by exciting the model with broadband ambient inputs applied in the x and y 
directions, using a sampling frequency equal to 1000 Hz and 20 s of total duration. The 1% modal damping has been 
assigned to each mode. Finally, the observed value is the sum of the structure response and Gaussian noise. The root mean 
square (RMS) of this added noise is equal to the 30% of the largest structure response RMS. 

5.2.2. Results obtained using one simulated time history response 
First, we are going to perform modal identification using one simulated time history response. Fig. 3 shows the power 

spectral density function (Welch method) for this simulated case and for eight nodes of the structure: four in x direction 
(nodes 1, 5, 9 and 13 in Fig. 1) and four iny direction (nodes 4, 8, 12 and 16). The theoretical natural frequencies are also 
plotted in dashed lines, and it is observed that most of this theoretical frequencies are coincident with a maximum of the 
spectrum, although not all peaks are present in all channels. 

The first value to determine in a real problem is the order of the state space model, ns. There are different techniques to 
evaluate this parameter (for example, the number of singular values different to zero of the projection matrix in SSI [11], or 
the Akaike information criterion AIC for time series [15]), but in structures, where the number of modes is huge, probably 
the best way to estimate ns is by inspection in stabilization diagrams. 

In simulated structures the theoretical state space order equals two times the number of modes that are present in the 
data; we know there are 12 modes in the simulated case, so the theoretical order of the state space model is 24. For this 
reason, we decided to analyze the behavior of the EM under the exact order, and we have not chosen it by mean of the 
stabilization diagram. 

- ' ' $ > * 
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Fig. 2. Natural frequencies and mode shapes corresponding to matrices M,K e [ 1 (the circles are the points where measurements are recorded). 
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Fig. 3. Power spectral density of accelerations in different nodes of the structure. The analytical natural frequencies are also plot in dashed lines. 

Modal parameters have been obtained using three different approaches: 

1. SSI method: We have used the SSI-DATA algorithms detailed in [11]. 
2. EM method using SSI to obtain the initial value (EMI in the following). We have applied the EM method as described in 

Section 3.3. The value we have used for the initial parameters 60 = (A0,Co,Q.o.^o.Mo'-^o) has been: matrices (A,C,d,R) 
estimated by SSI method, and zero matrices for (fi^Eg). 

3. EM method using random starting values (EM2 in the following). In this case, the initial matrices 60 = (A0,Co, 
Qo.̂ o.jUo'-̂ o) have been generated as is described in Section 4.1. 



Table 1 
Modal parameters identified from one simulated time history responses using SSI method and EM method. In SSI and EMI, values in light gray do not 
verify (36)-(38). In EM2, n is the number of times the parameter has been identified over 100 starting random values. 

Mode coth (Hz) (th (%) SSI EMINEM + SSI EM2 = EM + random 

cow (Hz) Cw (%) MAC 0)id (Hz) fa (%) MAC <BW (Hz) fa (%) MAC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

9.41 
11.79 
16.38 
25.54 
32.01 
38.66 
44.64 
48.01 
48.44 
60.15 
67.48 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

9.40 
11.78 
16.32 

-
-

37.95 
44.55 
49.84 
48.42 
59.86 
67.50 

0.70 
1.31 
1.06 

-
-

54.93 
1.16 

71.17 
0.99 
1.82 
0.88 

0.99 
0.99 
1.00 

-
-
0.56 
0.99 
0.08 
0.98 
0.87 
0.99 

9.45 
11.94 
16.34 

-
32.10 
38.68 
44.68 
48.09 
48.48 
60.06 
67.41 

1.45 
3.35 
1.55 

-
1.25 
1.52 
0.94 
0.89 
1.06 
0.88 
0.79 

0.99 
0.99 
1.00 

-
0.97 
0.99 
0.99 
0.66 
0.99 
0.99 
0.99 

9.49 
11.90 
16.34 
25.60 
32.11 
38.80 
44.70 

-
48.41 
60.11 
67.39 

2.54 
3.51 
1.81 
2.08 
1.66 
1.71 
1.35 

-
1.20 
1.16 
1.17 

0.99 
0.99 
0.99 
0.96 
0.95 
0.96 
0.99 

-
0.94 
0.99 
0.99 

72 
68 
74 
44 
96 
74 

100 

-
82 
72 

100 
12 83.62 1.00 84.13 0.90 0.46 83.59 0.64 0.99 83.84 0.97 0.99 100 

The results of the three methods for the simulated case are shown in Table 1, where theoretical modal parameters are 
denoted by subscript th, and identified parameters with subscript id. We have considered that a parameter has been 
identified if it is verified at once that 

l ^ - ^ l < £ m = 0.02, (36) 

|Cth-ddI <£c = 0.03, (37) 

l-MAC(Uth,Uid)<eM/lc = 0.10. (38) 

The behavior of the EMI method is best seen in Fig. 4(a). In this figure we have plotted at each iteration of the EMI 
algorithm the eigenvalues of the transition matrix A (related with the modal parameters a>j and (,-) in the complex plane. 
The circles (o) correspond to the starting points which are the eigenvalues of matrix A obtained with SSI method, dots (•) 
correspond to the intermediate solutions in the iterative procedure and crosses (+) are the final solution of the EM 
algorithm. Theoretical eigenvalues (near but inside unit circle) are also represented in the figure as squares ( • ) . To 
simplify the figure, only the upper part of the unit circle is plotted. 

Many features are noticeable in the figure: 

• Most of the eigenvalues obtained by SSI method are very closed to the theoretical ones: 1, 2, 3, 7, 9, 10, 11 and 12. In 
these cases, the EM iterations practically do not move the values. In the figure we can not appreciate these changes 
because the circles, the points and the crosses are inside the squares. 

• The SSI method fails to identify modes 4, 5, 6 and 8 in this simulation (note that eigenvalues 8 and 9 are almost 
identical in the figure). Instead, the SSI method proposes the complex poles A, B, and the real poles C, D, E and F. 

• The EM iterations correct the failed SSI eigenvalues A and B towards the theoretical values 6 and 8. It also joins two real 
poles in a complex pole that grows from the real axis towards mode 5. 

• Mode 4 is not identified by either method. 

Looking at Table 1 and Fig. 4(a) we can conclude that the EM algorithm improves the solution given by the SSI method. 
Not only the eigenvalues, even the eigenvectors are also improved: for example, the eigenvalue of mode 12 has been well 
estimated using SSI, but not so its eigenvector (M4C=0.46); however, the eigenvector identified with EMI method is very 
close to the theoretical one (M4C=0.99). Similar behavior can be also seen for modes 6, 8 and 10. 

For the same simulated time history response we have generated 100 different random starting points within the unit 
circle by mean of the procedure described in Section 4.1. The results obtained from these random starting points using the 
EM2 method have been included in Table 1. We have also included the number of times each mode has been identified 
over the total of the 100 starting points, called n. 

Fig. 4(b) shows the convergence of eigenvalues of matrix A to the theoretical eigenvalues for one of the 100 random 
starting points. In this case, only the mode 8 remains unidentified and instead has been obtained the eigenvalue a. This 
mode is hard to find, and in fact, in none of the 100 starting points has been identified (see Table 1). 

Comparing Fig. 4(a) and (b), we see how the solution obtained by the Expectation Maximization algorithm method 
depends on the chosen starting point. 

Fig. 4(c) shows the likelihood of the SSI solution (the circles (o) in Fig. 4(a)), and how the EM algorithm increase the 
likelihood with the iterations. The likelihood of the solution estimated by EMI method (the crosses ( + ) in Fig. 4(a)) is 
indicated as EMI in Fig. 4(c). 



a b 

0 10 20 30 40 50 60 70 80 90 100 110 
EM iteration 

Fig. 4. (a) Theoretical eigenvalues ( • ) and evolution from eigenvalues of matrix A identified using SSI (o) and eigenvalues of matrix A identified using 
EM ( + ). (b) Evolution from random starting eigenvalues (o) to EM eigenvalues ( + ). (c) Likelihood of SSI, EMI and EM2 estimates shown in (a) and (b). 
The likelihood of two additional random starting values has been also plotted. 

On the other hand, the likelihood of the solution estimated by EM2 method (the crosses ( + ) in Fig. 4(b)) is called EM2a 
in Fig. 4(c). Two additional random starting points (from the total of 100 studied) have been also included, points EM2b 
and EM2c. From the point of view of the MLE method, we should choose the solution with higher likelihood, that is, the 
EM2c. However, we think we are wasting the information provided by the remaining 99 starting values. For this reason, we 
proposed as modal parameters those that are present at different starting points (the so-called EM2 method). 

5.2.2. Results obtained using 100 simulated time history response 
We are going now to analyze 100 simulated cases. Summarizing the results of these 100 simulations is not easy, but it 

would give us a clear comparison of the differences of the three methods. We have chosen the box-plot to present 
simultaneously the estimated value for the modal parameters (Fig. 5). 

The box-plot is a graphical display based on the order statistics summaries of median and quartiles. A box is drawn 
from the first quartile to the third. The distributional center is indicated by a line at the median, within each box. The result 
spread or variation is shown by the box's height, which is the interquartile range. The plot is completed by a line at each 
side of the box that shown the "acceptable" values according to interquartile range and finally, the outliers which are 
extreme or discordant estimations (plotted as crosses in the figure). 

The upper row of Fig. 5 shows the box-plots for the modal parameters estimated with the SSI algorithm, the second row 
corresponds to the EMI method, and the third row corresponds to the EM2 method. By columns, the first one presents the 
box-plots for the natural frequencies, the second one shows the results for the damping ratio and the last column is 
reserved for the MAC value. 

Considering first the SSI method, the estimated frequencies of modes 1, 2, 3,11 and 12 are very similar and are close to 
the actual value (note that the difference is close to zero). The estimated frequencies for modes 4, 5, 8 and 10, however, 
present a huge variability. The frequencies of the modes 6, 7 and 9 show intermediate variability. This behavior is also 



(co. -co,. )/co,. v id th' th ?,d MAC(o).d,o)th) 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

CM 

HI 

+ + + I 

I I 1 

1 1 * 

+ I 
1 

+ + 

1 2 3 4 5 6 7 8 9 1011 12 

0.3 

0.2 

0.1 

w 0 

-0.1 

-0.2 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

Ill
ll 

HI
 ||

 
III

 II
 

++
-H

- 
+

 +
 

+
 

+ + + + 

+ 

1 2 3 4 5 6 7 8 9 1011 12 

+ 
+ 

.* T + + + + + -1 - + + — 

+ 

1 2 3 4 5 6 7 8 9 1011 12 
Mode number 

1 

0.8 

0.6 

0.4 

0.2 

0 

1 

0.8 

0.6 

0.4 

0.2 

0 

+ + Hi
 

I 
u

 

U
 

I 
1-

H
iH

I 
|| 

|| 
| 

U
'li

i 
II

 
irr

 

i 
I

I 
I-1

 

+ + 

1 2 3 4 5 6 7 8 9 101112 

,± ± * 

+ 
+ 

+ 

+ 

+ + + 

+ 

+ 

0 + 

+ 

+ 
* + 

• 

• 

+• 

1 2 3 4 5 6 7 8 9 101112 

1 

0.8 

0.6 

0.4 

0.2 

0 

• 

• 

• 

• 

• 

. s T ± * * + * + + * - — 
1 2 3 4 5 6 7 8 9 1011 12 

Mode number 

1 

0.8 

0.6 

0.4 

0.2 

0 

1 

0.8 

0.6 

0.4 

0.2 

0 

* + + T 

JL 

T H
- 

I 
| 

| 
I 

I 
I 

I 
I 

1 

H
I 

I 
i 

-H-
 

+
+
H

-D
 

H
I 

I 
1 

+ 
+ 

>-
m

- 
< 

1 2 3 4 5 6 7 8 9 101112 

1 

.8 

.6 

.4 

.? 

0 

¥ + + Q | | $ ; P + *' 

4= 
+ 

i 

+ i 
: * 
: t 

• 

+ 
J * 

1 2 3 4 5 6 7 8 9 101112 

? + + f f f f ? ; - i - » 

1 2 3 4 5 6 7 8 9 101112 
Mode number 

Fig. 5. Box-plots of SSI, EMI and EM2 results for the 100 simulated cases. 

observed in the plot corresponding to the damping ratio and the MAC value. The only difference is that the MAC obtained 
for mode 12 are about 0.6 and very far from the values that we consider acceptable (greater than 0.9). 

Taking into account the results obtained with the EMI method (second row in Fig. 5), we can notice the improvement 
achieved in the natural frequencies, damping ratios and MAC values corresponding to all the modes except mode 8. 
Excluding this mode, most of the estimated frequencies correspond to the theoretical values (although with some outliers), 
most of damping ratios are close to 0.01, and most of MAC values are close to one. 

This improvement is even more evident when using the algorithm EM2, except for mode 8 and for some very few 
outliers, the results are very close in most of the simulations to the theoretical values. 

Fig. 5 shows the whole estimated modal parameters for the 100 simulated responses. From these results we have 
extracted the modes that verify the criteria (36)-(38). We consider that these modes have been properly identified. Table 2 
shows the average values and standard deviations of the modal frequencies, damping ratios and mode shapes. The table 
also includes the number of simulations, called N (over a total of 100), each mode has been identified. We have observed 
that: 

• Using SSI method, we have identified four modes in the 100% of the simulations (modes 1, 2, 3 and 11) and two modes 
not so good (modes 7 and 9). The rest of the modes have not been identified. However, the modes estimated with this 
method have the best mean and standard deviation values of the three methods. 

• Using method EMI results are improved. We can say that all modes have been identified except mode 8. We have 
observed in the simulations that, in general, parameters well estimated by SSI method are not modified when using 
these parameters as starting point for the EM algorithm; but sometimes it can happen that, as the likelihood is 
maximized, some of them deteriorate lightly (as can be seen for modes 1 and 2) while the rest are improved. Usually 
the estimated values by the EM algorithm present bias estimation with mth < (oid and (th < (id, something known when 
the poles of matrix A are close to the unit circle [3]. 



Table 2 
Modal parameters identified from 100 simulated time history responses using SSI method and EM method. Std is the standard value (given in %), and N is the number of times the parameter has been identified. 

(a) Natural frequencies (Hz) 

Mode Exact SSI EMI EM2 

Mean Std N Mean Std N Mean Std N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

9.41 
11.79 
16.38 
25.54 
32.01 
38.66 
44.64 
48.01 
48.44 
60.15 
67.48 
83.62 

9.44 
11.81 
16.41 
25.88 

-
38.30 
44.66 

-
48.22 

-
67.49 

-

0.03 
0.03 
0.05 
0.47 

-
1.53 
2.01 

-
1.54 

-
0.37 

-

100 
100 
100 

7 

-
11 
53 

-
67 

-
100 

-

9.48 
11.86 
16.42 
25.62 
32.08 
38.63 
44.87 
48.15 
48.42 
60.32 
67.45 
83.62 

0.17 
0.37 
0.24 
0.30 
0.37 
0.36 
0.57 
0.34 
0.46 
0.50 
0.53 
0.61 

89 
94 

100 
73 
94 
88 
99 

3 
90 
87 

100 
100 

9.53 
11.95 
16.42 
25.60 
32.08 
38.63 
44.89 

-
48.38 
60.35 
67.42 
83.70 

0.28 
0.48 
0.45 
0.29 
0.35 
0.50 
0.57 

-
0.78 
0.97 
1.06 
0.90 

100 
100 
100 
85 

100 
100 
100 

-
100 
96 

100 
100 

(b) Damping ratios and mode shapes 

Mode ((%) MAC 

Exact SSI EMI EM2 SSI EMI EM2 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.91 
1.22 
0.75 
2.11 

-
1.29 
1.74 

-
1.21 

-
1.11 

-

0.03 
0.07 
0.06 
0.23 

-
0.23 
0.41 

-
0.21 

-
0.08 

-

1.41 
2.13 
1.07 
0.89 
1.01 
1.06 
1.11 
1.22 
0.99 
1.17 
0.96 
0.60 

0.37 
0.73 
0.73 
0.14 
0.12 
0.11 
0.08 
0.03 
0.11 
0.46 
0.22 
0.13 

2.84 
4.44 
1.84 
1.04 
1.11 
1.22 
1.31 

-
1.25 
2.37 
1.26 
0.75 

1.31 
1.27 
1.54 
0.47 
0.39 
0.28 
0.32 

-
0.28 
1.51 
0.27 
0.20 

0.998 
0.999 
0.999 
0.957 

-
0.947 
0.949 

-
0.970 

-
0.996 

-

0.76 
0.01 
0.00 
1.07 

-
2.98 
1.96 

-
1.61 

-
0.18 

-

0.995 
0.999 
0.999 
0.972 
0.989 
0.982 
0.976 
0.955 
0.984 
0.979 
0.998 
0.978 

1.08 
0.10 
0.10 
2.30 
1.35 
1.97 
1.38 
2.47 
2.52 
1.50 
0.24 
0.75 

0.983 
0.996 
0.999 
0.969 
0.987 
0.983 
0.971 

-
0.968 
0.983 
0.994 
0.983 

2.25 
0.98 
0.21 
2.26 
1.28 
1.97 
1.83 

-
2.62 
1.34 
0.41 
0.98 



• The method EM2 provides the best results of the three methods considered in this work (in the sense of modal 
parameters). 

• A remarkable fact in the three methods is that significantly larger values of standard deviation are observed for 
damping ratios than for modal frequencies in most cases. For this reason, we have preferred to take e^ in absolute value 
while effl is chosen in a relative sense in Eqs. (36) and (37). 

• It is important to note that mode 8 is not identified by none of the three methods. We think this is because this mode 
could not be excited: even if we consider higher state space models, this mode is hard to find. 

• In general terms, we have found that the estimates of modal parameters are improved after applying the EM algorithm 
to the SSI estimates. But sometimes it happens that the estimates of the first three modes become worse, although the 
likelihood is maximized. In principle, the properties of maximum likelihood estimation ensure that the estimates have 
asymptotically minimum variance under certain conditions, but this does not necessarily imply that for finite samples 
this property is maintained. Moreover, the proposed algorithm tries to minimize the errors as a whole, but reducing the 
variance of the whole can increase the variance of one parameter considered individually. This fact can be corrected in 
the algorithm, for example, using a weighted maximization of the likelihood, but then the computed solution is not the 
maximum likelihood solution. 

5.2. Experimental data 

The experimental phase of the benchmark problem was carried out in August 2002: the model structure was 
instrumented with three uniaxial accelerometers at each story level including the base. Nine configurations were 
investigated in order to simulate damage within the test structure by removing bracing and loosening beam-column 
connections (the configuration 1 was the reference - undamaged - case). For each configuration, experimental data were 
generated by three types of excitation: impacts of a sledge hammer, ambient vibration and electrodynamic shaker on the 
roof. We have analyzed the time history response corresponding to configuration 1 and ambient vibration, named 
"shmOla" in the data set obtained at the task group web site [6]. A detailed description of the test structure and 
experimental procedure can be found on this web site. 

The duration of the acceleration data is 300 s with sampling frequency equal to 200 Hz, which have been filtered by a 
Butterworth high-pass filter with cut-off frequency equal to 0.1 Hz to eliminate the mean and drift. The base accelerations 
are excluded so the total number of channel is 12. 

The stabilization diagram of the experimental data is presented in Fig. 6. This figure has been constructed using SSI 
method because it is fast and accurate enough to build this type of plots. Modal parameters that belong to two consecutive 
model orders have been compared according to the criteria expressed in Eqs. (36)-(38). 

We have chosen a model order equal to ns=30, because the principal stable modes are included for this order. Table 3 
shows the experimental modal frequencies and damping ratios computed applying the same methods that in the 
simulated phase. If the values estimated with different methods are located in the same row of the table means that they 
correspond to the same mode, that is, verify the tolerances (36)-(38) between them. 

The experimental vibration measurements of this structure have been also studied by various researchers applying 
different system identification techniques: for example, Ching and Beck [16] applied a two-stage Bayesian approach; and 
Alicioglu and Lus [17] used the SSI method too. The results of the two analysis are also presented in Table 3 for comparison 

0 10 20 30 40 50 60 70 80 90 100 
Frequency (Hz) 

Fig. 6. Stabilization diagram obtained with SSI method. The used symbols are "e" for stable pole and "+" for unstable pole. A mode is stable if So, = 0.02, 
£z = 0.03, £IMC=0.10. 



Table 3 
Resulting modal parameters for the experimental time history response using SSI, EMI and EM2 methods, n is the number of times that the parameter 
has been identified using EM2 from a total of 100. Results obtained in other studies are included. 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

SSI 

co (Hz) 

7.52 
7.77 

14.53 
19.89 
21.01 
23.49 
25.49 
28.16 
28.26 
28.87 

-
29.36 

-
32.03 

-
-

34.04 

-
49.51 

-
59.99 

-

C(%) 

1.04 
0.60 
0.44 
0.01 
0.04 

85.42 
0.09 
2.12 
0.09 
0.41 

-
0.20 

-
1.51 

-
-
0.11 

-
2.94 

-
0.03 

-

EMI 

co (Hz) 

7.55 
7.81 

14.54 
19.89 
21.08 

-
25.62 

-
28.37 

-
29.04 
29.15 
30.44 

-
32.14 
34.03 

-
35.24 

-
52.22 
59.99 

-

C(%) 

1.46 
1.53 
0.78 
0.01 
0.52 

-
0.47 

-
0.32 

-
2.12 
0.49 
4.34 

-
1.85 
0.74 

-
8.40 

-
3.03 
0.02 

-

EM2 

co (Hz) 

7.55 
7.83 

14.90 
19.89 
21.23 

-
25.88 

-
28.40 

-
28.96 
29.20 
31.50 

-
32.19 

-
33.31 

-
-
-

59.84 
81.67 

C(%) 

2.12 
2.10 
4.32 
0.02 
1.11 

-
2.69 

-
0.49 

-
3.74 
0.78 
6.45 

-
2.33 

-
2.45 

-
-
-
0.37 
1.39 

N 

36 
85 
48 

100 
100 

-
67 

-
87 

-
37 
88 
26 

-
52 

-
36 

-
-
-

69 
19 

Other studies 

Ref. [16] 

7.48 
7.76 

14.48 
19.89 
21.01 

Ref. [17] 

7.49 
7.76 

14.49 
19.89 
21.01 
22.69 
25.49 
28.31 

purpose (in this case the frequencies have been placed in the table in ascending order and not following the criteria 
(36)-(38) because we do not have their corresponding mode shapes and damping ratios). 

Comprehensive analyzes of Table 3 and Fig. 6 show the following: 

• The lower frequencies (first five modes) have been identified by the three algorithms, and they also appear in the two 
references mentioned above [16,17]. Moreover, they are very clear modes in the spectrum and the stabilization 
diagram. 

• Modes 7, 9, 12 and 21, which are higher frequency modes, have been identified by the three methods. None of them 
appears in [16] and two could coincide with the frequencies given in [17]. The stabilization diagram indicates the 
existence of stable modes in these frequency ranges, although it is difficult to specify more graphic information. 

• In total, the three methods agree on the identification in 9 of the 15 modes that the model order (ns=30) allowed us to 
estimate. 

• Modes 6, 8,10,14 and 19 have been identified by the SSI method but they are not confirmed by any of the two versions 
of the EM method. The stabilization diagram is of little assistance. On the other hand, Table 3 shows the existence of 
close frequency values identified by the EM algorithms, but they differ in the damping or the eigenvector. We have 
checked the solutions obtained with higher orders (up to order 50) for the SSI method and the problem worsens: the 
new modes are still not mismatched with those of the EM algorithm and appear many new ones without 
correspondence. 

• There are other three modes that have been identified for EMI and EM2 jointly, modes 11,13 and 15. In general terms, 
the modes estimated with EM2 for a larger number of starting points have been also identified either by one of the 
other methods or by both at the same time. This is a very valuable property of EM2 method. 

• Modes 16,18 and 20 have been only detected by the EMI method. Finally, the natural frequency near to 80 Hz has been 
estimated only by the algorithm EM2. However, we can see in the stabilization diagram (Fig. 6) that this mode exits and 
it is identified by the SSI method when using higher state space orders. 

• The modal analysis of a structure is a complex problem and we should not take the results provided by only one 
method as the exact solution. We can have errors of two types: to include spurious modes and to forget others which 
really exist. This analysis shows that having multiple solutions is very useful for a better identification of the vibration 
modes of a structure. 

6. Conclusions 

The aim of this paper was to present the application of a time-domain stochastic system identification method based on 
the EM algorithm to operational modal analysis of structures. The EM algorithm is a well-known tool for iterative 



maximum likelihood estimation which for state space models has a particularly neat form. Due to the EM algorithm is 
iterative, it is needed a starting value. When dealing with multivariate problems, like state space equations, the 
construction of a starting value is not trivial. Not any starting value works, and most of them failed in the iterative 
process. In our opinion, the easiest approach is to begin with the estimates of another identification method. We have 
chosen SSI because it is very much used in output-only problems, and it is fast and robust. On the other hand, we have 
developed a procedure to generate feasible random starting points as well. 

The proposed method has been evaluated through a numerical and an experimental study in the context of the ASCE 
benchmark problem. The numerical results show that the proposed method estimates natural frequencies, damping ratios 
and mode shapes reasonably well in the presence of measurement noises even. 

From our experiments, the following comments can be made: 

• SSI is a powerful identification method for output only analysis and has numerous advantages. In fact is one of the most 
currently used method to perform operational modal analysis of structures. However, maximizing the likelihood in the 
state space model is equivalent to minimizing the error, that is, the state space model fitted by the EM algorithm to the 
data has a lower error than the SSI one. So we expect that the modal parameters (which are derived from the state 
space model) have a lower error as well. And the results of the examples seem to support this fact. 

• But using a single run of the EM can lead to suboptimal solutions. For this reason we have proposed a procedure for 
building random initial values for the EM. This is not trivial because we are working with multivariate systems and any 
value taken at random does not work. Generating different starting points we can pick the optimal solution between 
them (we choose the parameters that appear again and again at different starting points). From the point of view of 
modal parameters, we have obtain the best results using the EM2 method. 

• Although not crucial, the random stating values allow us to use the EM method independently, without recourse to 
another identification method. 

The paper shows that the EM algorithm can be used to compute the maximum likelihood estimate of the modal 
parameters of a structure using output-only measurements. This is important because the maximum likelihood 
parameters have well-known statistical properties. 

Finally, we would like to finish with some other examples where we have found profitable the use of the EM algorithm: 

• In structures, the value of the modal parameters is not known. Applying the SSI method we compute an estimate of the 
parameters in a least square sense. On the other hand, the estimate given by the EM algorithm is based on the 
maximum likelihood method. The joint analysis of both solutions, which are based on a sound theoretical basis, is a 
valuable tool for modal identification. 
For example, the separation between structural modes and spurious modes in stabilization diagrams is not always 
straightforward: in built structures there are many closely spaced modes, and the stabilization diagrams are not clear at 
these frequencies. If we apply the EMI method, all the estimates present simultaneously in the SSI solution and in the 
EMI solution can be selected as modal parameters of the structure, because they have been identified by SSI and kept 
after the EM iterations. So the EM algorithm can help us to find structural modes where the stabilization diagram is 
not clear. 

• The stabilization diagrams built using EMI are clearer than SSI ones, and the stables poles appear at lower orders. 
• We always refine the SSI solution using the EMI method before gluing the modes estimated from different setups of 

sensors in a structure. The number and quality of modes obtained is improved. 
• The solution given by the EM2 method does not include spurious modes, because it is difficult for the same spurious 

mode to appear at different starting points. But it is very time consuming. We recommend using it when we want more 
confidence in our results, or for large and complicated structures where some modes cannot be easily extracted. 

We think that the strategies we have adopted in this work can be useful when performing an operational modal 
analysis and can be applied without difficulty. 
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Appendix A. From second-order structural models to state space models 

The equations of motion for an nd degrees-of-freedom linear, time invariant, viscously damped system subjected to 
external excitation is expressed as 

Mq(t) + Czq(t)+Kq(t)=Ju(t), (A.l) 



where M,CZ,K e U"dX"d are the mass, damping and stiffness matrices, respectively; J e U"dXni is the excitation influence 
matrix that relates the n r dimens iona l input vector u(t) to the nd-dimensional response vector; q(t) is the nd-dimensional 
displacement response vector; dot denotes derivatives with respect to t ime. 

By defining the state vector x(t) = [q(t) q(t)]T, Eq. (A.l) can be converted into the continuous state space form: 

x(t)=Acx(t)+Bcu(t), (A.2) 

where 

0 

JVT1./ 
(A.3) 

In practice, only a limited number of measurements are available; therefore, the dimension of the measurement output 
is less than or equal to the total number of degrees of freedom. The n0-dimensional output vector y(t) can be expressed as 

y(t) = Caq(t), (A.4) 

where Ca e Mn°x"d is the measurement location matrix corresponding to the acceleration responses of the structural 
system, composed by zeros and ones. We can rewrite the output vector into the continuous state space form: 

y(t) = Ccx(t)+Dcu(t), (A.5) 

where 

Cc = Ca[-M^K -M^CZ] Dc = CaM^J. 

Eqs. (A.2) and (A.5) define the state space equation in continuous t ime: 

x(t)=Acx(t)+Bcu(t), 

(A.6) 

y(t) = Ccx(t)+Dcu(t), 

(A.7a) 

(A.7b) 

where y(t) e Un° is the measured output vector, u(t) e U"j is the measured input vector, x(t) e U"s is the state vector, Ac e 
U"sX"s is the transition state matrix describing the dynamics of the system; Bc e R"sXn" is the input matrix; Cc e Mn°x"s is the 
output matrix, which is describing how the internal state is transferred to the output measurements y(t); Dc e Mn°xnj is the 
direct transmission matrix; 

Eq. (A.7a) is known as the State Equation and Eq. (A.7b) is known as the Observation Equation. 
It is important to say the state vector of the system is not unique and we can transform the state vector x(t) into z(t) by 

a linear transformation as follows: 

x(t) = T,z(t), (A.8) 

where 7"i is the transformation matrix. Replacing this condition into (A.7) and pre-multiplying by 7",1 

z(t)=Ac,z(t)+BcMt), 

y(t) = Cc,z(t)+DcMt), 

where 

Ac -T^AcTu Cci=CcTu Bci=T^Bc, Dci=Dc. (A.10) 

This state representation yields the same dynamic relation between u(t) and y(t), that is, the same inpu t -ou tpu t behavior 
that (A.7). An important state vector is the formed with the nd-dimensional modal coordinates vector, r)(t) 

q(t) = <Pt](t)^z(t)-. 
n(t) 
ij(t) 

<2> 0 

0 <P 
(A.11) 

where <P is the eigenvector matrix of M ^K matrix, which verifies the orthogonality properties: 

Mm and Km are called modal mass and modal stiffness matrices and both are diagonal. Using Eqs. (A.3), (A.6) and (A.l 1), Ac 

and Cci become 

Ac 
0 

-1 n/i-1 <p-'M-'K<P -<p-'M-'Cz<P 

I 
1 A / T - l / 

(A.12) 



Ccl =Ca<P[-<p-^M^K<P -$-1M-1Cz<P]. 

Taking into account the orthogonal properties and matrix inverse properties 

<P"1M"1K<P = <£_1 JVT1 (<fT)-1 <2>TK<2> = (M*)"1 (<fT)-1 <2>TK<2> = (<fTM<f)-1 <2>TK<2> = M^Km = Q2, 

where Q is a diagonal matrix formed with the natural frequencies. In matrix form 

"co, 0 ... 0 

(A.13) 

Q-. 
0 

0 

C02 

0 

0 
(A.14) 

Applying the same procedure to the other component of the matrices, and assuming proportional damping: 

<2>-1JVT1Cz<2> = 2flZ, 

where Z is a diagonal matrix formed with the damping ratios of each vibrational mode: 

"£, 0 ... 0 

o C2 ••• o 

0 0 ... Cnd 

Hence, substituting the above formulas into Acl and Ccl results 

0 
-Q2 

0 
<2H; 

/ 
-2QZ 

Cci =Ca<P[-Q2 -2QZ], 

-De, 

(A.15) 

(A.16) 

(A.17) 

However, the continuous state space formulation is only useful to theoretical considerations because measurements are 
taken in discrete time instants, so equations must be expressed in the discrete-time state space form. For the sampling of a 
continuous-time equation we consider the input is piecewise constant over the sampling period of length At (Zero-Order 
Hold assumption), that is 

Vt e [tk,tk+1) = [feAt,(fe+l)At) =>x(t) = x(tk) = xk, u(t) = u(tk) = uk, y(t)=y(tk)=yk (A.18) 

Under this assumption, the continuous time state-space model (A.7a) and (A.7b) is converted to the discrete time state-
space model: 

xk+i= Axk+Buk, (A. 19a) 

yk = Cxk + Duk. 

The parameters are related to their continuous-time counterparts as (see for instance [18]): 

A = e^At, B = (A-I)A^BC, C = CC, D = DC. 

(A. 19b) 

(A.20) 

Up to now it has been considered that the system was only subjected to deterministic and known inputs, uk. However, 
besides this measured inputs always there are other that, although they are not known, contribute to the system response. 
This unmeasurable influence is characterized as disturbance or noise. In system identification, system response 
disturbance might be caused by different phenomena. In any case, noise will always be present in measured data and 
should be therefore always take into account. 

It is necessary to extend the state space model (A.19a) and (A19b) including stochastic components, so stochastic state 
space model is obtained: 

xk+i=Axk+Buk+wk, (A21a) 

yk = Cxk+Duk + vk, (A21b) 

where wk e U"s is the process noise due to disturbances and modeling inaccuracies; vk e Un" is the measurement noise due 
to sensor inaccuracy. We assume they are both independent and identically distributed, zero-mean normal vectors: 

w,< -> N(0, Q) uk -> N(Q,R). (A.22) 



Appendix B. Kalman filtering and smoothing 

We present here the Kalman filter, which provides the basis for the equations of the algorithm. The Kalman filter is a 
well-known and used tool but we include it here to complete. We have also included two additional properties that are 
needed in the equations. 

B. 1. Notation for the Kalman filter 

The following notation has been used in all the expressions derived from the Kalman filter. Given the output data for s 
time steps Ys = {y^}y2, • • • ,ys}, it is defined as follows: 

xs
t = E[xt\Ysl 

PU =£[(*,-x^-xf / lV,] , 

where £[• | •] is the conditional expected operator. 
When t! = t2 = t it will be written P :̂ 

P? = E[(xt-x
s
t)(xt-x

s
t)

T | Ys] = Var[xt | Ys]. 

B.2. Three basic properties 

Property 6 (The Kalman Filter). For the state space model specified in (2) with initial conditions x° = Ju0 and Pg = I0, for 
t=\,2 N, 

x[-^ =Ax\z\, (B.l) 

P'-1 =APt
tz\AT + Q_, (B.2) 

with 

x ^ x ^ + K t C t , (B.3) 

Pc
t = [I-KtQPc-\ (B.4) 

where 

Kt=Pt
l:^CTZ-\ (B.5) 

ec=yt-E\yt\Yt_,]=yt-Cx\-\ (B.6) 

It = Var[£t] = Var lQxt-x^+iV] = CPC-^CT+R, (B.7) 

Kt is called the Kalman gain and et are the innovations. 

Property 7 (The Kalman Smoother). For the state space model specified in (2) with initial conditions xN and pj, obtained via 
Property 6, for t = N,N—\,.. . , 1 , 

xf^xfl l+Jt- iCxF-xf-1) . (B-8) 

where 

PI, = p'rA +/,_, (pf-pf-'C. (B.9) 

Jt-i =P'tz]AT[P't-']-\ (B.10) 

Property 8 (The Lag-One Covariance Smoother). For the state space model specified in (2), with Kt,Jt(t=\,2,... ,N), and pJJJ 
obtained from Properties 6 and 7, with initial condition 

< N - I = H-KNQAP^Z] (B.ll) 

fort = N,N-\ 2 

Plu-2 = P'rAft-i +/,-i (Pfft-i -AP[Z])J12. (B.12) 

The demonstration of the above properties can be found in [3]. 
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