
Dynamic Term Size Computation in Logic Programs
via Program Transformation

P. Lopez Garcia M. Hermenegildo
pedro@dia.fi.upm.es herme@fi.upm.es

Facultad de Informatica
Universidad Politecnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - Spain

Abs t r ac t

Knowing the size of the terms to which program variables are bound at run-time in logic programs
is required in a class of applications related to program optimization such as, for example, recursion
elimination and granularity analysis. Such size is difficult to even approximate at compile time and
is thus generally computed at run-time by using (possibly predefined) predicates which traverse the
terms involved. We propose a technique based on program transformation which has the potential
of performing this computation much more efficiently. The technique is based on finding program
procedures which are called before those in which knowledge regarding term sizes is needed and
which traverse the terms whose size is to be determined, and transforming such procedures so that
they compute term sizes "on the fly". We present a systematic way of determining whether a given
program can be transformed in order to compute a given term size at a given program point without
additional term traversal. Also, if several such transformations are possible our approach allows
finding minimal transformations under certain criteria. We also discuss the advantages and present
some applications of our technique.

K e y w o r d s : Term Size Computat ion, Granularity Analysis, Parallelism.

1 Introduction

The need to know the size of the terms to which program variables are bound at run-time in logic programs
arises in a class of applications related to program optimization which includes recursion elimination [17,
1], granularity analysis [8], and selection among different algorithms or control rules whose performance
may be dependent on such size. By term size we refer to measures such as list length, term depth, number
of nodes in a term, etc.

For example, in granularity analysis the objective is to determine a priori (i.e. before its execution)
the number of steps tha t the execution of a given goal will involve. Granularity analysis for a set of
non recursive procedures is relatively straightforward. However, recursive procedures are somewhat more
problematic: the amount of work done by a recursive call depends on the depth of recursion, which in
turn depends on the size of the input. Reasonable estimates for the granularity of recursive predicates
can thus be made only with some knowledge of the size of the input. In [8] a technique was presented
for solving this problem based on performing a compile-time analysis which reduces granularity analysis
work at run-time to evaluating simple functions of term sizes. However, the actual determination of those
sizes in order to evaluate such functions is necessarily postponed until runtime. The same considerations
apply in the case of recursion elimination: provided the sizes of certain terms are known a recursive
predicate can be converted to a much more efficient non-recursive predicate which contains the bodies of
the different recursions. Approaches such as reform compilation [17, 1] a t tempt to do this efficiently by
performing certain preprocessing at compile-time but necessarily leave the final term size computation
for run-time.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pedro@dia.fi.upm.es
mailto:herme@fi.upm.es

The postponement of accurate term size computation to run-time appears inevitable in general since
even sophisticated compile-time techniques such as abstract interpretation are based on computing ap
proximations of variable substitutions for generic executions corresponding to general classes of inputs,
while size is however clearly a quite specific characteristic of an input. Although the approximation
approach can be useful in some cases we would like to tackle the more general case in which actual sizes
have to be computed dynamically at run-time.

Of course computing term sizes at run time is quite simple but at the same time it can involve a
significant amount of overhead. This overhead includes both having to traverse significant parts of the
term (often the entire term) and the counting process done during this traversal.

The objective of this paper is to propose a more efficient way of computing such sizes. The essential
idea is based on the observation that terms are often already traversed by procedures which are called in
the program before those in which knowledge regarding term sizes is needed, and thus that such sizes can
often be computed "on the fly" by the former procedures after performing some transformations to them.
While the counting overhead is not eliminated, overhead is reduced because additional traversals of terms
are not needed. We present a systematic way of determining whether a given program can be transformed
in order to compute a given term size at a given program point without additional term traversal. Also,
if several such transformations are possible our approach allows finding minimal transformations under
certain criteria.

The rest of the paper proceeds as follows: Section 2 introduces some of the terms to be used through
out the paper. Section 3 then presents an overview of the approach. Section 4 introduces our basic
representations and Section 5 presents our concept of allowable and minimal ("irreducible") transforma
tions. The important role of irreducible transformations is highlighted in Sections 6 and 7. Section 8
then presents algorithms for finding irreducible transformations and presents an example of the complete
process. Section 9 discusses the advantages of the approach, while Section 10 discusses some possible
applications in more detail. Finally Section 11 presents our conclusions and suggestions for future work.

2 Preliminaries

This section presents some of the basic concepts to be used throughout the paper, such as term size and
size relations between terms. The definitions generally follow [8, 9].

Various measures can be used to determine the "size" of a term, e.g., term-size, term-depth, list-
length, integer-value, etc. The measure(s) appropriate in a given situation can generally be determined
by examining the operations used in the program. Let | • | m : "H —>• A/j_ be a function that maps ground
terms to their sizes under a specific measure m, where H is the Herbrand universe, i.e. the set of ground
terms of the language, and M±_ the set of natural numbers augmented with a special symbol _l_, denoting
"undefined". Examples of such functions are "list-length", which maps ground lists to their lengths and
all other ground terms to ±; "term_size", which maps every ground term to the number of constants and
function symbols appearing in it; "term_depth", which maps every ground term to the depth of its tree
representation; and so on. Thus, |[a,t>]|iist_iength = 2, but |f(a)|iist_iength = -L. Then the size properties of
general terms can be described using two functions based on | • |. Given a set of terms S, a substitution
9 is said to be S-grounding if 9{t) is a ground term for every term t in S. The function sizem(t) defines
the size of a term t under the measure m:

n if |#(t) |m = n for every
,.N |t)-grounding substitution 9

sizem(t) = < L J & &

± otherwise. v

The function diffm(t\,t2) gives the size difference between two terms t i and t2 under the measure m:

d i f | 0 (t 2) | m - | 6 l (t 1) | m = d

diffm(ti,t2) = <
for every {ti,t2}-grounding
substitution 9

_L otherwise.

2

Thus,

^l i S t . length([c |L] , [a ,b |L]) = l,

*ifterm_depth(f(a 'g(X)))X) = ~2'

^*ifterm_depth(f (Xi Y) ' X) = -L-

In the discussion that follows we will omit the subscript in the size and diff functions when the particular
measure under consideration is clear from the context.

As an example of the size analysis proposed in [8, 9], consider the predicate nrev/2, defined as:

n r e v ([] , []) .
nrev([H|L] , R) : -

nrev(L, R l) , append(Rl, [H], R).

Let head[i] denote the size of the term appearing at i t h argument position in the head and bodyj[i]
in the j t h literal of the body. Using size and diff functions, size analysis get the following argument size
relations between terms appearing in arguments positions of the second clause:

bodyi[l] = head[l] + diff([R | L],L),
body2[l] = body i[2] + diff (R1,R1),
body2[2] = size([E]),
head[2] = body2[3] + diff (R,R).

For the first clause:

head[l] = s«ze([]),
head[2] = size([]).

Using list-length as measure, and after a normalization process, size analysis can infer the following
size relations for the second clause:

bodyi[l] = head[l] - 1,
body2[l] = bod y i [2] ,
body2[2] = 1,
head[2] =body 2 [3] .

and for the first one:

head[l] = 0,
head[2] = 0.

3 Overview of the Approach

As mentioned in the introduction, we are interested in transforming some predicates in such a way that
they will compute some of their argument data sizes at run-time, in addition to performing their normal
computation. It is often the case that because of previous transformations or other reasons the size of
certain terms is already known and it can be used as a starting point in the dynamic computation of
those that we need to determine at a given point. Thus, we will be interested in the general problem
of transforming programs to determine the sizes of one set of terms given that the sizes of the terms in
another (disjoint) set are known.

Example 3.1 Consider, for example, the predicate append/3, defined as:

append([] ,L ,L) .
append([H|L],L1,[H|R]) : - append(L,LI,R).

We can transform this predicate in such a way that it computes the size of the third argument, provided
that the size of the second one is supplied. The transformed predicate can be defined as:

3

append3i2([],L,L,S,S).
append3i2([H|L],LI,[H|R] ,S2, S3) : -

append3i2(L,Ll,R,S2,Sb3), S3 is Sb3 + 1.

where the fourth and fifth arguments of this predicate are the sizes of the second and third respectively.1

•
To perform this transformation, size relations between terms appearing in each clause have to be

known. To transform the first clause the size relation

head[3] = head[2]

is needed. For the second one the following size relations are needed:

head[3] = bodyi[3] + 1, and
bodyi[2] = head[2]

In this case bodyi[3] is recursively computed, and bodyi[2], which is needed for this computation,
is supplied by the head. The transformed predicate, append3i2/5, performs the same computation as
append/3, while in addition computing the size of the third argument of append/3 as a function of the
size of the second argument.

To perform the transformation it is necessary to know for each clause, and for each term occurring
at a head position whose size is going to be computed by the transformed procedure at run-time, an
expression which gives the size of the term as a function of the sizes of other positions in the clause.

4 Transforming Procedures : Transformation Nodes

In this section we explain how the information needed for procedure transformation is represented. We
also formulate some conditions that this information has to fulfill in order for the transformation to lead
to correct size computations. We thus prepare the way to end with the definition of a Transformation
Node, which can be considered as a data structure which contains the information needed to transform
a procedure. Transformation nodes will also later be nodes in a search tree when the algorithm used to
find different forms of transforming sets of procedures, or whole programs is presented.

Definition 1 (Procedure Transformation Label (PTL)) a structure, p t l (Pred, Os, Is), where:

• P r e d : is the name and arity of the predicate to be transformed.

• Os: is a list of argument positions (represented as numbers) whose sizes are computed by the
transformed predicate at run-time.

• Is : is a list of argument positions whose size is needed for the previous computation.

The condition: Os n Is = 0 is required. •

With the above defined labels we can express which predicate P red is transformed and which argument
sizes will be computed as a function of which others. Transformation Nodes will be labeled with such
PTLs. An example of a PTL is:

ptl(append/3,[3],[2])

Which states that the predicate append /3 will be transformed to compute the size of its third argument,
provided that the size of the second one is supplied at the procedure call. This means that it is necessary
to add two extra arguments to the transformed predicate which will stand for the sizes of the second and
third argument of append /3 .

1For clarity, this class of transformations is used in the examples even if they are not ideal given that they destroy tail
recursion optimization. However it is quite straightforward to perform the equivalent transformation which preserves tail
recursion optimization by using an accumulating parameter. These are the transformations performed in practice.

4

Definition 2 (Term Size Descriptor (TSD)) a structure of the form:

tsd(ptl(Pred, Os, Is), ArNum, LitNum, [Expl,.., ExpN])

where:

• ptl(Pred, Os, Is) is a Procedure Transformation Label;

• LitNum: is a literal number in a clause(Literals are numbered from left to right, starting by
assigning one to the literal after the head);

• ArNum: is an argument number of literal LitNum; and,

• Expl , . . , ExpN : are Valid Size Expressions, to be defined shortly.

The condition: ArNum € Os is required. •

A TSD describes the size of a term appearing in a body clause. It supplies information about the
position in the body at which the term occurs, what sizes are computed by the literal, and which are
the terms whose size is needed for this computation. LitNum and ArNum give the position in the
body of the clause at which the term whose size is described occurs. The condition states that the size
required has to be computed by the transformed literal. ptl(Pred, Os, Is) describes the size computation
for which the literal LitNum is transformed. Expl, . . , ExpN describe the sizes of the terms that occur
at arguments of the literal number LitNum in Is. These sizes are needed for the transformed literal to
perform the computation of sizes.

An example of TSD may be:

t sd (p t l (append/3 , [3], [2]), 3,1, [h(2)])

This represents that the size of the third argument of append/3 is computed by the transformed
literal number 1, and states that the size of its second argument, needed for this computation, is supplied
by the second argument of the head (h(2)).

Definition 3 (Size Expression) A Size Expression is recursively defined as follows:

• A Natural number is a Size Expression.

• A term h(i), is a Size Expression.

• A Term Size Descriptor (TSD) is a Size Expression.

• If Ei and E2 are Size Expressions, then Ei A E2 is a Size Expression, where A is any usual
arithmetic operator (+, —, *, exponentiation, etc.).

h(i) denotes argument number i, or position number i of a clause head. •

Definition 4 (Valid Size Expression) a Size Expression Exp is valid if it meets the following con
ditions:

1. For each Term Size Descriptor:

tsd(ptl(Pred, Os, Is), ArNum, LitNum, [Expl,.., ExpN])

appearing in Exp, and for each literal number n appearing in the Term Size Descriptors of
[Expl, . . ,ExpN], n < LitNum.

2. All Size Relations of Exp are valid. A Size Relation is valid if it is true for every substitution that
makes the terms occurring in such Size Relation ground. •

5

A Valid Size Expression provides information about the size of some term in a clause. If such an
expression is a TSD then it expresses which body literal computes the size, and the Size Expressions that
appear in the TSD provide the size of the arguments needed for this size computation. If the Valid Size
Expression is a head position (h(i)), then it represents the size of the i t h argument of the head.

Condition 1 says that the sizes supplied to a transformed literal can be computed only by previous
literals of the body. This requirement is due to the fact that the sizes supplied have to be "ground" at the
call, because we are interested in using built-ins similar to "is/2" (in fact, more efficient and specialized
versions) to perform the arithmetic operations needed to compute sizes and these built-ins require all
but one of their arguments to be ground. It is important to note that this condition may be relaxed
if the target language is for example a Constraint Logic Programming language [14] which can solve
linear equations. However actual equation solving would probably incur in significant overhead. Thus
we enforce the condition both for efficiency reasons and for allowing the transformed programs to be
executed without requiring any constraint solving capabilities in the target language.

An example of a Valid Size Expression, taken from Example 3.1 is:

1 + tsd(ptl(append/3, [3], [2]), 3,1, [h(2)])

which states that in the expression 1 +bodyi [3], bodyi [3] can be computed by literal number 1, provided
that bodyi[2] is supplied, and that bodyi[2] = head[2], i.e., that it is in fact supplied by the head.

Once we have all necessary definitions we define the concept of Transformation Node:

Definition 5 (Transformation Node) a pair

(gf (Pred, Os, Is), SizeAssigment),

where gf(Pred, Os,Is) is a PTL which is the label of the node. SizeAssigment is a list of n clause
assignments, n being the number of clauses in predicate Pred. Each such assignment refers to a different
clause of Pred, and is a list of m items, where m is the cardinality of Os. There is an item for each
argument number in Os. Each such item is a pair:

(ArNum,VSD),

where ArNum is an argument number, ArNum £ Os, VSD is a Valid Size Expression and :

1. head(ArNum) = SR(VSD) is a valid Size Relation, where head(ArNum) is the size of the
term appearing at position number ArNum of the clause head. Where SR(VSD) is an expression
obtained by replacing each TSD in VSD by the term size(Term), Term being the term occurring
at the position indicated by the TSD; and

2. All head positions appearing in the Size Expressions of SizeAssigment are in Is.

3. If

tsd(ptl(PTLl, ArNuml, LitNuml, SizeExpl) and
tsd(ptl(PTL2, ArNum2, LitNum2, SizeExp2)

are two Term Size Descriptors appearing in any clause assignment, and LitNuml = LitNum2,
then

PTL1 = PTL2 and SizeExpl = SizeExp2.

•

Condition 2 states that all the term sizes that are needed from a clause head are actually supplied by
it.

Condition 3 states that a body literal can only be transformed in one way, and that the sizes supplied
to it can be computed also in only one way.

6

Example 4.1 Consider Example 3.1, which transform the predicate append /3 . The information needed
for this procedure transformation can be represented with the following Transformation Node:

(p t l (a p p e n d / 3 , [3] , [2]) ,
[

[(3 ,h(2))] ,
[(3 , l + t s d (p t l (a p p e n d / 3 , [3] , [2]) , 3 , l , [h (2)]))]

]
) .

The procedure transformation process is trivial given this information. •

The intuition which can be gathered from the previous example is that it is possible to perform the
size computation at run-time if some conditions hold on the Transformation Nodes. This will be the
subject of the following sections.

5 Transforming Sets of Procedures : Transformations

In this section we deal with the transformation of procedures which form part of a call graph. In this case
it is necessary to have at least a Transformation Node for each of them and these nodes have to meet some
conditions that are explained below. To define the concept of Transformation, which informally can be
considered as the information needed to transform a set of procedures, we need the following definitions:

Definition 6 (Con relat ion) We define a relation, Con between Transformation Nodes as follows:
(Ni, N2) € Con if and only if the label of N2, PTL2 appears in some Term Size Descriptor of the

Size Expressions 0 /N1, i.e. there is a TSD in Ni of the form:

t sd(p t l (PTL 2 , A rNum, Li tNum, [Expl,. . , ExpN]) •

Definition 7 (Connected nodes) Given a Transformation Node E P and a set of Transformation
Nodes, T N S , where E P e T N S , we define the set of connected Transformation Nodes, C N (E P , T N S)
as:

C N (E P , T N S) = {N e T N S | (EP,N) € C o n T } ,

where C o n T is the transitive closure o/Con.D

Definition 8 (Order ing between P T L s) Given two PTLs,

X = pt l (Pred , Os, Isx) and Y = p t l (Pred , Os, Is y) ,

we say that X < Y i / and only if I s x C Is y . •

For example:

p t l (append /3 , [3], [2]) < p t l (append/3 , [3], [1, 2]),

but:

p t l (append /3 , [3], [2]) <£ p t l (append/3 , [3], [1])

Definition 9 (Transformation) A pair (V T N , E P) , where E P is a Transformation Node, and
V T N is a set of Transformation Nodes, is a Transformation if and only if:

1. E P e V T N .

2. Let NS = {EP} U CN(EP , VTN) , then:

For each Term Size Descriptor:

7

tsd(ptl(Pred, Os, Is), ArNum, LitNum, [Expl,.., ExpN])

appearing in the Size Expressions of the nodes in NS there is a Transformation Node in NS labeled
with ptl(Pred, Os, Is).

EP is called the entry point of the Transformation. •

Example 4.1 constitutes a Transformation, where the entry point is the node itself.

Example 5.1 Consider the predicate qsort/2 defined as:

qsort([] , []) .
qsort([First|LI],L2) :-

partition(First,Ll,Ls,Lg),

qsort(Ls,Ls2),

qsort(Lg,Lg2),

append(Ls2,[First|Lg2] ,L2).

p a r t i t i o n ^ , [] , [] , []) .
partition(F,[X|Y],[X|Y1],Y2) :-

X =< F,
partit ion(F,Y,Yl,Y2).

partition(F,[X|Y],Y1,[X|Y2]) :-
X > F,
partit ion(F,Y,Yl,Y2).

Let be Ni the Transformation Node:

(p t l (q s o r t / 2 , [2] , []) ,

[[(2 , 0)] ,
[(2 , t sd (p t l (append /3 , [3] , [2]) , 3 , 4 ,

[l + t s d (p t l (q s o r t / 2 , [2] , []) , 2 , 3 , [])]
)

)
]

]
) .

Let be N2 the Transformation Node from Example 4.1, then, the pair (|N i ,N2} ,Ni) is a Transfor
mation, with entry point the node Ni •

Definition 10 (Irreducible Transformation) A Transformation (T ,EP) , is Irreducible if and only

if:

1. There is only one Transformation Node in T labeled with the same Procedure Transformation Label.

2. T = | E P } U C N (E P , T)

3. There are no two Transformation nodes in T, labeled with X and Y, such that X < Y. •

The Transformation shown in Example 5.1 is Irreducible.

Definition 11 (Computation Size Specifications (CSS)) We define a Computation Size Specifica
tion (CSS) as a pair (Pred, Os), where:

• Pred: is the name and arity of the predicate to be transformed.

8

• Os: is a list of argument numbers whose sizes are computed by the transformed predicate at run
time. •

Definition 12 (Transformation for a CSS) A Transformation for a CSS (Pred, Os), is a Trans
formation (T, EP) such that the label o / E P is of the form ptl(Pred, Os, Is). •

Theorem 1 If there is a Transformation (T ,EP) , for a Computation Size Specification (Pred, Os),
such that the label of EP is ptl(Pred, Os, Is), then it is possible to transform the clauses of Pred to
obtain a transformed Predicate Pred', such that Pred' computes the sizes of the arguments indicated in
Os, provided that the sizes of arguments indicated in Is are supplied, besides of course performing the
same computations that Pred does.

Proof Trivial, by induction on the number of resolutions. •
Sections 6 and 7 discuss how we can choose the best Transformations.
A note on the generation and nature of Transformation Nodes: this generation is performed through

a mode analysis to determine data flow patterns [5, 7, 18, 19, 3] and an argument size analysis [8, 9].
It is important to note that this combined analysis can in some cases infer direct size relations between
arguments of a predicate. For example, it is possible to infer, for the predicate append/3, that the length
of its third argument is the sum of its two first arguments, i.e. h(3) = h(l) + h(2). This information
can be used to generate Transformation Nodes which can form part of a Transformation, but which
need to traverse less data because a size computation can be performed directly in one operation, rather
than by counting during the execution of the predicate. Thus, at one program point we may decide to
perform an arithmetic operation, provided that the needed sizes are known, or make a literal perform
size computation by transforming it to do data traversal.

6 Some Considerations Regarding Irreducible Transformations

This section explains why Irreducible Transformations are interesting and shows that to determine
whether it is possible to transform a predicate, we only need to find Irreducible Transformations. To
show this we need the following definitions:

Definition 13 (Substitutions of PTLs: Sub(E,X,Y)) Given a Size Expression E and two PTLs
X and Y, where:

X = ptl(Pred,Os,Isx);
Y = ptl(Pred, Os, Isy) ;and
Isy C Isx ,

we define Sub(E, X,Y) as:

1. If~E = tsd(Z, ArNum, LitNum, SizExp), where SizExp = [Ei,...,E„] then:

(a) IfZ = X :
Let Expi , . . . ,Exp m be the Size Expressions in SizExp associated with the argument numbers
ai , . . . ,am € I s x , such that {ai, . . . ,am} = I s y , then:
Sub(E, X, Y) = tsd(Y, ArNum, LitNum, SizExp'),
where SizExp' = [Sub(ExPi, X, Y),... , Sub(Expm , X, Y)]

(b) I / Z / X then :
Sub(E, X, Y) = tsd(Z, ArNum, LitNum, SizExp"),
where SizExp" = [Sub(Ei,X, Y),. . . , Sub(En ,X, Y)]

2. 7/E = Ei AE2 , where A is an arithmetic operator (+, —, *, etc.), then:

Sub(E, X, Y) = Sub(Ei, X, Y) A Sub(E2, X, Y)

3. Otherwise: Sub(E,X,Y) = E.

9

We can extend the previous definition to Transformation Nodes. Given a Transformation Node N
and two PTLs X and Y, where:

X = pt l (Pred , Os, Is x) , Y = p t l (Pred , Os, Is y) ,
I s y C I s x ,
N = (Label, SizAssign), SizAssign = [CAi,..., CAn],and
CA i = [(aJ,E1J),...,(a[n,EP1)]

we define Sub(N, X,Y) = N' , where:

N' = (Label, SizAssign'),
SizAssign' = [Ai, . . . ,An] , and
A i = [(a i

1 ,Sub(E,1 ,X,Y)), . . . , (a i
m ,Sub(E|n ,X,Y))]

We extend the previous definition to a set T of Transformation Nodes:
Sub(T ,X ,Y) = T " ,
where T ' is the result of substituting X by Y in every node in T. •

Example 6.1 Consider the Transformation Node Ni as defined in Example 5.1, then:

Sub(Ni ,p t l (append /3 , [3], [2]),ptl(append/3, [3], [])) = N s

where N s is:

(p t l (q s o r t / 2 , [2] , []) ,
[

[(2 , 0)] ,
[(2 , t s d (p t l (a p p e n d / 3 , [3] , []) , 3 , 4 , []))]

]
) .

•

Lemma 1 Let (T, N e) be a Transformation with entry point N e , such that there is a set S of n nodes
in T, {Ni,..., N n } labeled with the same label L. Let Ti = (T — S) U {Nj}, and EPi be a Transformation
Node defined as follows: EPi =

Ni if |0(t) |m = n for every
_ _ _ I {t}-grounding substitution 9

l otherwise.

/ / N e G S - {Ni} then EPi = N,
else EPi = N e

then:

For all i, 1 < i < n, (Ti, EPi) is a Transformation.

Proof Trivial. •

Lemma 2 Let (T, N x) be a Transformation whose entry point is the node N x .
Let N y G T and N z G T be two Transformation Nodes labeled with Y and Z respectively, such that

Y < Z.
Let N w be a new entry point defined as:

If N x = N z then N w = Sub(N y , Z, Y)
efeeNw = S u b (N x , X , Y) .

10

Let T' = Sub(T, Z, Y), and T" = CN(NW , T') U {Nw}
Then:

(T ' ,NW) and (T",NW) are two Transformations, and
N z £ T"

Proof Trivial. •

Theorem 2 If there is a Transformation T for a CSS, X, then there is an Irreducible Transformation
T' for X.

Proof It is possible to obtain a finite set of Irreducible Transformations from T applying the following
two processes:

1. Eliminate nodes with the same label (lemma 1). We can obtain a set of Transformations:
{Ti,..., T m } , which do not contain nodes with the same label.

2. Eliminate nodes that have a label which is less than another label in the same Transformation. We
can choose any of these Ti and apply successive substitutions to it (lemma 2), obtaining in each
step a Transformation Tj, denned as T" in lemma 2. We apply substitutions until we obtain an
Irreducible Transformation T^.

•
Theorem 2 means that we only need to find Irreducible Transformations to determine whether a

procedure is transformable to compute sizes. Obviously Irreducible Transformations have a smaller
number of nodes than the transformations they have been obtained from, which will result in transformed
procedures with potentially less overhead at run-time.

7 Towards Optimal Irreducible Transformations

We are interested in Transformations for CSSs having the minimum number of Transformation Nodes
and each of them having the minimum number of items in Is, where ptl(Pred, Os,Is) is the PTL of
any node in the Transformation. That is, to transform a predicate to make it compute the sizes of
some of its arguments, we would like to know which are the arguments whose sizes are strictly necessary
to perform this computation (in order to add only the absolutely necessary additional arguments and
operations to the transformed predicates) and also what is the minimum number of predicates which
have to be transformed. The problem of finding optimal irreducible transformations lies in the fact that
we need to use two parameters (number of Transformation Nodes and number of arguments needed) in
the comparison and some transformations may be incomparable, in the sense that one is smaller than
the other one on one criteria but the converse is true on the other criteria.

If we are interested for example in having Transformations with minimal labels, according to the
ordering defined previously between PTLs, then we may define the following order relation between
Transformation Nodes:

Definition 14 (Order relation between Transformation Nodes) Let be TS the set of all Irre
ducible Transformations for a given CSS X, and TN = | L t e)GTg t.

Given two Transformation Nodes N x £ TN and N y € TN, labeled with X and Y respectively, we
say that N x < N y if and only if X < Y. •

Definition 15 (Minimal Transformation) We say that a Transformation (TX ,EX) for a CSS X is
minimal if and only if for each node N x £ T x there is no another Transformation (T y , E y) for X, which
has a node N y £ T y such that N y < N x . •

Theorem 3 Let TS be the set of all Irreducible Transformations for a given CSS X. If TS ^ 0, then
there is a non-empty set of Irreducible Transformations MS, MS C TS, which contains only minimal
Transformation Nodes.

11

Proof We define the set Ti as:

T l — U(t,e)€TS *

Then we construct T2 by removing from Ti nodes labeled with the same PTL, so that only one of
those nodes is left. The next step is to construct TJf by applying to T\ = T2 successive substitutions
of PTLs for which there are other PTLs that are less than them, by the minimum of these lower PTLs.
Thus, at step i we choose a node labeled with a PTL that has a minimum in T 2 , and replace it with this
minimum in every node of T2 , obtaining T2 ' '. Once all PTLs have been replaced with minimums at
some step k, we choose an entry point EP for X that is minimum, and define T3 as:

T3 = CN(EP,T£) U {EP}

Obviously T3 is an Irreducible Transformation composed of minimal nodes. The number of Irreducible
Transformations in MS depends on the number of different combinations of removals of nodes with the
same labels, and the selection of the entry point. •

Theorem 3 is interesting in that it provides us with a set of Minimal Irreducible Transformations under
the given order between Transformation Nodes. However, it may still be the case that there are other
Irreducible Transformations which result in less overhead when performing data size computation at run
time, because a combination of having a smaller number of nodes and a smaller number of overall extra
arguments. In general, we want to do predicate transformations which traverse the minimum amount
of data. Thus we need to have a criterion to evaluate Irreducible Transformations in order to decide
which of them will have the least overhead at run-time. To do this we may define other order relations.
An interesting approach may be to obtain time cost functions for each Irreducible Transformation, by
applying complexity analysis techniques, and to compare them.

8 Searching for Irreducible Transformations

Since the number of Transformation Nodes for a given CSS is finite, a possible algorithm to find Trans
formations may be to simply generate all possible sets of Transformation Nodes and test which of them
are Irreducible Transformations. However, some other more efficient approaches are possible.

One possible approach is to follow a top-down algorithm. This approach is based on the generation
of AND-OR trees, where PTLs are the OR nodes and Transformation Nodes are the AND nodes. The
search process is similar to SLD-Resolution. In this analogy, we can regard the Resolvent in our SLD-
Like algorithm, as the set of PTLs for which it is necessary to find Transformation Nodes labeled with
them. Our current substitution, which we call current Transformation, is the set of Transformation Nodes
assigned to PTLs, and it will constitute the answer Transformation. Thus, when the Resolvent is empty
the current Transformation is the answer Transformation, which will be Irreducible. The entry point
of an answer Transformation is the Transformation Node assigned to the PTL that constitutes the root
of the search tree. We represent the current Transformation as a list of Transformation Nodes. Since
there may be several PTLs for a given CSS, it is necessary to generate several search trees, with each
PTL being the root of each tree. The search process starts with the Resolvent being a PTL, which is
the root of the tree, and an empty current Transformation. A resolution step consists of removing a
PTL from the Resolvent and assigning to it a Transformation Node which is labeled with this PTL and
it does not contain PTLs in its Size Expressions that are greater than some label of the nodes in the
current Transformation. This Transformation Node will be added to the current Transformation. After
this the Resolvent is modified, by adding all the PTLs that appear in the selected Transformation Node
such that a) they are not yet in the Resolvent and b) no identical Transformation Node appears in the
current Transformation labeled with such PTLs.

Once we get all the answer Irreducible Transformations of all the possible AND-OR trees, we may
decide which of them will have the least overhead in the size computation process.

The efficiency of the previous top-down algorithm can be improved if the alternatives for the OR
nodes are generated with some knowledge regarding which PTLs will fail. If the base cases of recursive

12

predicates are examined, it is possible to ensure that some PTLs will fail, and prune the search trees
considerably. That is, apply a top-down driven bottom-up algorithm.

Another alternative is to apply a direct bottom-up algorithm. In this approach, first Transformation
Nodes are found for the leaves in the call-graph, and this information is propagated to find Transformation
Nodes for the ancestors, until we get to the root. Finding a Transformation Node will imply in this
approach the computation of a fixed-point.

Example 8.1 Consider the predicate qsor t /2 as defined in Example 5.1, and suppose we want transform
it to compute the length of its second argument. We can apply a top-down algorithm. To do this we
need to generate some Transformation Nodes. Consider for example Ni , N2 and N3, where:

Ni is:

(p t l (q s o r t / 2 , [2] , []) ,
[

[(2 , 0)] ,
[(2 , t s d (p t l (a p p e n d / 3 , [3] , []) , 3 , 4 , []))]

]
) .

N 2 is:

(p t l (q s o r t / 2 , [2] , []) ,

[[(2 , 0)] ,
[(2 , t s d (p t l (a p p e n d / 3 , [3] , [2]) , 3 , 4 ,

[l + t s d (p t l (q s o r t / 2 , [2] , []) , 2 , 3 , [])]
)

)
]

]
) .

and N 3 is:

(p t l (a p p e n d / 3 , [3] , [2]) ,
[

[(3 ,h(2))] ,
[(3 , l + t s d (p t l (a p p e n d / 3 , [3] , [2]) , 3 , l , [l i (2)]))]

]
) .

We can generate a tree for each possible PTL, but in this example we are going to generate one for
pt l (qsor t /2 , [2], []). Thus, the first step is to initialize the resolvent with this label obtaining the initial
state:

Resolvent: [ptl(qsort/2, [2], [])]
Current Transformation: []

Then we remove this PTL from the resolvent to find a Transformation Node labeled with it. We first
choose Ni , and add it to the current transformation list. After this, the resolvent is modified by adding
p t l (append /3 , [3], []) to it. The label qsor t /2 , [2], []) is not added to it because there is still a node in
the current transformation labeled with it. At this point the current state is:

Resolvent: [pt l (append/3, [3], [])]
Current Transformation: [Ni]

Then we remove the PTL from the resolvent and try to find a Transformation Node labeled with it. But
because there is no such node, failure occurs and backtracking is performed, so that the new state is:

13

Resolvent: [ptl(qsort/2, [2], [])]
Current Transformation: []

We proceed and find another alternative for pt l (qsor t /2 , [2], []), which is N 2 , reaching the state:

Resolvent: [pt l (append/3, [3], [2])]
Current Transformation: [N2]

The next step is to find a node labeled with p t l (append /3 , [3], [2]). This node is N 3 . At this point the
resolvent is empty, and the current Transformation is an Irreducible Transformation. The final state is:

Resolvent: []
Current Transformation: [N2,N3]

This search may continue to find all possible Transformations with entry point labeled with
pt l (qsor t /2 , [2], []). Moreover, all possible search trees can be generated from the possible labels re
ferred to the CSS (qsort/2, [2]) as its root.

•

9 Advantages of the Predicate Transformation Approach to
Compute Sizes

As mentioned in the introduction, the standard approach to computing data sizes is to introduce new
calls to predicates that explicitly compute them. For example, we can use the Prolog length/2 built-in,
to compute lengths of lists, or use other similar built-ins. However, this approach involves an overhead
which includes both having to traverse significant parts of the term (often the entire term) and the
counting process done during this traversal. The transformations that we propose result in programs
which although they still in general perform the counting, avoid the additional term traversal overhead
since it is embedded in the traversals done by predicates which already existed in the program. Also,
calculation itself is obviated when possible.

Furthermore, note that a transformed predicate may in fact traverse less or smaller data to compute
sizes than when using a built-in. Consider, for example, the predicate p/2 defined as follows:

p([] , []) .
p([X|Y] , [X,X,X|Yl]) : - p(Y,Yl).

If we have the goal p(X,Y), with the first argument ground, and the second unbound, and we want to
know the length of the second argument, we can transform this goal as follows:

p(X,Y), length(Y,L).

In this case length(Y,L) has to traverse a list of length three times greater than the length of X. However,
if we transform p/2:

P 2 o l i ([] , [] , 0) .

p2ol i ([X|Y], [X,X,X|Y1] ,S) : - p2ol i (Y,Yl ,Sb) , S i s Sb + 3 .

and call:

p2oli(X,Y,L)

to compute L, the number of sums performed is equal to the length of X, that is, three times lower than
the previous solution. Of course the converse may also be true in some cases, but the traversal is done
in any case already by the program.

Consider another case - let us assume that we have:

q(X), append(Y,X,Z), append(W,X,K)

14

where X, Y and W are ground lists, and Z and K are unbound variables tha t will be bound to lists when
the goal succeeds. Let us also assume tha t we are interested in knowing the lengths of Z and K after the
execution of the goal. Using the s tandard approach we may have:

q (X) , append(Y,X,Z) , append(W,X,K), l e n g t h (Z , L Z) , l eng th(K,LK)

while using the predicate transformation approach we would have:

q l o (X , S X) , append3o2i (Y,X,Z ,SX,SZ) , append3o2i(W,X,K,SX,SK)

where qlo(X,SX) computes the length of X (SX), which is used by ap p en d 3 o 2 i / 5 to compute the lengths
of Z and K (SZ and SK). In this case the sum of the lengths of the da ta traversed, which is equivalent to
the operations needed to compute the lengths is:

l e n g t h (X) + l e n g t h (Y) + l e n g t h (W)

In the first case we have:

l ength(Z) + l e n g t h (K) ,

but since:

l ength(Z) = l e n g t h (X) + l e n g t h (Y) , and
l eng th (K) = l e n g t h (X) + l e n g t h (W)

we have:

2 * l e n g t h (X) + l e n g t h (Y) + l e n g t h (W)

We may think tha t a bet ter solution to the first approach may be:

q (X) , append(Y,X,Z) , append(W,X,K), l e n g t h (X , S X) ,
l e n g t h (Y , S Y) , length(W,SW), SZ i s SX + SY, SK i s SX + SW

but in this case it is necessary to analyze the program to infer tha t the length of the third argument
of append /3 is the sum of its two first arguments. This may be easy in some cases, for example for
append /3 , but may be more difficult or impossible in some other cases. This is the case when the length
of a list depends not only on the length of other lists but also on its contents. In any case, note tha t our
approach would still take advantage of such optimizations if they can be detected.

10 An Application: Granularity Control

Dynamic term size computation has a important application in Granularity Control of Logic Programs
[8, 9]. Logic programming languages offer a great deal of scope for parallelism. It may in fact be possible
to extract "maximal" parallelism for a program [15, 12, 6]. This is interesting in the abstract . However,
just because something can be done in parallel does not necessarily mean, in practice, tha t it should be
done in parallel. This is because the parallel execution of a task incurs various overheads, e.g. overheads
associated with process creation and scheduling, the possible migration of tasks to remote processors and
the associated communication overheads, etc. In general, a goal should not be a candidate for parallel
execution if its granularity, i.e. the "work available" underneath it, is less than the work necessary to
create a separate task for tha t goal. A number of researchers have investigated the automatic analysis
of the (time) complexity of programs (see, for example, [2, 13, 16, 20, 21, 22, 23]). The Granularity
Analysis we consider here [8, 9] differs from these in some aspects tha t we will not discuss for the sake
of brevity. It provides granularity estimates tha t are an upper bound on the amount of work tha t may
be done at runtime. Since the work done by a call to a recursive predicate typically depends on the size
of its input, this technique consists in doing as much of the analysis at compile time as possible, but
postponing the actual computation of granularity until runtime, when input da ta sizes are known. To do
this computation and to decide whether to execute in parallel or in sequential, programs are transformed.
This includes adding conditionals to clauses and some extra literals which compute input da ta sizes and
perform cost estimations.

15

Example 10.1 Consider a parallel version of the definition of the qsor t /2 predicate given in Example
5.1:

qsor t ([] , []) .
qsort([First|LI],L2) :-

partition(First,Ll,Ls,Lg),

qsort(Ls,Ls2)&

qsort(Lg,Lg2),

append(Ls2, [Fi rs t |Lg2] ,L2) .

in which qsort(Ls,Ls2) and qsort(Lg,Lg2) are executed in parallel, as described by the & symbol
[11, 10, 4]. Suppose that the analysis performed at compile-time provides a function that gives an upper-
bound on the cost of predicate qsor t /2 in terms of the size of its first argument, and that this argument
is expected to be ground at procedure invocation.

Granularity analysis and predicate transformation can be done automatically for predicate qsor t /2
in order to perform granularity control. As a result of this predicate transformation the following code is
obtained:

'/, Version of q so r t / 2 t ha t performs g r a n u l a r i t y con t ro l .
g_qsor t ([] , [] , _) .
g_qso r t ([F i r s t |L1] ,L2 ,S i ze l) : -

'/, compute upper-bound of execution t ime.
qsor t t ime(Size l ,Time) ,
Time < 10 ->

(p a r t i t i o n (F i r s t , L 1 , L s , L g) ,
s_qsor t (Ls ,Ls2) ,s_qsor t (Lg,Lg2)) ;

(t rpa r t i t i on (F i r s t ,L1 ,Ls ,Lg ,S izeLs ,S izeLg) ,
g_qsort(Ls,Ls2,SizeLs)&g_qsort(Lg,Lg2,SizeLg)) ,

append(Ls2, [Fi rs t |Lg2] ,L2) .

'/, Sequential vers ion for q s o r t / 2 .
s_qsor t ([] , []) .
s _qso r t ([F i r s t |L I] ,L2) : -

partition(First,Ll,Ls,Lg),

s_qsort(Ls,Ls2),

s_qsort(Lg,Lg2),

append(Ls2, [Fi rs t |Lg2] ,L2) .

where the literal qsort t ime(Sizel ,Time) computes an upper-bound of the cost of executing the
clause body sequentially, evaluating the function inferred through analysis at compile-time. We
have omitted it for the sake of conciseness. The constant 10 represents some experimentally de
termined threshold which is directly related to the cost of creating a parallel task. The literal
t r p a r t i t i o n (F i r s t , L 1 ,Ls,Lg,SLs,SLg) is the transformed version of p a r t i t i o n (F i r s t , L l , L s , L g) ,
that computes the sizes of its third and fourth arguments (SizeLs and SizeLg represent the sizes of Ls
and Lg respectively). The definition of t r p a r t i t i o n / 5 , which can be obtained automatically from the
analysis herein presented, would be:

t r p a r t i t i o n (F , [] , [] , [] ,0,0) .
t rpart i t ion(F,[X|Y],[X|Y1],Y2,SL,SG) : -

X =< F,
t rpar t i t ion(F ,Y,Yl ,Y2,SLl ,SG) , SL i s SL1 + 1.

t rpart i t ion(F,[X|Y],Y1,[X|Y2],SL,SG) : -
X > F,
t rpar t i t ion(F ,Y,Yl ,Y2,SL,SGl) , SG i s SGI + 1.

•

16

We have presented Granularity Control as our application of dynamic term size computation but, in
general, it can be applied in any case which needs exact values of sizes to make decisions at run-time, such
as those mentioned in the introduction, such as the reform compilation method [17, 1] which dynamically
unravels recursions provided the iteration lengths are known.

11 Conclusions and Future Work

We have described how predicates can be transformed to compute term sizes at run-time and pointed
out the advantages of such transformation. We have also shown a top-down algorithm to find Irreducible
Transformations, which we have implemented in its main part. We are planning on finishing this imple
mentation and evaluating its performance in the granularity application that we have described. We also
plan to search for new algorithms, and compare them in order to perform the predicate transformation
in the most efficient way possible. This work is oriented to the development of a complete granularity
control system, which can be considered the source of inspiration behind the dynamic term size compu
tation technique presented. In this sense we are working on the integration of this system into a series of
other program analysis an transformation tools, that we have implemented, in order to develop improved
automatic parallelizing compilers for logic programs.

References
[1] Jonas Barklund and Hakan Millroth. Providing iteration and concurrency in logic programs through

bounded quantifications. In Proceedings of the International Conference on Fifth Generation Com
puter Systems, pages 817-824, ICOT, Japan, 1992. Association for Computing Machinery.

[2] B. Bjerner and S. Holmstrom. A Compositional Approach to Time Analysis of First Order Lazy
Functional Programs. In Proc. ACM Functional Programming Languages and Computer Architec
ture, pages 157-165. ACM Press, 1989.

[3] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical Report
CW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.

[4] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD thesis,
The University of California At Irvine, 1983. Technical Report 204.

[5] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs. Journal of
Logic Programming, 13(2 and 3):103-179, July 1992.

[6] S. K. Debray. A Simple Code Improvement Scheme for Prolog. In Sixth International Conference
on Logic Programming, pages 17-32. MIT Press, June 1989.

[7] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. ACM Transac
tions on Programming Languages and Systems, ll(3):418-450, 1989.

17

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs. In
Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages 174-188.
ACM Press, June 1990.

S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on Programming
Languages and Systems, 15(5):826-875, 1993.

D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation Com
puter Systems, pages 471-478. Tokyo, November 1984.

M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-Parallelism.
New Generation Computing, 9(3,4):233-257, 1991.

M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent And-Parallelism
in Logic Programs. In 1989 North American Conference on Logic Programming, pages 369-390. MIT
Press, October 1989.

T. Hickey and J. Cohen. Automating Program Analysis. Journal of ACM, 35(l):185-220, Jan. 1988.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp. Principles of Programming
Languages, pages 111-119. ACM, 1987.

L. Kale. Completeness and Full Parallelism of Parallel Logic Programming Schemes. In Fourth
IEEE Symposium on Logic Programming, pages 125-133. IEEE, 1987.

D. Le Metayer. ACE: An Automatic Complexity Evaluator. A CM Transactions on Programming
Languages and Systems, 10(2), April 1988.

Hakan Millroth. Reforming compilation of logic programs. In V. Saraswat and K. Ueda, editors,
Logic Programming, Proceedings of the 1991 International Symposium, pages 485-502, San Diego,
USA, 1991. The MIT Press.

K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of Program
Variables Through Abstract Interpretation. In 1991 International Conference on Logic Programming,
pages 49-63. MIT Press, June 1991.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Using
Abstract Interpretation. Journal of Logic Programming, 13(2 and 3):315-347, July 1992.

M. Rosendhal. Automatic Complexity Analysis. In Proc. ACM Conference on Functional Program
ming Languages and Computer Architecture, pages 144-156. ACM, New York, 1989.

P. Wadler. Strictness analysis aids time analysis. In Proc. Fifteenth ACM Symposium on Principles
of Programming Languages, pages 119-132. ACM Press, 1988.

B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9), Sep. 1975.

X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan. Towards an Effi
cient Compile-Time Granularity Analysis Algorithm. In Proc. of the 1992 International Conference
on Fifth Generation Computer Systems, pages 809-816. Institute for New Generation Computer
Technology (ICOT), June 1992.

18

