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Digital atlases of animal development provide a quantitative description 
of morphogenesis, opening the path toward processes modeling. Proto­
type atlases offer a data integration framework where to gather infor­
mation from cohorts of individuals with phenotypic variability. Relevant 
information for further theoretical reconstruction includes measure­
ments in time and space for cell behaviors and gene expression. The lat­
ter as well as data integration in a prototypic model, rely on image proc­
essing strategies. Developing the tools to integrate and analyze biologi­
cal multidimensional data are highly relevant for assessing chemical 
toxicity or performing drugs preclinical testing. This article surveys 
some of the most prominent efforts to assemble these prototypes, cate­
gorizes them according to salient criteria and discusses the key ques­
tions in the field and the future challenges toward the reconstruction of 
multiscale dynamics in model organisms. 

INTRODUCTION 
Studying how the known genomes 
relate to the spatiotemporal behav­
ior of cell dynamics, tissue pattern­
ing, and embryo morphogenesis is 
one of the key questions for devel­
opmental biology in the postgenomic 
era. Despite completion of the ge­
nome sequence of many organisms 
(McPherson et al., 2001), we are still 
far from understanding, modeling, 
and predicting how organisms de­
velop from one single cell into an 
organized, multicellular individual. 

However, comprehensive under­
standing of biological mechanisms 
is a fundamental issue for efficient 

preclinical testing of potential new 
drugs (Goldsmith, 2004; Sipes 
et al., 2011). Potential applications 
include treatment of heart diseases 
(Milan et al., 2003; Barros et al., 
2008), leukemia (North et al., 2007), 
bone disorders (Paul et al., 2008), 
cancer (Amatruda et al., 2002; Lu 
et al., 2011), schizophrenia, Parkin­
son's, Alzheimer's, and other demen­
tia (Martone et al., 2008). 

Many fundamental challenges 
pave the way toward the long term 
goal of reconstructing living systems 
multiscale dynamics. The quantita­
tive assessment of the temporal and 
spatial gene expression distribution 

in multicellular organisms is required 
for building and modeling gene reg­
ulatory networks underlying mor­
phogenesis (Davidson and Erwin, 
2006; Li and Davidson, 2009). 

Recent advances in labeling tech­
niques (Vonesch et al., 2006; Choi 
et al., 2010) and microscopic imag­
ing (Megason and Fraser, 2007) 
have steered this field from a static, 
"omics"-like approach (Walter et al., 
2002) toward image-based strat­
egies providing spatial and temporal 
quantitative information (Fer­
nandez-Gonzalez et al., 2006; Gor-
finkiel et al., 2011). Hence, the cur­
rent trend toward automatic, high-
content, high-throughput screening 
brings new bottlenecks in the do­
main of image analysis (Baker, 
2010; Truong and Supatto, 2011): 
The unprecedented rise in complex­
ity and size of data have favored the 
blossoming of a new discipline, bio-
image informatics (Peng, 2008), or 
the science of organizing distributed 
and heterogeneous biological image 
data into typed data and categorized 
quantitative information. 

In particular, this review deals 
with the recent strategies developed 
to achieve the reconstruction of dig­
ital anatomy and gene expression 
atlases for different model organ­
isms (Table 1). The reconstruction 



TABLE 1. Overview of Recent Strategies for Reconstructing Digital Anatomy and Gene Expression Atlases for Animal Organisms 

Reference 

Murray et al. 
(2008) 

Long et al. 
(2009) 

Liu et al. 
(2009) 

Tomer et al. 
(2010) 

Fowlkes et al. 
(2008) 

Frise et al. 
(2010)a 

Peng et al. 
(2011) 

Potikanond 
e ta l . 
(2011) 

Rittscher 
e ta l . 
(2011) 

Ullman et al. 
(2010) 

Castro et al. 
(2009) 

Ruffins et al. 
(2007) 

Fisher et al. 
(2011) 

Baldock et al. 
(2003)a 

Carson et al. 
(2005) 

Kovacevic 
e ta l . 
(2005) 

Ma e ta l . 
(2005) 

Johnson et al. 
(2010) 

Lein et al. 
(2007)a 

Woods et al. 
(1999) 

Rex et al. 
(2003) 

Smith et al. 
(2004) 

Kerwin et al. 
(2010) 

Animal 
model 

C. elegans 

C. elegans 

C. elegans 

Platynereis 

Drosophila 

Drosophila 

Drosophila 

Zebra fish 

Zebra fish 

Zebra fish 

Zebra fish 

Quail 

Chicken 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Human 

Human 

Human 

Human 

Imaging 
modality 

In vivo 
microscopy 

Microscopy 

Microscopy 

Microscopy 

Microscopy 

Microscopy 

Microscopy 

Microscopy 

Microscopy 

MRI 

Microscopy 

MRI 

OPT 

OPT 

Microscopy 

MRI 

MRI 

MRI 

Microscopy + 
MRI 

MRI 

MRI 

MRI 

OPT 

Spatial scope and 
resolution 

Whole 
organism 

Whole 
organism 

Whole 
organism 

Brain 

Whole 
organism 

Whole 
organism 

Brain 

Whole 
organism 

Whole 
organism 

Brain 

Whole 
organism 

Whole 
organism 

Wing bud 

Whole 
organism 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Cellular 

Cellular 

Cellular 

Cellular 

Cellular 

Multicellular 

Tissular 

Tissular 

Organular 

Tissular 

Cellular 

Organular 

Tissular 

Organular 

Cellular 

Tissular 

Tissular 

Tissular 

Cellular 

Organular 

Tissular 

Tissular 

Tissular 

Devel upmental period, 
age and # of steps 

Early 

Early 

Early 

Late 

Early 

Early 

Adulthood 

Late 

Late 

Late 

Early 

Late 

Late 

Late 

Late 

Late 

Late 

Late 

Late 

Adulthood 

Adulthood 

Adulthood 

Late 

4-350 
cells 

LI 

LI 

48 hr 

0-100% 

5% 

Adult 

24-72 hr 

120 hr 

4 months 

6 hr 

5-10 days 

3-5 days 

2-17 days 

7 days 

56 days 

56 days 

56 days 

56 days 

Adult 

Young 
adult 

Adult 

47-55 
days 

5 hrc 

1 

1 

1 

6 

1 

1 

4 

1 

1 

1 

6 

3 

22 

2 

Data 

20 

15 

324 

171 

1822 

2693 

2945 

SK75 

11 

l b 

6 

6b 

45 

23,484 

200 

9 

10 

14 

R Í 2 0 , 0 0 0 

22 

452 

58 

5 

type: # of specimens, template 
type, # of genes and gene 

product quantification 

Individua 

Individua 

Synthetic 

Average 

Average 

Synthetic 

Average 

Individua 

Average 

Individua 

Individua 

Individua 

Individua 

Individua 

Synthetic 

Average 

Probabilistic 

Probabilistic 

Average 

Average 

Average 

Average 

Individua 

4 

0 

93 

8 

95 

1881 

470 

»20 

0 

0 

5 

0 

5 

14927 

200 

0 

0 

0 

»20000 

0 

0 

0 

3 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

No 

Matchir g type and 
transformation 

Object-
based 

Object-
based 

Object-
based 

Intensity-
based 

Object-
based 

Object-
based 

Object-
based 

Semantic 

Object-
based 

None 

Intensity-
based 

None 

Object-
based 

Object-
based 

Object-
based 

Intensity-
based 

Intensity-
based 

Intensity-
based 

Intensity-
based 

Intensity-
based 

Intensity-
based 

Intensity-
based 

Object-
based 

Nonrigid 

Affine 

Nonrigid 

Affine + 
nonrigid 

Nonrigid 

Nonrigid 

Affine + 
nonrigid 

-

Rigid + 
nonrigid 

None 

Rigid 

None 

Nonrigid 

Nonrigid 

Affine + 
nonrigid 

Affine + 
nonrigid 

Affine + 
nonrigid 

Affine 

Rigid + 
nonrigid 

Nonrigid 

Affine + 
nonrigid 

Affine 

Nonrigid 

hr = hours, % = percentage of membrane invagination. 
a2D gene expressions. 
bNo matching procedure: Each specimen was directly employed as the template of its corresponding developmental stage. 
c3D+t live imaging. 



of a digital atlas requires a series of 
image processing steps ("Proposed 
image processing pipeline" section) 
to map a cohort of individuals onto a 
common reference space. These 
operations allow the investigator to 
combine unrelated data and to pro­
vide a single representation to visu­
alize, mine, correlate, and interpret 
information at different scales. 

The result is the assembly of a 
digital prototypic model of a "stand­
ard" individual which constitutes 
the essential scaffold where to 
make the accurate, repeatable, 
consistent, and quantitative meas­
ures required for comparative stud­
ies (Oates et al., 2009). Atlases can 
be compared to geographic infor­
mation systems (GIS): "spatial 
databases to which diverse data, 
primarily but not restricted to imag­
ing data, can be registered and 
queried" (Martone et al., 2008). For 
example, atlases are used to iden­
tify and categorize anatomic and 
genetic differences between cohorts 
of individuals, such as different mu­
tant strains (Warga and Kane, 
2003) and constitute an essential 
tool that allows relating genotypes 
and phenotypes. This review is 
organized as follows: "Classification 
of digital atlases, Animal models, 
Imaging modalities, Spatial scopes 
and resolutions, Developmental 
stages, Data types, and Matching 
procedures" sections discuss recent 
trends in the field and propose a clas­
sification of anatomy and gene 
expression atlases for model organ­
isms and human based on various 
criteria. "Proposed image processing 
pipeline and Visualization and valida­
tion" sections describe a generic 
image processing framework to 
reconstruct, validate, visualize, and 
interact with a digital model of 
embryo development. "Biological 
insights" section surveys some of the 
biological insights that can be derived 
from such atlases. Finally, "Perspec­
tives" section deals with the discus­
sion and perspectives on the subject. 

C L A S S I F I C A T I O N OF 
D I G I T A L ATLASES 

We propose a classification of digital 
anatomy and gene expression 
atlases for animal organisms based 

on the following ontology (Table 1): 
(1) Animal models, (2) imaging 
modalities, (3) spatial scopes and 
resolutions, (4) developmental 
stages, (5) data types, and (6) 
matching procedures. In the follow­
ing sections, we will discuss these 
separate criteria in more detail. 

The construction of anatomy 
atlases and the development of 
appropriate computation strategies 
is a major issue in the medical field 
(Park et al., 2003; Aljabar et al., 
2009; Fonseca et al., 2011). The 
construction of human brain atlases 
received special attention and many 
algorithmic reconstruction and visu­
alization methods and tools come 
from this field (Mazziotta et al., 
2001; Toga et al., 2006). The study 
of model organisms allowed explor­
ing fine spatial and temporal scales 
and aimed at gathering an increas­
ing amount of information including 
gene expression data. We focus 
here on many model organisms 
("Animal models" section) imaged 
with three different image modal­
ities ("Imaging modalities" section). 
We distinguish between atlases lim­
ited to the brain and atlases encom­
passing the whole organism ("Spa­
tial scopes and resolutions" section), 
either at the adult stage or through­
out embryonic stages ("Develop­
mental stages" section) and focus­
ing either on anatomical structures 
or gathering gene expression data 
("Data types" section). We also con­
sider different strategies to match 
individuals into the atlas model 
("Matching procedures" section). 

A N I M A L MODELS 

Model organisms are chosen for 
their small size, good properties in 
terms of phylogenetic position (Fig. 
1), transparency, and/or relevance 
for studies related to human health. 

The nematode Coenorhabditis ele-
gans, having the most ancient evolu­
tionary emergence among the con­
sidered animal models, has a largely 
invariant cell lineage and stereotyped 
development which greatly facilitates 
comparisons between different indi­
viduals (Murray et al., 2008; Liu 
et al., 2009; Long et al., 2009). 

The worm Platynereis kept sev­
eral ancestral traits (Tomer et al., 

2010) and proved being insightful 
for comparative studies. 

The fruit fly Drosophila mela-
nogaster has been extensively 
studied in the field of genetics and 
developmental biology (Fowlkes 
et al . , 2008; Frise et al., 2010; 
Peng et al . , 2011). Sixty percent 
of so called genetic diseases in 
humans have their counterpart in 
the Drosophila genome. 

The zebrafish (Danio rerio) has 
more recently emerged as a model 
for developmental biology research 
because of its amenability to 
genetic investigations and the 
transparency of its tissues. In addi­
tion, its closer phylogenetic position 
to human makes it a valuable model 
for toxicology and pharmacology 
studies (Hill et al., 2005; Yang 
et al., 2009). Anatomy and gene 
expression atlases for the zebrafish 
brain or whole organism at different 
developmental stages are under­
way (Castro et al., 2009; Ullmann 
et al., 2010; Potikanond and Ver-
beek, 2011; Rittscheretal., 2011). 

Quail (Ruffins et al., 2007) and 
chicken (Fisher et al . , 2008; Fisher 
et al . , 2011) are also used as ver­
tebrate models and have interest­
ing features for experimental em­
bryology. The embryo can develop 
outside the egg, is quite well ame­
nable to in vivo imaging ("Imaging 
modalities" section) and the con­
struction of atlases with cellular 
resolution (see "Spatial scopes 
and resolutions" section). 

Mouse is the major mammalian 
model organism for biomedical 
investigations and much effort has 
been devoted to the reconstruction 
of their development (MacKenzie-
Graham et al., 2004; Carson et al., 
2005; Kovac;evic; et al., 2005; Ma 
et al., 2005; Lein et al., 2007; John­
son et al., 2010; Richardson et al., 
2010; Hawrylycz et al., 2011). The 
relatively large size of the mouse 
embryo makes it difficult to capture 
the whole specimen in a single-shot, 
in-toto imaging strategy ("Imaging 
modalities" section) with sufficient 
spatial resolution ("Spatial scopes 
and resolutions" section). 

The same difficulty applies to 
fixed human embryos (Woods 
et al., 1999; Rex et al., 2003; 
Smith et al., 2004; Kerwin et al., 
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Figure 1. Timing of evolutionary emergence and phylogenetic relationships of different model organisms. Time estimations were 
extracted from Hedges et al. (2006). 

2010), where the creation of a 
standard cartography of human 
brains is of fundamental impor­
tance in medical studies. 

I M A G I N G M O D A L I T I E S 

Three main image modalities have 
been employed in the assembly of 
digital atlases: Fluorescence mi­
croscopy, magnetic resonance 
imaging (MRI) and optical projec­
tion tomography (OPT). 

Each of these modalities has dif­
ferent optical resolutions and lead 
to different types of atlases (Table 
1). The choice depends on the 
specimen thickness and its optical 
transparency. For each animal 
model ("Animal models" section) 
these properties vary with the age 
of the specimen ("Developmental 
stages" section). 

Recent advances in photonic mi­
croscopy imaging (Fig. 2A) include 
multiharmonic (Evanko et al., 
2010) and fluorescence imaging by 
confocal, multiphoton laser scan­
ning microscopy (Abbott, 2009; 
Pardo-Martin et al., 2010) or light-
sheet fluorescence microscopy 

(LSFM) (Huisken and Stainier, 
2009; Keller et al., 2010), com­
bined with newly developed fluo­
rescent proteins and biological sen­
sors (Chudakov et al . , 2005; Giep-
mans et al., 2006) and in situ 
hybridization (ISH) techniques 
(Welten et al., 2006; Brend and 
Holley, 2009). These advances 
opened new perspectives for the 
construction of high resolution ana­
tomical and gene expression 
atlases. Spatial resolution of hun­
dreds of nanometers and temporal 
resolution of minutes have been 
achieved for the observation of 
entire organisms at different levels 
of organization. However, photonic 
microscopy imaging is still limited 
to small model organisms with 
good optical properties. 

OPT (Sharpe et al., 2002) was 
introduced as an alternative optical 
method to fluorescence microscopy 
and overcomes the limitation of the 
specimen thickness. OPT generates 
data by acquiring many views of the 
same specimen at different rotation 
angles then assembled to create a 
3D volume (Fig. 2C). OPT resolution 
in the range of millimeters does not 

however allow working at the single 
cell level. 

Alternatively, MRI (Jacobs et al., 
2003) does not use fluorescent 
staining and has thus a broad range 
of applications (Fig. 2B). Indeed, 
MRI contrast does not depend on the 
penetration of photons but on the 
voxel-to-voxel variations in water 
content leading to diverging spins 
when submitted to magnetic fields. 
MRI achieves a spatial resolution of 
about tens of microns only, and 
although more and more intense 
magnetic fields are used, single cell 
resolution is barely achieved. 

S P A T I A L SCOPES A N D 
R E S O L U T I O N S 

Constructing a prototypic model for 
an organism can achieve different 
scopes, from particular organs to 
the whole organism, which can be 
resolved at either the organ, tissue, 
multicellular, or eventually cellular 
resolutions (Table 1). The recon­
struction of atlases with resolution 
at the cellular level (Fig. 2D) focused 
on the species more phylogeneti-
cally distant from human ("Animal 



Figure 2. Examples of components involved in an atlas model construction. A: Confocal microscopy acquisition of a 24 hours post 
fertilization (hpf) zebrafish brain labeled by fluorescent ISH (tyrosine hydroxylase RNA probe) and DAPI staining of cell nuclei. Scale 
bar 100 microns. B: MRI of a quail extracted from Caltech's "Quail Developmental Atlas." Available from: http://131.215.15.121/. 
C: OPT of a late mouse embryo extracted from the "EMAP eMouse Atlas Project," http://www.emouseatlas.org. Scale bar: 1000 
microns. D: Orthoslice showing the nuclei of a zebrafish early embryo where the raw gene expression from another specimen has 
been integrated. Cells positive for the expression of the gene are highlighted in blue. Scale bar: 100 microns. E: Zebrafish tem­
plates for three different developmental stages where individuals can be mapped using a reference gene pattern. F: Reconstruction 
of a mosaic-like atlas: Guided by a reference pattern, partial views of different individuals are mapped into a complete template. G: 
Left panel, coronal section of an averaged 3D template showing organ-level anatomical annotations of an adult mouse brain at a 
given developmental stage. Right panel, an ISH slice warped into the atlas template through deformable models. Extracted from 
the "Allen Mouse Brain Atlas [Internet]. Seattle (WA): Allen Institute for Brain Science. 2009." Available from: http://mouse. 
brain-map.org. Scale bar: 1300 microns. 

http://131.215.15.121/
http://www.emouseatlas.org
http://mouse
http://brain-map.org


models" section), and addressed 
rather early developmental stages 
("Developmental stages" section). 
Identifying every single cell position 
in the whole imaged specimen 
(Long et al., 2009) requires 
advanced image processing meth­
ods ("Proposed image processing 
pipeline" section). Algorithmic strat­
egies for the approximate detection 
of the cell nuclei center in 3D vol­
umes encompassing several thou­
sands of cells have been described 
(Drblikova et al., 2007; Frolkovic 
et al., 2007; Krivá et al., 2010). In 
addition, the identification of cell 
contours helps assigning RNAs or 
protein expression to the cell. Voro-
noi geometries have been proposed 
as a simple approach to determine 
cellular boundaries (Luengo-Oroz 
et al., 2008). The cell shape can bet­
ter be obtained by the algorithmic 
segmentation of cell membranes in 
3D when the latter is available 
(Zanella et al., 2010; Mikula et al., 
2011). 

Working at the mesoscopic scale 
of the multicellular structure is less 
demanding and has already pro­
vided useful information (Fisher 
et al., 2008; Frise et al., 2010). 

Annotating and segmenting the 
different anatomical structures of 
interest at the tissue level is 
required to reconstruct prototypic 
models of organs. Examples of such 
methods can be found in Ma et al. 
(2005), Kovacevic et al. (2005), 
Dorr et al. (2008), Johnson et al. 
(2010), and Ullmann eta l . (2010). 

Finally, large organisms with a 
huge number of cells and high com­
plexity in terms of organization led 
to organ-level atlases that do not 
resolve the single cell level (Fig. 
2G). This strategy has been used 
for vertebrates at late developmen­
tal stages ("Developmental stages" 
section) when the specimen's size 
and lack of optical transparency do 
not allow imaging with resolution at 
the single cell level (Baldock et al., 
2003; Ruff insetal., 2007; Rittscher 
eta l . , 2011). 

DEVELOPMENTAL STAGES 

The construction of anatomical and 
gene expression atlases focused on 

early developmental stages as well 
as adulthood (Table 1). At early de­
velopmental stages, the whole or­
ganism is more easily amenable to 
in toto imaging with resolution at 
the single cell level, Figure 2D, E 
(Fowlkes et al., 2008; Castro et al., 
2009; Long e ta l . , 2009). 

At later developmental stages or 
in the adult, it can be more rele­
vant to focus on specific organs 
(Fig. 2B, C) such as the brain 
(Woods et al., 1999; Lein et al., 
2007; Peng et al., 2011) or 
appendages (Fisher et al., 2011). 

Most studies targeted a single de­
velopmental stage (Fig. 2G). How­
ever, the temporal scale is essential 
to the understanding of biological 
mechanisms and gathering atlases 
with the relevant kinetics is a major 
issue in the field (Fig. 2E). Fisher 
et al. (2011) reconstructed atlases 
combining fate mapping data and 
gene expression patterns for three 
consecutive developmental stages 
of the chick wing bud. Murray et al. 
(2008) took advantage of the 
largely invariant lineage of C. ele-
gans to build the first 3D+time atlas 
of transgenic reporters' expression 
patterns in C. elegans from the 4-
cell stage to the 350-cell stage. 

DATA TYPES 

Many different specimens are 
assembled in the construction of 
atlases models that can just carry 
anatomical information or multile­
vel, genomewide data. 

Anatomical atlases providing a 
scaffold with the morphological and 
histological landmarks characteristic 
of a cohort (Rex et al., 2003; Ruffins 
et al., 2007; Ullmann et al., 2010) 
constitute a reference shape or tem­
plate to integrate further information 
coming from other individuals and 
reflect the intrinsic multilevel of mor­
phogenesis processes. Genomewide 
atlases (Fisher et al., 2008; Richard­
son et al., 2010) integrate gene 
expression patterns and multilevel 
information from various sources 
into anatomical atlases (Fig. 2D). 
This approach emulates a virtual 
multiplexing and overcomes the 
restrictions in the number of gene 
products and/or functional patterns 

that can be simultaneously assessed. 
As a consequence, they are becom­
ing a major tool for making spatio-
temporal correlations between the 
different levels of biological organiza­
tion, comparing individuals, building 
prototypic models, and deciphering 
the relationship between genotypes 
and phenotypes. 

Building an anatomical atlas 
requires defining a common scaf­
fold, frequently called template, 
where to gather all the information 
collected from different specimens. 
There are diverging criteria in the 
literature about how an atlas tem­
plate should be built. Several stud­
ies (Ruffins et al., 2007; Castro 
et al., 2009; Ullmann et al . , 2010) 
employed one single individual to 
match all the rest of the population 
(Fig. 2D). This individual is chosen 
for its "standard" appearance and 
the corresponding data should be 
of the highest quality. Alterna­
tively, an iterative method has 
been used to identify the median 
individual within a population and 
select it as the template (Long 
et al., 2009). Other projects (Frise 
et al., 2010) used a synthetic tem­
plate to map all the data from a 
cohort of specimens. This template 
consists in an engineered "virtual 
specimen" which retains the essen­
tial features of a species. The use of 
an average template (Fig. 2G) is 
widely spread (Rex et al., 2003; 
Fowlkes et al., 2008; Peng et al., 
2011). Ma et al. (2005) con­
structed a "minimal deformation 
average template" as an idealized 
specimen minimizing the deforma­
tion required to fit any specimen of 
the cohort. Although average tem­
plates usually imply a better signal-
to-noise ratio than individual speci­
mens and exhibit a better definition 
in very similar regions between 
specimens, they fail to faithfully 
model fine features and regions 
with a high variability, lowering 
their definition (Kovacevic et al., 
2005; Dorr et al . , 2008). Finally, 
some approaches used a probabil­
istic template (Johnson et al., 
2010) where specimens' variability 
is represented by statistical confi­
dence limits. 

The construction of prototypical 
genomewide atlases implies imag-



ing gene expression patterns in 3D 
with resolution at the cellular level 
(Hendriks et al., 2006). Image 
processing methods are required to 
achieve the automated segmenta­
tion of gene expression domains 
and the quantification of gene prod­
ucts to allow for example the 
description of expression domain 
borders. A simple quantification 
strategy is based on the assumption 
of a linear relationship between flu­
orescence intensity and gene 
expression level (Wu and Pollard, 
2005; Frise et al., 2010). The 
obtained measurements are often 
normalized with respect to the 
nuclei channel fluorescence (Liu 
et al., 2009), which is considered to 
be constant, to compensate for 
thickness-dependent signal detec­
tion. Normalization with respect to 
the background intensity (Murray 
et al., 2008) is also a common strat­
egy. Another possibility consists in 
clustering a population of cells into 
discrete levels (e.g. strong, moder­
ate, weak, and none) depending on 
the gene expression signal intensity 
(Carson et al., 2005). Although the 
three different methods yielded cor­
related measurements across dif­
ferent individuals, the relevance of 
the obtained quantitative measure­
ments to compare different speci­
mens is questionable and this issue 
remains a challenge. Current efforts 
to achieve the quantitative compar­
ison of gene expression levels in dif­
ferent individuals include the mini­
mization of variability within a pop­
ulation (Fowlkes et al., 2008) and 
the conversion of fluorescence sig­
nal into fluorescent proteins num­
ber in transgenic specimens (Damle 
eta l . ,2006). 

M A T C H I N G PROCEDURES 

A matching procedure is required to 
import each specimen (the source) 
into the template according to the 
maximization of a likelihood criteria. 
Repeating this operation is the core 
of digital atlases construction. For 
the same purpose, medical imaging 
makes extensive use of registration 
techniques (Maintz and Viergever, 
1998; Zitova and Flusser, 2003). 
Three main registration techniques 
to build digital atlases can be distin­

guished according to the information 
used to assemble the data and the 
minimization criteria chosen accord­
ingly: Intensity-based, object-
based, and semantic-based registra­
tions ("Intensity-based registration, 
Object-based registration, and 
Semantic-based registration" sub­
sections). We can also distinguish 
three different transformation types 
between the source and the tem­
plate space: Rigid, affine or nonrigid 
("Transformation categories" sub­
section). 

Before the registration step, an 
initialization scheme is generally 
applied to get a rough alignment 
between source and template. The 
initialization scheme helps the 
registration to reach an accurate 
solution. Two common initializa­
tion techniques consist of coarsely 
aligning anatomical landmarks 
(Lein et al., 2007) or the major 
orientation axis of an organism 
such as the anterior-posterior or 
dorsal-ventral axis (Blanchoud 
et al., 2010). Qu and Peng (2010) 
developed an original skeleton 
standardization technique to rule 
out part of the geometrical vari­
ability between Drosophila 
embryos. In the same line, Peng 
et al. (2008) designed a method 
to straighten C. elegans worms 
into the same canonical space. 

The populations of individuals to 
be registered are normally composed 
of complete specimens imaged simi­
larly. Accurately matching cohorts of 
partial specimens (Fig. 2F) is one of 
the current challenges in the field 
(Peng et al., 2011) and very few 
strategies addressed this case 
(Castro etal . , 2009). 

Transformation Categories 

Rigid transformations are applied 
when the mapping between the 
source and template spaces con­
sists of spatial translations and 
rotations (Castro et al., 2009). Rigid 
registration has the advantage of 
keeping the original raw data unal­
tered, allowing faithful measure­
ments and validation of the true 
volumes in the final atlas represen­
tation. Affine transformations (Rex 
et al., 2003; Smith et al., 2004) 
also include a scaling factor in addi­

tion to translations and rotations. 
Both rigid and affine transforma­
tions are linear and globally applied 
to all voxels. 

On the contrary, nonrigid trans­
formations are nonlinear and 
locally warp the source image to 
fit into the template (Woods et al., 
1998; Ng et al., 2007; Ng et al., 
2009; Rittscher et al., 2010). This 
typically results in an alteration of 
the original raw data. 

Intensity-Based Registration 

Intensity-based registration pro­
cedures align the source and tem­
plate by trying to maximize a simi­
larity metric (typically mutual in­
formation or cross correlation) 
between the gray level values in 
the voxels of both images. 

The most common approaches 
(Lein et al., 2007; Tomer et al., 
2010) include an initialization per­
formed by a global, intensity-based 
affine or rigid registration, followed 
by local deformable warps (Fig. 2G). 
Multiresolution approaches are also 
employed to optimize the mapping 
procedure in a coarse-to-fine strat­
egy (Smith et al., 2004; Kovacevic 
et al., 2005; Tomer et al., 2010). 
Finally, multimodal approaches 
combine information coming from 
different imaging modalities, merg­
ing, for instance, histology and MRI 
(MacKenzie-Graham et al., 2004; 
Johnson et al., 2010). Such 
approaches provide multiple entry 
points to match different individuals 
and heterogeneous populations into 
the same coordinate system. 

Object-Based Registration 

Object-based transformations 
attempt to bring into alignment 
equivalent sets of characteristic 
points or landmarks present in both 
the source and template images 
(Liu et al., 2009). These transfor­
mations are local and nonlinear and 
typically produce an alteration of 
the data shapes and volumes. Peng 
et al. (2011) developed an auto­
matic pattern recognition system to 
identify and match visual anatomic 
references with certain geometric 
properties such as high local curva­
ture, and Fowlkes et al. (2008) ere-



ated a method to unequivocally 
identify the cell to cell correspon­
dence in C. elegans embryos. 

Semant ic-Based Registration 

Unlike intensity-based and object-
based registrations, semantic-based 
registration does not operate on the 
geometrical space and is based on 
the use of standardized ontologies 
(Ashburner et al., 2000) and web 
queries (Zaslavsky et al., 2004; 
Potikanond and Verbeek, 2011). 

After following an annotation 
procedure for anatomy and gene 
expression data with a controlled, 
standard vocabulary, the mapping 
procedure is reduced to just link­
ing names to positions or domains 
(Baldock et al., 2003; Boline et al., 
2008). Given the difficulty of geo­
metric registration across greatly 
variable resources, this strategy is 
useful to guarantee interoperability 
and can bring together data com­
ing from different laboratories, 
resources, developmental stages, 
or even different species. 

PROPOSED I M A G E 
P R O C E S S I N G P I P E L I N E 

The construction of atlases or digi­
tal representations of anatomic 
and genetic features from an 
increasing amount of more and 
more complex data, requires so­
phisticated image analysis algo­
rithms (Khairy and Keller, 2011) 
replacing nonefficient and time 
consuming processing performed 
manually or through generic imag­
ing software. 

We describe a generalized image 
processing pipeline to gather 
quantitative, genomewide data 
from a cohort of individuals in a 
prototype with resolution at the 
cellular level (Fig. 3). This pipeline 
can achieve a complete (x, y, z, 
G) model, including quantitative 
data for gene or protein expres­
sion level (G) in each cell position 
(x, y, z) in a developing model or­
ganism (Castro et al., 2011). 

This process can involve prepro­
cessing steps, such as image 
enhancement or multiviews fusion 
algorithms (Rubio-Guivernau 
et al . , 2012). Then, cell nuclei 

detection and cell segmentation 
techniques ("Spatial scopes and 
resolutions" section) are applied 
to one embryo, i, to extract cell 
position, (xi , y i , zi), and volume. 
Next, signal quantification proce­
dures ("Data type" section) are 
applied on gene expression, gi, to 
identify positive cells, (xi, y i , zi, 
gi). Repeating this procedure for 
all the individuals of a cohort, 1 to 
N, yields measurements for rele­
vant patterns, ( x l , y l , z l , 
g l ) . . . ( xN , yN, zN, gN), which are 
finally combined through a regis­
tration procedure ("Matching pro­
cedures" section). The anatomical 
information extracted during the 
cell detection step and automati­
cally segmented or identified land­
marks guide the registration pro­
cess. The final result is a single, 
quantitative model of the speci­
men development, (x, y, z, g l 
...gN). Validation of the model and 
further analysis use a dedicated, 
custom-made interactive visual­
ization interface ("Visualization 
and validation" section). 

V I S U A L I Z A T I O N A N D 
V A L I D A T I O N 

The reconstruction of digital 
atlases relies on automatic algo­
rithms that can handle the enor­
mous amount of large 3D images 
providing multilevel data for 
cohorts of individuals at different 
developmental stages. The lack of 
gold standards in the field requires 
the manual curation and correc­
tion of the results (Long et al., 
2009). 

Several indirect validation tech­
niques have been exploited: 
Fowlkes et al. (2008) and Peng 
et al. (2011) showed that the 
gene expression variability in their 
atlas model was comparable to 
that shown by individuals, imply­
ing that the experimental errors 
introduced in the model could be 
considered negligible. Fisher et al. 
(2011) applied hierarchical clus­
tering (Pearson Correlation) to 
replicates coming from different 
specimens and found that they 
segregated as expected. In addi­
tion to these indirect validation 
measures, visual assessment is 

the common validation standard 
for virtually all the previously 
described strategies (Table 1). 
Consequently, many sophisticated 
visualization platforms have been 
developed to display the multidi­
mensional input data and output 
results, interactively run the previ­
ously described methods on 
request while providing the neces­
sary tools to correct, annotate, 
quantify, and mine their out­
comes. These platforms represent 
the necessary trade-off between 
the automated, high-throughput, 
fast computer algorithms and the 
manual, low-throughput but accu­
rate human interactions. 

A comprehensive review of such 
visualization tools can be found in 
Walter et al. (2010). Some relevant 
instances include: FlyEx (Pisarev 
et al., 2009), GoFigure (Gouaillard 
et al., 2007), PointCloudExplore 
(Weber et al., 2009; Rubel et al., 
2010), Mov-IT (Olivier et al., 2010), 
BrainExplorer (Lau et al., 2008), 
BrainGazer (Bruckner et al., 2009), 
CellProfiler (Jones et al., 2008), and 
V3D (Peng eta l . , 2010). 

B I O L O G I C A L I N S I G H T S 

The application of image process­
ing tools (see "Proposed image 
processing pipeline and Visualiza­
tion and validation" sections) to 
prototypes construction (see 
"Animal models, Imaging modal­
ities, Spatial scopes and resolu­
tions, Developmental stages, Data 
types, and Matching procedures" 
sections) paved the way for bio­
logical insights in developmental 
processes (Luengo-Oroz et al., 
2011). Below, we comment some 
of the most prominent results 
derived from anatomical and gene 
expression atlases. 

Kovacevic et al. (2005) used an 
atlas model to perform genetic 
and anatomic phenotyping, 
achieving the automated detection 
of mutant strains. Atlases also had 
major implications in evolutionary 
studies and Tomer et al. (2010) 
identified related parts of the brain 
in phylogenetically distant ani­
mals. Chiang et al. (2011) created 
a comprehensive brain wiring map 
of the adult Drosophila brain which 
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Figure 3. Image processing pipeline to build a digital atlas model: After preprocessing, nuclei detection and cell segmentation algo­
rithms are applied to extract cell position and volume. This information is combined with quantification schemes. These operations, 
iterated throughout a cohort of individuals, yield cellular-level, quantitative measurements of many genetic and/or functional pat­
terns. A common reference and/or landmarks highlighted in all individuals are automatically segmented and identified to steer a 
registration procedure. The latter multiplex all measured patterns into a single, digital template. The resulting atlas can be validated 
and mined through dedicated, interactive visualization tools. 

provides a crucial tool to analyze 
information processing within and 
between neurons. 

Using all the genetic information 
gathered in their model, Frise 
et al. (2010) clustered genes 
coexpression domains to elucidate 
previously unknown genetic func­
tions and molecular and genetic 
interactions. Lein et al. (2007) 
detected highly specific cellular 
markers and deciphered cellular 
heterogeneity previously unidenti­

fied in the adult mouse brain with 
a gene expression atlas of more 
than 20,000 genes. Carson et al. 
(2005) discovered gene expres­
sion possibly related to Parkinson 
disease. 

Liu et al. (2009) showed in C. 
elegans that different gene regula­
tory pathways can correlate with 
identical cell fates. However, cell 
fate modules with specific molecu­
lar signatures repeatedly occurred 
along the cell lineage, revealing 

bifurcations toward cell differentia­
tion. Fisher et al. (2011) identified 
the digits identity in chick embryos 
by the computational analysis of 
genes expression and cell fate. 
The association of cell tracking 
techniques (McMahon et al., 2008; 
Pastor et al., 2009; Suppatto et 
al., 2009) together with gene 
expression atlases lead to fate 
maps, which are promising tools 
for stem cell studies and regenera­
tive medicine. 



P E R S P E C T I V E S 

The nex t genera t ion of in situ 
hybr id izat ion techn iques is ex­
pected to ove rcome the cur ren t 
l im i ta t ions in the n u m b e r of gene 
pat te rns t h a t can be s imu l tane ­
ously labeled in a single spec imen. 
Choi et a l . ( 2 0 1 0 ) recent ly deve l ­
oped a new mu l t ip lex ing techn ique 
tha t a l lows to f luorescent ly tag up 
to f ive d i f fe rent mRNA ta rge ts a t a 
t ime . Compared to present double 
or t r ip le in si tu hybr id iza t ion t ech ­
n iques, th is scheme wil l drast ical ly 
fac i l i ta te the acquis i t ion of data 
and ma tch ing opera t ions . 

A long ant ic ipated goal (Megason 
and Fraser, 2007) in computa t iona l 
biology consists in the reconstruc­
t ion of cont inuous spat io tempora l 
p ro to types where gene expression 
can be de te rmined for every cell in 
the e m b r y o not only a t cer ta in , dis­
crete deve lopmenta l s tages, but at 
any possible deve lopmenta l t i m e : 
(x , y , z, t , G). Achiev ing th is goal 
depends on the proper in tegrat ion 
of gene expression atlases wi th the 
reconstructed cell l ineage t ree 
(Supat to et a l . , 2 0 0 9 ; Olivier et a l . , 
2 0 1 0 ; Luengo-Oroz et a l . , 2012b) . 
Recent wo rk in th is direct ion 
(Castro-González et a l . , 2010) indi ­
cates tha t 3 D + t ime atlases toward 
an in tegrated model of l iving sys­
tems and mul t iscale dynamics , 
require the use of image process­
ing techniques operat ing d i rect ly in 
the 4D space (Luengo-Oroz et a l . , 
2012a) . 

Finally, a key fu tu re chal lenge 
revolves a round achiev ing s tand ­
ards and mak ing databases c o m ­
ing f r o m d i f fe rent laborator ies 
in teroperab le . As data acquis i t ion 
goes on at an accelerated pace, it 
becomes crucial to achieve sys­
t ems help ing to con t r i bu te , o rgan ­
ize, and f ind re levant da ta . As an 
examp le , mach ine learn ing has 
been recent ly appl ied to the au to ­
mat ic recogni t ion and onto logical 
annota t ion of gene express ion pat ­
te rns in the mouse e m b r y o wi th 
anatomica l t e r m s (Han et a l . , 
2011 ) . Fol lowing th is t r e n d , there 
has been a series of recent s tand ­
ard izat ion ef for ts to the crossplat -
f o rm in tegra t ion of mu l t imoda l 
data t h rough the use of cont ro l led 
te rmino log ies , or onto log ies (Diez-

Roux et a l . , 2011 ) t h a t can be 
accessed by query -based web sys­
t ems (Hawry lycz et a l . , 2 0 1 1 ; 
Mi lyaev et a l . , 2 0 1 2 ) . This wil l u l t i ­
ma te ly al low the sys temat ic c o m ­
parison of ind iv iduals w i th in and 
even be tween species. 

R E F E R E N C E S 

Abbott A. 2009. Microscopic marvels: 
seeing the system. Nature 459: 
630-631 . 

Aljabar P, Heckemann R, Hammers A, 
et al. 2009. Multi-atlas based seg­
mentation of brain images: atlas 
selection and its effect on accuracy. 
Neuroimage 46:726-738. 

Amatruda J, Shepard J, Stern H, Zon 
L. 2002. Zebrafish as a cancer model 
system. Cancer Cell 1:229-231 

Ashburner M, Ball C, Blake J, et al. 
2000. Gene ontology: tool for the uni­
fication of biology. Nat Genet 25: 
25-29. 

Baker M. 2010. Screening: the age of 
fishes. Nat Meth 8 :47 -51 . 

Baldock R, Bard J, Burger A, et al. 
2003. EMAP and EMAGE. Neuroinfor-
matics 1:309-325. 

Barros T, Alderton W, Reynolds H, 
et al. 2008. Zebrafish: an emerging 
technology for in vivo pharmacologi­
cal assessment to identify potential 
safety liabilities in early drug discov­
ery. Br J Pharmacol 154:1400-1413. 

Blanchoud S, Budirahardja Y, Naef F, 
Gónczy P. 2010. ASSET: a robust 
algorithm for the automated seg­
mentation and standardization of 
early Caenorhabditis elegans 
embryos. Dev Dyn 239:3285-3296. 

Boline J, Lee E, Toga A. 2008. Digital 
atlases as a framework for data shar­
ing. Frontiers Neurosci 2:100-106. 

Brend T, Holley SA. 2009. Zebrafish 
Whole Mount High-Resolution Double 
Fluorescent In Situ Hybridization. J 
Vis Exp 25:1229. 

Bruckner S, Solteszova V, Groller M, 
et al. 2009. Braingazer-visual queries 
for neurobiology research. IEEE 
Trans Visual Comput Graphics 15: 
1497-1504. 

Carson J, Ju T, Lu H, et al. 2005. A dig­
ital atlas to characterize the mouse 
brain transcriptome. PLoS Comput 
Biol l : e 4 1 . 

Castro C, Luengo-Oroz M, Desnoulez 
S, et al. 2009.An automatic quantifi­
cation and registration strategy to 
create a gene expression atlas of 
zebrafish embryogenesis. In : Pro­
ceedings of IEEE EMBS Conference, 
pp. 1469-1472. 

Castro C, Luengo-Oroz M, Douloquin L, 
et al. 2011.Image processing chal­
lenges in the creation of spatiotempo­
ral gene expression atlases of develop­
ing embryos. In: Proceedings of IEEE 
EMBS Conference, pp. 6841-6844. 

Castro-González C, Luengo-Oroz M, 
Douloquin L, et al. 2010.Towards a 
digital model of zebrafish embryo-
genesis. Integration of cell tracking 
and gene expression quantification. 
In: Proceedings of IEEE EMBS Con­
ference, pp. 5520-5523. 

Chiang A, Lin C, Chuang C, et al. 2011. 
Three-dimensional reconstruction of 
brain-wide wiring networks in Dro-
sophila at single-cell resolution. Curr 
Biol 21 :1 -11 . 

Choi H, Chang J, Trinh L, et al. 2010. 
Programmable in situ amplification 
for multiplexed imaging of mRNA 
expression. Nat Biotechnol 28: 
1208-1212. 

Chudakov D, Lukyanov S, Lukyanov K. 
2005. Fluorescent proteins as a tool­
kit for in vivo imaging. Trends Bio­
technol 23:605-613. 

Damie S, Hanser B, Davidson E, Fraser 
S. 2006. Confocal quantification of 
cis-regulatory reporter gene expres­
sion in living sea urchin. Dev Biol 
299:543-550. 

Davidson E, Erwin D. 2006. Gene regu­
latory networks and the evolution of 
animal body plans. Science 311: 
796-800. 

Diez-Roux G, Banfi S, Sultan M, et al. 
2011. A high-resolution anatomical 
atlas of the transcriptome in the mouse 
embryo. PLoS Biol 9:el000582. 

Dorr A, Lerch J, Spring S, et al. 2008. 
High resolution three-dimensional 
brain atlas using an average magnetic 
resonance image of 40 adult C57BI/6J 
mice. Neuroimage 42:60-69. 

Drblikova O, Komornikova M, Remesi-
kova M, et al. 2007. Estimate of the 
cell number growth rate using PDE 
methods of image processing and time 
series analysis. J Electr Eng 58:86-92. 

Evanko D, et al. 2010. Microscope har­
monies. Nat Meth 7:779. 

Fernandez-Gonzalez R, Munoz-Barrutia 
A, Barcellos-Hoff M, Ortiz-de Solo-
rzano C. 2006. Quantitative in vivo mi­
croscopy: the return from the 'omics'. 
CurrOpin Biotechnol 17:501-510. 

Fisher M, Clelland A, Bain A, et al. 
2008. Integrating technologies for 
comparing 3D gene expression 
domains in the developing chick 
limb. Dev Biol 317:13-23. 

Fisher M, Downie H, Welten M, et al. 
2011. Comparative analysis of 3D 
expression patterns of transcription 
factor genes and digit fate maps in 
the developing chick wing. PLoS One 
6 :e l8661 . 

Fonseca C, Backhaus M, Bluemke D, 
et al. 2011. The cardiac atlas proj­
ect—an imaging database for compu­
tational modeling and statistical 
atlases of the heart. Bioinformatics 
27:2288-2295. 

Fowlkes C, Hendriks C, Keranen S, et al. 
2008. A quantitative spatiotemporal 
atlas of gene expression in the Dro-
sophila blastoderm. Cell 133:364-374. 

Frise E, Hammonds A, Celniker S. 
2010. Systematic image-driven anal-



ysis of the spatial Drosophila embry­
onic expression landscape. Mol Syst 
Biol 6:345. 

Frolkovic P, Mikula K, Peyriéras N, Sarti 
A. 2007. Counting number of cells 
and cell segmentation using advec-
tion-diffusion equations. Kybernetika 
43:817-829. 

Giepmans B, Adams S, Ellisman M, 
Tsien R. 2006. The fluorescent tool­
box for assessing protein location 
and function. Science 312:217-224. 

Goldsmith P. 2004. Zebrafish as a 
pharmacological tool: the how, why 
and when. Curr Opin Pharmacol 4: 
504-512. 

Gorfinkiel N, Schamberg S, Blanchard 
G. 2011. Integrative approaches to 
morphogenesis: lessons from dorsal 
closure. Genesis 49:522-533. 

Gouaillard A, Brown T, Bronner-Fraser 
M, et al. 2007. GoFigure and the digi­
tal fish project: open tools and open 
data for an imaging based approach 
to system biology. Insight J. Available 
at :h t tp : / /hd l . handle.net/1926/565. 

Han L, van Hemert J, Baldock R. 2011. 
Automatically identifying and anno­
tating mouse embryo gene expres­
sion patterns. Bioinformatics 27: 
1101-1107. 

Hawrylycz M, Baldock R, Burger A, 
et al. 2011. Digital atlasing and 
standardization in the mouse brain. 
PLoS Comput Biol 7:e l001065. 

Hedges S, Dudley J, Kumar S. 2006. 
TimeTree: a public knowledge-base 
of divergence times among organ­
isms. Bioinformatics 22:2971-2972. 

Hendriks C, Keránen S, Fowlkes C, 
et al. 2006. Three-dimensional mor­
phology and gene expression in the 
Drosophila blastoderm at cellular re­
solution I: data acquisition pipeline. 
Genome Biol 7:R124. 

Hill A, Teraoka H, Heideman W, Peter­
son R. 2005. Zebrafish as a model 
vertebrate for investigating chemical 
toxicity. Toxicol Sci 86:6-19. 

Huisken J, Stainier D. 2009. Selective 
plane illumination microscopy techni­
ques in developmental biology. De­
velopment 136:1963-1975. 

Jacobs R, Papan C, Ruffins S, et al. 
2003. MRI: volumetric imaging for 
vital imaging and atlas construction. 
Nat Rev Mol Cell Biol 4:SS10-SS16. 

Johnson G, Badea A, Brandenburg J, 
et al. 2010. Waxholm space: an 
¡mage-based reference for coordinat­
ing mouse brain research. Neuro-
image 53:365-372. 

Jones T, Kang I, Wheeler D, et al. 
2008. CellProfiler analyst: data ex­
ploration and analysis software for 
complex image-based screens. BMC 
Bioinform 9:482, doi: 10.1186/ 
1471-2105-9-482. 

Keller P, Schmidt A, Santella A, et al. 
2010. Fast, high-contrast imaging of 
animal development with scanned 
light sheet-based structured-i l lumi­
nation microscopy. Nat Meth 7: 
637-642. 

Kerwin J, Yang Y, Merchan P, et al. 
2010. The HUDSEN atlas: a three-di­
mensional (3D) spatial framework for 
studying gene expression in the 
developing human brain. J Anat 217: 
289-299. 

Khairy K, Keller P. 2011. Reconstruct­
ing embryonic development. Genesis 
49:488-513. 

Kovacevic N, Henderson J, Chan E, 
et al. 2005. A three-dimensional MRI 
atlas of the mouse brain with esti­
mates of the average and variability. 
Cereb Cortex 15:639-645. 

Krivá Z, Mikula K, Peyriéras N, et al. 
2010. 3D early embryogenesis image 
filtering by nonlinear partial differen­
tial equations. Med Image Anal 14: 
510-526. 

Lau C, Ng L, Thompson C, et al. 2008. 
Exploration and visualization of gene 
expression with neuroanatomy in the 
adult mouse brain. BMC Bioinform 9: 
153. 

Lein E, Hawrylycz M, Ao N, et al. 2007. 
Genome-wide atlas of gene expres­
sion in the adult mouse brain. Nature 
445:168-176. 

Li E, Davidson E. 2009. Building devel­
opmental gene regulatory networks. 
Birth Def Res Part C: Embryo Today: 
Rev 87:123-130. 

Liu X, Long F, Peng H, et al. 2009. 
Analysis of cell fate from single-cell 
gene expression profiles in C. ele-
gans. Cell 139:623-633. 

Long F, Peng H, Liu X, et al. 2009. A 
3D digital atlas of C. elegans and its 
application to single-cell analyses. 
Nat Meth 6:667-672. 

Lu J, Hsia Y, Tu H, et al. 2011. Liver 
development and cancer formation in 
zebrafish. Birth Def Res Part C: 
Embryo Today: Rev 93:157-172. 

Luengo-Oroz M, Duloquin L, Castro C, 
et al. 2008.Can voronoi diagram 
model cell geometries in early 
sea-urchin embryogenesis? In: Pro­
ceedings of IEEE ISBI Conference, pp. 
504-507. 

Luengo-Oroz M, Ledesma-Carbayo M, 
Peyriéras N, Santos A. 2011. Image 
analysis for understanding embryo 
development: a bridge from micros­
copy to biological insights. Curr Opin 
Genet Dev 21:630-637. 

Luengo-Oroz M, Pastor-Escuredo D, 
Castro-González C, et al. 2012a. 
3D+t morphological processing: 
applications to embryogenesis image 
analysis. IEEE Trans Image Process. 
In press (doi: 10.1109/TIP.2012. 
2197007). 

Luengo-Oroz M, Rubio-Guivernau J, 
Faure E, et al. 2012b. Methodology 
for reconstructing early zebrafish de­
velopment from in-vivo multiphoton 
microscopy. IEEE Trans Image Pro­
cess 21:2335-2340. 

Ma Y, Hof P, Grant S, et al. 2005. A 
three-dimensional digital atlas data­
base of the adult C57BL/6J mouse 
brain by magnetic resonance micros­
copy. Neuroscience 135:1203-1215. 

MacKenzie-Graham A, Lee E, Dinov I, 
et al. 2004. A multimodal, multidi­
mensional atlas of the C57BL/6J 
mouse brain. J Anat 204:93-102. 

Maintz J, Viergever M. 1998. A survey 
of medical image registration. Med 
Image Anal 2:1-36. 

Martone M, Zaslavsky I, Gupta A, et al. 
2008. The smart atlas: spatial and 
semantic strategies for multiscale 
integration of brain data. In: Anat­
omy Ontologies for Bioinformatics, 
Computational Biology, Volume 6, 
Part I I I , 267-286, DOI: 10.1007/ 
978- l-84628-885-2_13. 

Mazziotta J, Toga A, Evans A, et al. 2001. 
A probabilistic atlas and reference sys­
tem for the human brain: international 
consortium for brain mapping (ICBM). 
Philos Trans R Soc London Ser B: Biol 
Sci 356:1293-1322. 

McMahon A, Supatto W, Fraser S, Sta-
thopoulos A. 2008. Dynamic analyses 
of drosophila gastrulation provide 
insights into collective cell migration. 
Science 322:1546-1550. 

McPherson J, Marra M, Hillier L, et al. 
2001. A physical map of the human 
genome. Nature 409:934-941. 

Megason S, Fraser S. Imaging in systems 
biology. 2007. Cell 130:784-795. 

Mikula K, Peyriéras N, Remesíková M, 
Stasová O. 2011. Segmentation of 
3D cell membrane images by PDE 
methods and its applications. Corn-
put Biol Med 41:326-339. 

Milan D, Peterson T, Ruskin J, et al. 
2003. Drugs that induce repolariza­
tion abnormalities cause bradycardia 
in zebrafish. Circulation 107: 
1355-1358. 

Milyaev N, Osumi-Sutherland D, Reeve 
S, et al. 2012. The virtual fly brain 
browser and query interface. Bioin­
formatics, 28:411-415. 

Murray J, Bao Z, Boyle T, et al. 2008. 
Automated analysis of embryonic gene 
expression with cellular resolution in 
C. elegans. Nat Meth 5:703-709. 

Ng L, Bernard A, Lau C, et al. 2009. An 
anatomic gene expression atlas of 
the adult mouse brain. Nat Neurosci 
12:356-362. 

Ng L, Pathak S, Kuan C, et al. 2007. 
Neuroinformatics for genome-wide 
3D gene expression mapping in the 
mouse brain. IEEE/ACM Trans Com­
put Biol Bioinform 4:382-393. 

North T, Goessling W, Walkley C, et al. 
2007. Prostaglandin e2 regulates ver­
tebrate haematopoietic stem cell ho­
meostasis. Nature 447:1007-1011. 

Oates A, Gorfinkiel N, González-Gaitán 
M, Heisenberg C. 2009. Quantitative 
approaches in developmental biol­
ogy. Nat Rev Genet 10:517-530. 

Olivier N, Luengo-Oroz M, Duloquin L, 
et al. 2010. Cell lineage reconstruc­
tion of early zebrafish embryos using 
label-free nonlinear microscopy. Sci­
ence 329:967-971. 

Pardo-Martin C, Chang T, Koo B, et al. 
2010. High-throughput in vivo verte­
brate screening. Nat Meth 7:634-636. 

http://hdl
http://handle.net/1926/565


Park H, Bland P, Meyer C. 2003. Con­
struction of an abdominal probabilis­
tic atlas and its application in seg­
mentation. IEEE Trans Med Imag 22: 
483-492. 

Pastor D, Luengo-Oroz M, Lombardot B, 
et al. 2009.Cell tracking in fluorescence 
images of embryogenesis processes 
with morphological reconstruction by 
4D-tubular structuring elements. In: 
Proceedings of IEEE EMBS Conference, 
pp. 970-973. 

Paul B, Hong C, Sachidanandan C, 
et al. 2008. Dorsomorphin inhibits 
bmp signals required for embryogen­
esis and iron metabolism. Nat Chem 
Biol 4 : 3 3 - 4 1 . 

Peng H. 2008. Bioimage informatics: a 
new area of engineering biology. Bio-
informatics 24:1827. 

Peng H, Chung P, Long F, et al. 2011. 
Brainaligner: 3D registration atlases 
of drosophila brains. Nat Meth 8: 
493-498. 

Peng H, Long F, Liu X, et al. 2008. 
Straightening Caenorhabditis elegans 
images. Bioinformatics 24:234-242. 

Peng H, Ruan Z, Long F, et al. 2010. 
V3D enables real-time 3D visualiza­
tion and quantitative analysis of 
large-scale biological image data 
sets. Nat Biotechnol 28:348-353. 

Pisarev A, Poustelnikova E, Samsonova 
M, Reinitz J. 2009. Flyex, the quanti­
tative atlas on segmentation 
gene expression at cellular resolu­
tion. Nucl Acids Res 37 (Suppl 1): 
D560-D566. 

Potikanond D, Verbeek F. 2011. 3D 
visual integration of spatio-temporal 
gene expression patterns on digital 
atlas of zebrafish embryo using web 
service. In : Proceedings of Interna­
tional Conference on Advances in 
Communication and Information 
Technology, pp. 56-62. 

Qu L, Peng H. 2010. A principal skele­
ton algorithm for standardizing con-
focal images of fruit fly nervous sys­
tems. Bioinformatics 26:1091-1097. 

Rex D, Ma J, Toga A. 2003. The loni 
pipeline processing environment. 
Neuroimage 19:1033-1048. 

Richardson L, Venkataraman S, Ste­
venson P, et al. 2010. Emage mouse 
embryo spatial gene expression 
database: 2010 update. Nucl Acids 
Res 38 (Suppl 1):D703-D709. 

Rittscher J, Padfield D, Santamaria A, 
et al. 2011.Methods and algorithms 
for extracting high-content signa­
tures from cells, tissues, and model 

organisms. In : Proceedings of IEEE 
ISBI Conference, pp. 1712-1716. 

Rittscher J, Yekta A, Musodiq O, et al. 
2010. Automated systems and meth­
ods for screening zebrafish. US Pat­
ent NO.2010/0119119 A l . 

Rübel O, Weber G, Huang M, et al. 
2010. Integrating data clustering and 
visualization for the analysis of 3D 
gene expression data. IEEE/ACM 
Trans Comput Biol Bioinform 7:64-79. 

Rubio-Guivernau J, Gurchenkov V, 
Luengo-Oroz M, et al. 2012. Wave­
let-based image fusion in multiview 
three-dimensional microscopy. Bioin­
formatics 28:238-245. 

Ruffins SW, Martin M, Keough L, et al. 
2007. Digital three-dimensional atlas 
of quail development using high-re­
solution MRI. Sci World J 7:592-604. 

Sharpe J, Ahlgren U, Perry P, et al. 
2002. Optical projection tomography 
as a tool for 3D microscopy and gene 
expression studies. Science 296: 
541-545. 

Sipes N, Padilla S, Knudsen T. 2011. 
Zebrafish as an integrative model for 
twenty-first century toxicity testing. 
Birth Def Res C: Embryo Today: Rev 
93:256-267. 

Smith S, Jenkinson M, Woolrich M, 
et al. 2004. Advances in functional 
and structural MR image analysis and 
implementation as FSL. Neuroimage 
23:S208-S219. 

Supatto W, McMahon A, Fraser S, Sta-
thopoulos A. 2009. Quantitative 
imaging of collective cell migration 
during drosophila gastrulation: multi-
photon microscopy and computational 
analysis. Nat Protocol 4:1397-1412. 

Toga A, Thompson P, Mori S, et al. 
2006. Towards multimodal atlases of 
the human brain. Nat Rev Neurosci 
7:952-966. 

Tomer R, Denes A, Tessmar-Raible K, 
Arendt D. 2010. Profiling by image 
registration reveals common origin of 
annelid mushroom bodies and verte­
brate pallium. Cell 142:800-809. 

Truong T, Supatto W. 2011. Toward 
high-content/high-throughput imag­
ing and analysis of embryonic mor­
phogenesis. Genesis 49:555-569. 

Ullmann J, Cowin G, Kurniawan N, Col­
lin S. 2010. A three-dimensional digi­
tal atlas of the zebrafish brain. Neu­
roimage 51:76-82. 

Vonesch C, Aguet F, Vonesch J, Unser 
M. 2006. The colored revolution of 
bioimaging. IEEE Signal Process Mag 
23 :20 -31 . 

Walter G, Büssow K, Lueking A, Glókler J. 
2002. High-throughput protein arrays: 
prospects for molecular diagnostics. 
Trends Mol Med 8:250-253. 

Walter T, Shattuck D, Baldock R, et al. 
2010. Visualization of image data 
from cells to organisms. Nat Meth 7: 
S26-S41. 

Warga R, Kane D. 2003. One-eyed pin-
head regulates cell motility inde­
pendent of squint/cyclops signaling. 
Dev Biol 261:391-411. 

Weber G, Rübel O, Huang M, et al. 
2009. Visual exploration of three-di­
mensional gene expression using 
physical views and linked abstract 
views. In : IEEE/ACM Transactions on 
Computational Biology and Bioinfor­
matics. 5:296-309. 

Welten M, de Haan S, van den Boogert 
N, et al. 2006. ZebraFISH: fluores­
cent in situ hybridization protocol 
and three-dimensional imaging of 
gene expression patterns. Zebrafish 
3:465-476. 

Woods R, Dapretto M, Sicotte N, et al. 
1999. Creation and use of a Talair-
ach-compatible atlas for accurate, 
automated, nonlinear intersubject 
registration, and analysis of func­
tional imaging data. Hum Brain Map 
8:73-79. 

Woods R, Grafton S, Watson J, et al. 
1998. Automated image registration. 
I I . Intersubject validation of linear 
and nonlinear models. J Comput 
Assist Tomogr 22:153-165. 

Wu J, Pollard T. 2005. Counting cytoki­
nesis proteins globally and locally in 
fission yeast. Science 310:310-314. 

Yang L, Ho N, Alshut R, et al. 2009. 
Zebrafish embryos as models for 
embryotoxic and teratological effects 
of chemicals. Reprod Toxicol 28: 
245-253. 

Zanella C, Campana M, Rizzi B, et al. 
2010. Cells segmentation from 3-D 
confocal images of early zebrafish 
embryogenesis. IEEE Trans Image 
Process 19:770-781. 

Zaslavsky I, He H, Tran J, et al. 
2004.Integrating brain data spa­
tially: spatial data infrastructure 
and atlas environment for online 
federation and analysis of brain 
images. In : IEEE Proceedings of 
International Workshop on Database 
and Expert Systems Applications, pp. 
389-393. 

Zitova B, Flusser J. 2003. Image regis­
tration methods: a survey. Image Vis 
Comput 21:977-1000. 


