
facultad de informatica

universidad politecnica de niadrid

A Techn ique for D y n a m i c
C o m p u t a t i o n v ia P r o

T r a n s f o r m a t i o n

T e r m Size
g r a m

Manuel Hermenegildo
P. Lopez Garcfa

T R N u m b e r CLIP 8/93 1(94)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Technique for Dynamic Term Size
Computation via Program Transformation

Technical Repor t Number : CLIP 8/93.1(94)

M a r c h 1 9 9 4

Authors

Manue l Hermeneg i ldo
herme@fi.upm.es
P. Lopez Garcia
pedro@dia.fi.upm.es

Departamento de Inteligencia Artificial
Facultad de Informatica
Universidad Politecnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - SPAIN

Keywords

Term Size Computation, Granularity Analysis, Parallelism.

ii

mailto:herme@fi.upm.es
mailto:pedro@dia.fi.upm.es

Abstract

Knowing the size of the terms to which program variables are bound at run-time in logic programs
is required in a class of applications related to program optimization such as, for example,
granularity analysis and selection among different algorithms or control rules whose performance
may be dependent on such size. Such size is difficult to even approximate at compile time and
is thus generally computed at run-time by using (possibly predefined) predicates which traverse
the terms involved. We propose a technique based on program transformation which has the
potential of performing this computation much more efficiently. The technique is based on
finding program procedures which are called before those in which knowledge regarding term
sizes is needed and which traverse the terms whose size is to be determined, and transforming
such procedures so that they compute term sizes "on the fly". We present a systematic way of
determining whether a given program can be transformed in order to compute a given term size
at a given program point without additional term traversal. Also, if several such transformations
are possible our approach allows finding minimal transformations under certain criteria. We also
discuss the advantages and applications of our technique and present some performance results.

MI

Contents

1 Introduction 1

2 Overview of the Approach 2

3 Transforming Procedures: Transformation Nodes 4

4 Transforming Sets of Procedures: Transformations 8

5 Irreducible/Optimal Transformations 10

6 Searching for Irreducible Transformations 13

7 Experimental Results and Advantages of the Method 16

8 Conclusions and Future Work 19

9 Acknowledgements 19

References 20

A Technique for Dynamic Term Size Computation 1

1 Introduction

The need to know the size of the terms to which program variables are bound at run-time in
logic programs arises in a class of applications related to program optimization which includes
granularity analysis and selection among different algorithms or control rules whose performance
may be dependent on such size. By term size we refer to measures such as list length, term
depth, number of nodes in a term, etc.

For example, in granularity analysis the objective is to determine (or bound) a priori (i.e.
before its execution) the number of steps that the execution of a given goal will involve. A
number of researchers have investigated the automatic analysis of the (time) complexity of
programs (see, for example, [5, 1, 6, 8, 11, 12, 13, 14]).

As pointed in [5], granularity analysis for a set of non recursive procedures is relatively straight
forward. However, recursive procedures are somewhat more problematic: the amount of work
done by a recursive call depends on the depth of recursion, which in turn depends on the size
of the input. Reasonable estimates for the granularity of recursive predicates can thus be made
only with some knowledge of the size of the input. In [5] a technique was presented for solving
this problem based on performing a compile-time analysis which reduces granularity analysis
work at run-time to evaluating simple functions of term sizes. However, the actual determination
of those sizes in order to evaluate such functions is necessarily postponed until runtime.

The postponement of accurate term size computation to run-time appears inevitable in gene
ral since even sophisticated compile-time techniques such as abstract interpretation are based
on computing approximations of variable substitutions for generic executions corresponding to
general classes of inputs, while size is however clearly a quite specific characteristic of an input.
Although the approximation approach can be useful in some cases we would like to tackle the
more general case in which actual sizes have to be computed dynamically at run-time. Of course
computing term sizes at run time is quite simple but at the same time it can involve a significant
amount of overhead. This overhead includes both having to traverse significant parts of the term
(often the entire term) and the counting process done during this traversal.

The objective of this paper is to propose a more efficient way of computing such sizes. The
essential idea is based on the observation that terms are often already traversed by procedures
which are called in the program before those in which knowledge regarding term sizes is needed,
and thus that such sizes can often be computed "on the fly" by the former procedures after per
forming some transformations to them. While the counting overhead is not eliminated, overhead
is reduced because additional traversals of terms are not needed. We present a systematic way of
determining whether a given program can be transformed in order to compute a given term size
at a given program point without additional term traversal. Also, if several such transformations
are possible our approach allows finding minimal transformations under certain criteria.

The rest of the paper proceeds as follows: Section 2 presents an overview of the approach.
Section 3 introduces our basic representations and Section 4 presents our concept of allowable
transformations. Section 5 then introduces the concepts of irreducible and optimal transfor
mations and highlights their important role. Section 6 then presents algorithms for finding

Report No. CLIP 8/93.1(94) March 1994

2 Manuel Hermenegildo and P. Lopez Garcfa

irreducible transformations and presents an example of the complete process. Section 7 shows
some experimental results and finally, Section 8 presents our conclusions and suggestions for
future work.

2 Overview of the Approach

As mentioned in the introduction, we are interested in transforming some predicates in such
a way that they will compute some of their argument data sizes at run-time, in addition to per
forming their normal computation. It is often the case that because of previous transformations
or other reasons, the size of certain terms is already known and it can be used as a starting
point in the dynamic computation of those that we need to determine at a given point. Thus,
we will be interested in the general problem of transforming programs to determine the sizes of
one set of terms given that the sizes of the terms in another (disjoint) set are known.

E x a m p l e 2.1 Consider, for example, the predicate append/3 , defined as:

append([] ,L,L) .
append([H|L],L1,[H|R]) : - append(L,L1,R) .

Suppose that we want to transform this predicate in order that it compute the length of its
third argument. Observing the base case we can infer that the length of the term appearing
in the third argument of the head is equal to that of appearing on the second argument after
any successful computation. We can express this size relation as follows: head[3] = head[2],
where head[i] denote the size of the term appearing at i argument position in the head.
Thus, a transformation of this base case can be performed by adding two additional arguments,
fourth and fifth, standing for the size of the term appearing in the second and third argument
respectively:

a p p e n d 3 i 2 ([] , L , L , S , S) .

In this way, if we call the base case supplying the size of the second argument, we will obtain
that of the third one once the call succeeds.

Observing the recursive clause, we can see that the size of the third argument of the head is
equal to the size of the third argument of the first body literal plus one. We express this size
relation as follows: head[3] = body\[3] + 1, where bodyj[i] denotes the size of the term appearing
at i argument position in the j literal of the body. Then we can think in using a transformed
version of this body literal in order to compute body\[3]. But to do this it is necessary that the
size of the second argument of this body literal (body\[2\) be supplied at the call (in order that
bodyi[3] could be computed when recursion finishes. Since we have the following size relation:
bodyi[2] = head[2], we can conclude that it is possible to compute the size of the third argument
of append if the size of the second one is supplied at the call.

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 3

Figure 1: Size dependency graphs for predicate append/3 .

The recursive clause can be trivially transformed as follows with the knowledge of the previous
size relations: 1

a p p e n d 3 i 2 ([] , L , L , S , S) .
a p p e n d 3 i 2 ([H | L] , L 1 , [H | R] , S 2 , S 3) : - a p p e n d 3 i 2 (L , L l , R , S 2 , S b 3) , S3 i s Sb3 + 1.

•

We can see that the problem can be reduced to finding what we can call a size dependency
graph for each clause of the predicate to be transformed. Figure ?? shows the size dependency
graphs corresponding to the previous example:

This graph is required to meet some conditions (which will be further explained in detail
throughout the paper) in order that the derived predicate transformation correctly computes
the desired term sizes. In other words, it is necessary to know for each clause, and for each
term occurring at a head position whose size is going to be computed by the transformed
procedure at run-time, an expression which gives the size of the term as a function of the sizes
of other positions in the clause, which in turn can be computed by applying the same technique.
Informally, the set of size dependency graphs constitute the information needed to transform a
predicate, and is represented by means of what we call a transformation node. In general it is
necessary to transform more than one predicate to perform a particular size computation. In
this case, transformation nodes will constitute nodes in a search tree (the search algorithm is
explained in detail in Section 6) tailored to finding a set of such nodes leading to a program
transformation which correctly computes the desired term sizes.

For clarity, this class of transformations is used in the examples even if they are not ideal given that they
destroy tail recursion optimization. However it is quite straightforward to perform the equivalent transformation
which preserves tail recursion optimization by using an accumulating parameter. These are the transformations
performed in practice. Note also that although presenting the technique proposed in terms of a source-to-source
transformations is useful both in the exposition and as a viable implementation technique, the transformation
can also be implemented at a lower level in order to reduce the run-time overheads involved even further.

Report No. CLIP 8/93.1(94) March 1994

4 Manuel Hermenegildo and P. Lopez Garcfa

Roughly, our approach consists first in inferring all possible size relations between arguments
of the program clauses which can be involved on the desired size computation. 2 In [5], a data
dependency-based method for statically estimating these argument size relations is described.
Secondly, all possible transformation nodes are constructed from these size relations, and finally,
find the set of transformation nodes leading to correct size computations. While constructing
a transformation node we make the assumption that any transformed version of any predicate
(distinct of the transformed version corresponding to the transformation node itself) can be
correctly carried out, and afterwards, this assumption will be checked by means of the search
algorithm.

It should be noted that in some simple cases, similar transformations to the ones we propose
can be obtained by adding to the original program some code that would perform the size
computation in a naive way, and then partially evaluating that code into previous procedures.
Note, however, that the algorithm presented herein is on one hand simpler than this approach,
in the sense that it avoids having to include in the compiler a complete partial evaluator, which
may not be otherwise needed. And, on the other hand, it is also more powerful (in this particular
application) in that if several possible transformations are suitable, it constructs those which
have the least runtime overhead, based on the criteria of choosing those which traverse less data
and perform less arithmetic operations. Moreover, the search itself finds out dynamically which
are the arguments whose sizes are strictly necessary to compute in order to serve as starting
point for other size computations, something that would have to be given ahead of time to
the partial evaluation approach. Moreover, we distinguish between "intra-literal" argument size
relations, which refer to size relations between the argument positions of a single literal, and
"inter-literal" argument size relations, which refer to relations between argument positions of
different literals or the clause head. In this way, we can profit from some intra-literal argument
size relations so that transformed literals need to traverse less data. This is so, because a size
computation can then be performed directly in one operation, rather than by counting during
the execution of the literal. Thus, at one program point we may decide to perform an arithmetic
operation, provided that the needed sizes are known, or make a literal perform size computation
by transforming it to perform data traversal.

3 Transforming Procedures: Transformation Nodes

In this section we explain how the information needed for procedure transformation is repre
sented. We also formulate some conditions that this information has to meet in order for the
transformation to lead to correct size computations. We thus prepare the way to end with the
definition of a transformation node, which can be considered as a data structure which contains
the information needed to transform a procedure (argument size relations etc.). Transformation
nodes will also later be nodes in a search tree when the algorithm used to find different forms
of transforming sets of procedures, or whole programs is presented.

Definit ion 1 (Label) a structure, lab(Pred,Os,Is), where:

We can consider only predicates in the strongly connected component of the call graph corresponding to the
predicate which constitute the entry point of the transformation.

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 5

• Pred: is the name and arity of the predicate to be transformed.

• Os: is a tuple of argument positions (represented as numbers) whose sizes are computed
by the transformed predicate at run-time.

• Is: is a tuple of argument positions whose size are needed to compute the size of argument
positions in Os. These sizes must be supplied at the predicate call (perhaps by previous
computations).

The condition: Os n Is = 0 is required. •

With the above defined labels we can express which predicate Pred is transformed and which
argument sizes will be computed as a function of which others. Transformation nodes will be
labeled with such labels. An example of a label is: Iab(append/3, (3), (2)) ,which states that
the predicate append/3 will be transformed to compute the size of its third argument, provided
that the size of the second one is supplied at the procedure call. This means that it is necessary
to add two extra arguments to the transformed predicate which will stand for the sizes of the
second and third argument of append/3.

Definit ion 2 (Size Descr iptor) a structure of the form:

sd(lab(Pred, Os, Is),ArNum, LitNum, (Expl,.., ExpN))

where:

• lab(Pred,Os,Is) is a label;

• LitNum: is a literal number in a clause (literals are numbered from left to right, starting
by assigning one to the literal after the head);

• ArNum: is an argument number of literal LitNum; and,

• Expl,.., ExpN : are Valid Size Expressions, to be defined shortly.

The condition: ArNum £ Os is required. •

A size descriptor describes the size of a term appearing in a body clause. It supplies informa
tion about the position in the body (given by LitNum and ArNum) at which the term occurs,
what sizes are computed by the literal in which the term appears, and which are the terms whose
size is needed for this computation. The condition ArNum £ Os states that the size required
has to be computed by the transformed literal. lab(Pred, Os, Is) describes the size computation
for which the literal LitNum is transformed. Expl,.., ExpN describe the sizes of the terms
that occur at arguments of the literal number LitNum in Is. These sizes are needed for the
transformed literal to perform the computation of terms appearing at argument positions in Os.

An example of size descriptor may be: sd(lab(append/3,(3),(2)),3,l,(h(2))). This can be
read as: "The size of the term appearing at argument number 3 of the body literal number 1.

Report No. CLIP 8/93.1(94) March 1994

6 Manuel Hermenegildo and P. Lopez Garcfa

The predicate of this literal is a transformation of the predicate append/3 in order to compute
the size of its third argument, provided that the size of the second one is supplied at the call.
Moreover, the size of this second argument is equal to the size of the second argument of the
head (/i(2))".

Definit ion 3 (Size Express ion) A size expression is recursively defined as follows:

• A Natural number is a size expression.

• A term h(i), is a size expression.

• A Size Descriptor is a size expression.

• If E\ and Ei are size expressions, then E\ AE2 is a size expression, where A is any usual
arithmetic operator (+, —, *, exponentiation, etc.).

h(i) denotes the size of argument number i, or position number i of a clause head. •

Definit ion 4 (Valid Size Relat ion) A size relation is valid if it is true for every substitution
that makes the terms occurring in such size relation ground.

In the following, and for the sake of brevity, we will refer to valid size relations as size relations.

Definit ion 5 (Valid Size Express ion) a size expression Exp is valid if for each size descrip
tor:

sd(lab(Pred, Os, Is),ArNum, LitNum, (Expl,.., ExpN))

appearing in Exp, and for each literal number n appearing in the size descriptors of
(Expl, ..,ExpN), n < LitNum.

•

A valid size expression provides information about the size of some term in a clause. If the
valid size expression is a head position (/i(i)), then it represents the size of the i argument of
the head.

Definition 5 establish that the sizes supplied to a transformed literal can be computed only
by previous literals of the body. This requirement is due to the fact that the sizes supplied
have to be "ground" at the call, because we are interested in using built-ins similar to "is/2"
(in fact, more efficient and specialized versions) to perform the arithmetic operations needed
to compute sizes and these built-ins require all but one of their arguments to be ground. It is
important to note that this condition may be relaxed if the target language is for example a
Constraint Logic Programming language [7] which can solve linear equations. However actual
equation solving would probably incur in significant overhead. Thus we enforce the condition

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 7

both for efficiency reasons and for allowing the transformed programs to be executed without
requiring any constraint solving capabilities in the target language.

An example of a valid size expression, taken from Example 2.1 is:

1 + sd(lab(append/3, (3), (2)), 3 , 1 , 0 (2)))

which states that in the expression 1 + body\[3], body\[3] can be computed by transformed literal
number 1, provided that body\[2] is supplied, and that body\[2] = head[2], i.e., that it is in fact
supplied by the head.

Once we have all necessary definitions we define the concept of transformation node.

Definit ion 6 (Transformation N o d e) is a pair

(lab(Pred, Os, Is), Size Assignment),

where lab(Pred,Os,Is) is a label which is the label of the node. Size Assignment is a tuple of
n clause assignments, n being the number of clauses in predicate Pred. Each such assignment
refers to a different clause of Pred, and is a tuple of m items, where m is the cardinality of Os.
There is an item for each argument number in Os. Each such item is a pair:

(ArNum,VSE),

This pair describes the size of the term appearing at position number ArNum of the clause
head (denoted head[ArNum\) in relation with the sizes of other terms appearing at some clause
positions. ArNum is an argument number, ArNum £ Os, VSE is a valid size expression and:

1. head[ArNum] = SR(VSE) is a valid size relation. Where SR(VSE) is a size rela
tion obtained from VSE by replacing the size descriptors which does not appear in other
size descriptor by the term size(Term), Term being the term occurring at the position
indicated by the size descriptor, and replacing the size expressions of the form h(i) by
head[i\. E.g. SR(1 + sd(lab(append/3, (3), (2)), 3 , 1 , 0 (2)))) = 1 + size(R) (Note that
size(R) = bodyi[3]), and head[3] = 1 + size(R) is a valid size relation for the recursive
clause of the predicate append/5.

2. let I be the set of all argument numbers i such that h(i) appears in some size expression
of Size Assignment, then I = Is.

3. If I is a label, I = lab(Pred,Os,Is), appearing in some size descriptor
sd(I, ArNum, LitNurn, Exp) of a clause assignment then for each ArNum' £ Os exists a
size descriptor in the same clause assignment of the form sd(L, ArNum!, LitNurn, Exp').
In other words, all the sizes of the terms appearing at positions indicated in Os are actually
needed.

4- if

Report No. CLIP 8/93.1(94) March 1994

8 Manuel Hermenegildo and P. Lopez Garcfa

sd(LABl, ArNuml, LitNuml, SizeExpl) and
sd(LAB2, ArNum2, LitNum2, SizeExp2)

are two size descriptors appearing in the same clause assignment, and LitNuml =
LitNum2, then

LABI = LAB2 and SizeExpl = SizeExp2.U

Condition 2 states that all the term sizes that are needed from a clause head are actually
supplied by it.

Condition 4 states that a body literal can only be transformed in one way, and that the sizes
supplied to it can be computed also in only one way.

E x a m p l e 3.1 Consider Example 2.1, where a procedure transformation is proposed for the
predicate append/3 . The information needed for this transformation can be represented with
the following transformation node:

(lab(append/3, (3), (2)),

(((3 ,*(2))) ,
((3 ,1 + sd(lab(append/3, (3), (2)), 3 ,1 , (h(2)))))))

The procedure transformation process is trivial given this information.

The first clause assignment ((3, h(2))) corresponds to the first clause of the predicate append/3
(basic case), and the second one corresponds to the recursive clause. •

The intuition which can be gathered from the previous example is that it is possible to perform
the size computation at run-time if some conditions hold on the transformation nodes. This will
be the subject of the following sections.

4 Transforming Sets of Procedures: Transformations

In this section we deal with the problem of transforming sets of procedures which form part of
a call-graph, in order that they perform a size computation. In this case it is necessary to have
at least a transformation node for some of them and these nodes have to meet some conditions
that are explained below. To define the concept of Transformation, which informally can be
considered as the information needed to transform a set of procedures, we need the following
definitions:

Definit ion 7 {Con relat ion) We define a relation, Con between transformation nodes as fol
lows:

{N\,N2) G Con if and only if the label of N%, LABi appears in some size descriptor of the
size expressions of N\, i.e. there is a size descriptor in N\ of the form:

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 9

sd(LAB2, ArNum, LitNum, (Expl, ..,ExpN)) •

Definition 8 (Connected nodes) Given a transformation node EP and a set of transforma
tion nodes, TNS, we define the set of connected transformation nodes, CN(EP,TN S) as:

CN(EP,TNS) = {N eTNS\(EP,N)e ConT},

where Con is the transitive closure of Con.•

Definition 9 (Ordering between labels) Given two labels,

X = lab(Pred, Os, Isx) and Y = lab(Pred, Os, Isy),

we say that X <Y if and only if Isx C Isy. •

For example:

lab(append/3, (3), (2)) < lab(append/3, (3), (1,2)), but
lab(append/3, (3), (2)) ^ lab(append/3, (3), (1))

Definition 10 (Transformation) A pair (TNS,EP), where EP is a transformation node,
and TNS is a set of transformation nodes, is a Transformation if and only if:

1. EP e TNS.

2. Let NS = {EP} U CN(EP,TNS), then:

For each size descriptor:

sd(lab(Pred, Os, Is),ArNum, LitNum, (Expl,.., ExpN))

appearing in the size expressions of the nodes in NS there is a transformation node in NS
labeled with lab(Pred,Os,Is).

EP is called the entry point of the transformation. •

Example 3.1 constitutes a transformation, where the entry point is the node itself.

Example 4.1 Consider the predicate qsort/2 defined as:

qsort([] , []) .
qsort([First |Ll] ,L2) : -

partition(First,Ll,Ls,Lg),
qsort(Ls,Ls2),qsort(Lg,Lg2),
append(Ls2,[First|Lg2],L2) .

Report No. CLIP 8/93.1(94) March 1994

10 Manuel Hermenegildo and P. Lopez Garcfa

Let be JVi the transformation node:

(lab(qsort/2,(2),()),

(((2,0)) ,
((2, sd(lab(append/3, (3), (2)), 3,4,

(1 + sd(lab(qsort/2, (2), ()), 2 ,3 , ())))))))

Let be N2 the transformation node from Example 3.1, then, the pair ({iVi, N2}, iVi) is a
transformation, with entry point the node iVi •

Definit ion 11 (Size C o m p u t a t i o n Specif ication) We define a size computation specifica
tion as a pair (Pred, Os), where Pred is the name and arity of the predicate to be transformed,
and Os is a tuple of argument numbers whose sizes are computed by the transformed predicate
at run-time. •

Definit ion 12 (Transformation for a size c o m p u t a t i o n specif ication) A
Transformation for a size computation specification (Pred,Os), is a transformation (T,EP)
such that the label of EP is of the form lab(Pred,Os,Is). •

T h e o r e m 1 If there is a Transformation (T,EP), for a size computation specification
(Pred,Os), such that the label of EP is lab(Pred,Os,Is), then it is possible to transform the
clauses of Pred to obtain a transformed Predicate Pred', such that Pred' computes the sizes of
the arguments indicated in Os, provided that the sizes of arguments indicated in Is are supplied,
besides of course performing the same computations that Pred does.O

P r o o f Trivial, by induction on the number of resolutions. •

Section 5 discusses how we can choose the best transformations.

A note on the generation and nature of transformation nodes: this generation is performed
through a mode analysis to determine data flow patterns [3, 4, 9, 10, 2] and an argument size
analysis [5]. It is important to note that this combined analysis can in some cases infer intra-
literal size relations between arguments of a predicate. For example, it is possible to infer,
for the predicate append/3 , that the length of its third argument is the sum of its two first
arguments, i.e. h(3) = h(l) + h(2). This information can be used to generate transformation
nodes which can form part of a transformation, but which need to traverse less data because a
size computation can be performed directly in one operation, rather than by counting during the
execution of the predicate. Thus, at one program point we may decide to perform an arithmetic
operation, provided that the needed sizes are known, or make a literal perform size computation
by transforming it to perform data traversal.

5 Irreducible/Optimal Transformations

Since there may be many possible transformations for a given size computation specification,
we are interested in those involving the least amount of overhead at run-time. Such overhead is

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 11

dependent on the system, since it depends on the cost of argument passing and that of arithmetic
operations. Reducing this overhead suggests considering transformations having the minimum
number of transformation nodes and each of them having the minimum number of items in Is,
where lab(Pred,Os,Is) is the label of any node in the transformation. That is, to transform a
predicate to make it compute the sizes of some of its arguments, we would like to know which
are the arguments whose sizes are strictly necessary to perform this computation (in order
to add only the absolutely necessary additional arguments and operations to the transformed
predicates) and also what is the minimum number of predicates which have to be transformed.
We first introduce the concept of irreducible transformation and show that to determine whether
it is possible to transform a predicate, we only need to find irreducible transformations. Then
we present some ideas regarding the generation of optimal irreducible transformations.

Definit ion 13 (Irreducible Transformation) A transformation (T,EP), is Irreducible if
and only if:

1. There is only one transformation node in T labeled with the same label.

2. T = {EP} U CN(EP,T). That is, all the transformation nodes are needed.

3. There are no two transformation nodes in T, labeled with the labels X and Y respectively,
such that X < Y. •

The transformation shown in Example 4.1 is irreducible. We are going to show that to
determine whether it is possible to transform a predicate, we only need to find irreducible
transformations, but to do this we need some definitions and lemmas.

Definit ion 14 (Subst i tu t ions of labels: S u b (E , X , Y)) Given a size expression E and two
labels X and Y, where: X = lab(Pred,Os,Isx), Y = lab(Pred,Os,Isy) and Isy C Isx, we
define Sub(E,X,Y) as:

1. If E = sd(Z,ArNum,IitNum, SizExp), where SizExp= {E\,..., En) then:

(a) IfZ = X:
let Expi,..., Expm be the size expressions in SizExp associated with the argument

numbers a\, ...,am £ Isx, such that {a\, ...,am} = Isy, then:

Sub(E,X,Y) = sd{Y, ArN um, TitN um, SizExp'),

where SizExp' = (Sub(Expi, X, Y),..., Sub(Expm, X, Y))

(b) IfZ^X then :

Sub(E,X,Y) = sd{Z, ArN um, TitN um, SizExp"),

where SizExp" = [Sub{E1,X, Y),..., Sub(En,X, Y))

2. If E = Ei AJ?2, where A is an arithmetic operator (+, —, *, etc.), then:

Sub(E, X, Y) = Sub(E!,X, Y) A Sub(E2, X, Y)

3. Otherwise: Sub(E,X,Y) = E.

Report No. CLIP 8/93.1(94) March 1994

12 Manuel Hermenegildo and P. Lopez Garcfa

We can extend the previous definition to transformation nodes. Given a transformation node
N and two labels X and Y, where:

X = lab(Pred,0 s, L sx), Y = lab(Pred,0 s, L sy), Isy C Isx,
N = (Label, SizAssign), SizAssign = (C A\,..., CAn),and
CAl = ((a},E}),...,(aT,Ef))

we define Sub(N, X, Y) = N', where:

N' = (Label, SizAssign'), SizAssign' = (A\,..., An), and

Ai = ((a},Sub(E}, X, Y)),..., (af, Sub{E?, X, Y)))

We extend the previous definition to a set T of transformation nodes:

Sub(T,X,Y) = T',

where T' is the result of substituting X by Y in every node in T. •

E x a m p l e 5.1 Consider the transformation node N\ as defined in Example 4.1, then:

Sub(N\, lab(append/3, (3), (2)),lab(append/3, (3), ())) = Ns, where Ns is:

(lab(qsort/2,(2),(y),
(((2,0)) ,
((2, sd(lab(append/3, (3), ()), 3,4, ())))))

•

L e m m a 1 Let (T,Ne) be a transformation with entry point Ne, such that there is a set S of
n nodes in T, {N\, ...,Nn} labeled with the same label L. Let T{ = (T — S) U {iV8} for all i,
1 < i < n, and EP{ be a transformation node defined as follows:

EPi = I
' Ni ifNeeS-{Ni}

NP otherwise.

then for all i, 1 < i < n, (Ti,EPi) is a transformation.

P r o o f Trivial. •

L e m m a 2 Let (T,NX) be a transformation whose entry point is the node Nx. Let Ny £ T and
Nz G T be two transformation nodes labeled with Y and Z respectively, such that Y < Z. Let
Nw be a new entry point defined as:

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 13

' Sub(Ny,Z,Y) tfNx = Nz

Nw= <
Sub(Nx, Z, Y) otherwise.

Let T' = Sub(T, Z, Y), and T" = CN(NW, T') U {Nw}

Then (T", Nw) and (T", Nw) are two transformation, and Nz (j£ T"

P r o o f Trivial. •

T h e o r e m 2 If there is a transformation T for a size computation specification X, then there
is an irreducible transformation T" for X .O

P r o o f It is possible to obtain a finite set of irreducible transformations from T applying the
following two processes:

1. Eliminate nodes with the same label (lemma 1). We can obtain a set of transformations:
{Ti, ...,Tm}, which do not contain nodes with the same label.

2. Eliminate nodes that have a label which is less than another label in the same transfor
mation. We can choose any of these T8- and apply successive substitutions to it (lemma 2),
obtaining in each step a Transformation T / , defined as T" in lemma 2. We apply substitu
tions until we obtain an transformation Tf- which does not contains pairs of transformation
nodes labeled with labels such that one is less than the other one. •

•

Theorem 2 means that we only need to find irreducible transformations to determine whether a
procedure is transformable to compute sizes. Obviously, irreducible transformations will result in
transformed procedures with potentially less overhead at run-time than the transformations they
have been obtained from, but now the problem is to decide which irreducible transformation will
have less overhead, or, in other words, which of them will be optimal. The problem of finding
such optimal irreducible transformations lies in the fact that we need to use two parameters
(number of transformation nodes and number of arguments needed) in the comparison and some
transformations may be incomparable, in the sense that one is smaller than the other one on one
criteria but the converse is true on the other criteria. In practice we can always assign costs or
weights to both argument passing steps and arithmetic operations so that for each transformation
we can obtain a function which gives its cost or overhead as a function of the input data sizes.
In this case we can compare the cost of irreducible transformations and decide which of them
is optimal. In the same way, we can compare the cost of irreducible transformations with the
cost of performing the standard size computation, i.e. the one using predefined predicates such
as length/2, in order to see how convenient performing the transformation to compute sizes is.

6 Searching for Irreducible Transformations

Since the number of transformation nodes for a given size computation specification is finite,
a possible algorithm to find transformations may be to simply generate all possible sets of

Report No. CLIP 8/93.1(94) March 1994

14 Manuel Hermenegildo and P. Lopez Garcfa

transformation nodes and test which of them are irreducible transformations. Note that the
number of transformation nodes is restricted by the number of size relations that can be inferred
by size analysis [5]. For this reason, if the algorithm does not find any transformation it does
not mean that there is not a transformation, but that it is impossible to find a transformation
with the inferred information by size analysis. However, some other more efficient approaches
are possible.

One possible approach is to follow a top-down algorithm. This approach is based on the
generation of AND-OR trees, where labels are the OR nodes and transformation nodes are
the AND nodes. The search process is similar to SLD-Resolution. In this analogy, we can
regard the resolvent in our SLD-Like algorithm, as the set of labels for which it is necessary to
find transformation nodes labeled with them. Our current substitution, which we call current
transformation, is the set of transformation nodes assigned to labels, and it will constitute the
answer transformation. Thus, when the resolvent is empty the current transformation is the
answer transformation, which will be irreducible. The entry point of an answer transformation
is the transformation node assigned to the label that constitutes the root of the search tree.
We represent the current transformation as a list of transformation nodes. Since there may be
several labels for a given size computation specification, it is necessary to generate several search
trees, with each label being the root of a tree. The search process starts with the resolvent being
a label , which is the root of the tree, and an empty current transformation. A resolution step
consists of removing a label from the resolvent and assigning to it a transformation node which is
labeled with this label and it does not contain labels in its size expressions that are greater than
some label of the nodes in the current transformation. This transformation node will be added
to the current transformation. After, this the resolvent is modified by adding all the labels that
appear in the selected transformation node such that a) they are not yet in the resolvent and b)
no identical transformation node appears in the current transformation labeled with such labels.

The transformation nodes are generated with the condition that they do not contain labels in
its size expressions that are greater than the label of the node. Once we get all the answer irre
ducible transformations of all the possible AND-OR trees the remaining problem is determining
which of them will have the least overhead in the size computation process.

The efficiency of the previous top-down algorithm can be improved if the alternatives for the
OR nodes are generated with some knowledge regarding which labels will fail. If the base cases
of recursive predicates are examined, it is possible to ensure that some labels will fail, and prune
the search trees considerably - i.e. to apply a top-down driven bottom-up algorithm. We have
built a prototype implementation in Prolog along these lines which makes use of the built-in
search capabilities of Prolog to perform such a top-down search.

Another alternative is to apply directly a bottom-up algorithm. In this approach, first trans
formation nodes are found for the leaves in the call-graph and this information is propagated to
find transformation nodes for the ancestors, until we get to the root. Finding a transformation
node will imply in this approach the computation of a fixed-point.

E x a m p l e 6.1 Consider the predicate q s o r t / 2 as defined in Example 4.1, and suppose we want
to transform it to compute the length of its second argument, that is, we want to find a transfor
mation for the size computation specification (qsort/2, (2)). We can apply a top-down algorithm.
To do this we need to generate some transformation nodes. Consider for example iVi, N2 and

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 15

A3, where:

Ax is:

(lab(qsort/2,(2),Q),

(((2,0)) ,

((2, sd(lab(append/3, (3), ()), 3,4, ())))))

A 2 i s :

(lab(qsort/2,(2),Q),

(((2,0)) ,
((2, sd(lab(append/3, (3), (2)), 3,4,

(1 + sd(lab(qsort/2, (2), ()), 2 ,3 , ())))))))

and A3 is:

(lab(append/3, (3), (2)),
(((3 ,^(2))) ,
((3 ,1 + sd(lab(append/3, (3), (2)), 3 ,1 , (h(2)))))))

We can generate a tree for each possible label for the size computation specification
(qsort/2, (2)), but in this example we are going to generate one for lab(qsort/2,(2),()). Thus,
the first step is to initialize the resolvent with this label obtaining the initial state:

Resolvent: [lab(qsort/2, (2), ())], and Current Transformation: []

Then we remove this label from the resolvent to find a transformation node labeled with it. We
first choose JVi and check that there is no label L appearing the size expressions of JVi such that
there is a node in the current transformation labeled with L and that L is not in the resolvent.
The we add Ai it to the current transformation list. After this, the resolvent is modified by
adding lab(append/3, (3), ()) to it. The label lab(qsort/2, (2), ()) is not added to it because there
is still a node in the current transformation labeled with it. At this point the current state is:

Resolvent: [lab(append/3, (3), ())], and Current Transformation: [iVi]

Then we remove the label from the resolvent and try to find a transformation node labeled with
it. But because there is no such node, failure occurs and backtracking is performed, so that the
new state is:

Resolvent: [lab(qsort/2, (2), ())], and Current Transformation: []

We proceed and find another alternative for lab(qsort/2, (2), ()), which is A 2 , reaching the state:

Resolvent: [lab(append/3, (3), (2))], and Current Transformation: [JV2]

Report No. CLIP 8/93.1(94) March 1994

16 Manuel Hermenegildo and P. Lopez Garcfa

The next step is to find a node labeled with lab(append/3,(3),(2)). This node is A3. At this
point the resolvent is empty, and the current transformation is an irreducible transformation.
The final state is:

Resolvent: [], and Current Transformation: [iV2,iV3]

This search may continue until all possible transformations with entry point labeled with
lab(qsort/2,(2),()) are found. Moreover, all possible search trees can be generated from the
possible labels referred to the size computation specification (qsort/2,(2)) as its root. •

7 Experimental Results and Advantages of the Method

We have run a series of experiments by using SICStus PROLOG running on a SUN IPC work
station to measure the speedup obtained with our predicate transformation technique with
respect to which we call "standard approach" to computing term sizes, that is by introducing
new calls to predicates that explicitly compute them. For example, by using the Prolog length/2
built-in to compute lengths of lists or use other similar built-ins. Although this speedup can be
arbitrarily large, we have chosen some benchmarks tailored at allowing us to get some feeling
for the performance gain which can be obtained in practice in a number of cases. Table 1
shows execution times for the experiment done with these benchmarks. To is the execution
time without size computation. T^ is the execution time of the size computation with the
standard approach. T2 is the execution time of the predicate transformation approach. T i —
To and T2 — To are the overheads due to size computation with the standard and predicate
transformation approach respectively. The last column shows the speedup achieved by the
predicate transformation approach with respect to the standard one. This speedup is computed
according to the following expression:

(T i - T 0) - (T 2 - T 0) ,r

speedup = 100 (1)
^ i - ^0

The first benchmark that we have chosen is the predicate c /2 , which represents the standard
case of a simple list traversal:

c([] , []) .
c ([X | Y] , [X | Y l]) : - c (Y , Y l) .

We assume that we call c /2 with the first argument ground and the second one a free variable,
and that we need to know the length of the second argument once the goal c(X, Y) succeeds.
We perform the following transformation, which uses accumulating parameters, so that tail
recursion is preserved:

t r c ([] , [] , S , S) .
t r c ([X | Y] , [X | Y 1] , S 1 , S) :- S2 i s SI + 1, t r c (Y , Y l , S 2 , S) .

To measure the execution time with the standard approach we use the following definition of
l e n g t h / 3 , using the built-in i s / 2 , so that the execution time is comparable with that of c /2 ,
which uses the same built-in:

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 17

l e n g t h ([] , I , I) .
l e n g t h ([_ | L] , 10 , I) : - I I i s 10+1, l e n g t h (L , I I , I) .

Note that although we could use a more efficient definition of l e n g t h / 3 , by using more efficient
built-ins than i s / 2 (or using a built-in version), we can always do the same for the predicate
transformation and use special arithmetic built-ins (as we have done in our implementation).
In this case T Q is the execution time of the goal c(X, Y), T^ is the execution time of the goal
c(X, Y) , l e n g t h (Y , 0 , L) and T2 corresponds to the goal t r c (X , Y, 0 , L).

The second benchmark is the predicate q s o r t / 2 , in which the lengths of the two output lists
of p a r t i t i o n / 4 are computed 3 .

The third benchmark is the predicate q/2 defined as follows:

q ([] , []) •
q ([X | Y] , [X,X|Y1]) : - X > 7 , ! , q(Y, Y l) .
q ([X | Y] , [X,X,X|Y1]) : - X =< 7 , q(Y, Y l) .

In this case T Q is the execution time of the goal q(X, Y), T^ is the execution time of the goal
q(X, Y) , l e n g t h (Y , 0 , L) and T2 corresponds to the goal t r q (X , Y, 0 , L), where t r q / 2
is defined as follows:

t r q ([] , [] , S, S) .
t r q ([X | Y] , [X,X|Y1], S I , S) : - X > 7 , ! , S2 i s SI + 2 , t r q (Y , Yl , S2, S) .
t r q ([X | Y] , [X,X,X|Y1], S I , S) : - X =< 7 , S2 i s SI + 3 , t r q (Y , Yl , S2, S) .

Execution times have been measured for different lengths of the input list for these three bench
marks, and the observed speedup is approximately constant in each case.

Finally, the fourth benchmark is the predicate d e r i v / 2 (we do not include the corresponding
transformation for the sake of brevity).

The observed speed-ups arise from two factors: avoiding additional term traversal and per
forming less arithmetic operations. As we can see from benchmarks d e r i v / 2 and q/2 , the
"standard approach" has to traverse greater data and thus the number of arithmetic operations
is greater than in the predicate transformation approach.

Note that another advantage of our approach is that it can take profit of previous size com
putations so that no recomputation is performed.

E x a m p l e 7.1 Consider another case - let us assume that we have the goal:

q (X) , append(Y,X,Z) , append(W,X,K)

where X, Y and W are ground lists, and Z and K are unbound variables that will be bound to lists
when the goal succeeds. Let us also assume that we are interested in knowing the lengths of Z
and K after the execution of the goal. Using the standard approach we may have:

This size computation is useful to transform predicate qso r t /2 in order to perform granularity control

Report No. CLIP 8/93.1(94) March 1994

18 Manuel Hermenegildo and P. Lopez Garcfa

q(X) , append(Y,X,Z) , append(W,X,K), l ength(Z.LZ) , length(K,LK)

while using the predicate transformation approach we would have:

q lo (X,SX) , append3o2i(Y,X,Z,SX,SZ) , append3o2i(W,X,K,SX,SK)

where qlo(X,SX) computes the length of X (SX), which is used by append3o2i /5 to compute
the lengths of Z and K (SZ and SK). In this case the sum of the lengths of the data traversed,
which is equivalent to the operations needed to compute the lengths is: length(X)-\-length(Y)-\-
length(W). In the first case (standard approach) we have: length(Z) + length(K), but since:
length(Z) = length(X) + length(Y), and length(K) = length(X) + length(W) we have: 2 *
length(X) + length(Y) + length(W). •

One might think that a better solution to the first approach would be:

q (X) , append(Y,X,Z) , append(W,X,K), l ength(X,SX) ,
l ength (Y ,SY) , length(W,SW), SZ i s SX + SY, SK i s SX + SW

but in this case it is necessary to analyze the program to infer that the length of the third
argument of append/3 is the sum of its two first arguments. This may be easy in some cases,
for example for append/3 , but may be more difficult or impossible in some other cases. This is
the case when the length of a list depends not only on the length of other lists but also on its
contents. In any case, note that our approach would still take advantage of such optimizations
if they can be detected.

However, there are also some cases in which the predicate transformation approach can be
more expensive than the standard one. Such cases may appear in connection with backtracking
- for example, if p / 2 were defined differently in such a way that it performed a large amount of
backtracking, then it might be better to compute the length of the second argument with the
standard approach (using l e n g t h / 2) . Thus, the predicate transformation approach will perform
best when used in deterministic computations. Also, one can construct predicate transformations
which perform redundant size computations. Consider, for example, the following definition of
a transformation of the qsort /2 predicate, which computes the length of the second argument
(output) , provided that the length of the first one (input) is supplied at the call:

q s 2 o l i ([] , [] , 0 , 0) .
q s 2 o l i ([X | I] , 0, S i z e . X I , S ize .O) :-

7, Size_XI i s the l eng th of the input l i s t
p a r t i t i o n 3 o (X , I , Lg, Sm, S ize_Lg) ,
Size_Sm i s Size_XI - 1 - Size_Lg,
q s 2 o l i (L g , OLg, Size_Lg, S ize_0Lg) ,
qs2ol i (Sm, OSm, Size_Sm, Size_0Sm),
Size_0 i s Size.OLg + Size.OSm + 1,
append(0Lg, [X|0Sm], 0) .

In this case more arithmetic operations are performed than with the standard approach. But, as
pointed in Section 5, this situation can be avoided by obtaining a function which gives the cost

March 1994 UPM - Dept. of Computer Science

A Technique for Dynamic Term Size Computation 19

benchmark
c/2
qsort /2
q/2
deriv/2

T 0 (m s)
202.9
1218
52,59
119

T i (m s)

405.69
1495
90.2

3349

T 2 (m s)
277.99
1343.9
61.69
239

T i - T o
202.79

277
37.61
3110

T 2 - T 0

75.09
125.9

9.1
120

s p e e d u p
63.0 %
55.3 %
76.7 %
92.9 %

Table 1: Execution times for benchmarks.

of the transformation as a function of the input data sizes, so we can compare this cost with the
cost of performing the standard size computation and decide which will be more convenient.

8 Conclusions and Future Work

We have described how predicates can be transformed to compute term sizes at run-time and
pointed out the advantages of such transformation. We have also shown a top-down algorithm to
find irreducible transformations, which we have implemented in its main part . We are planning
on finishing this implementation and evaluating its performance in the granularity application
described in [5]. This work is oriented to the development of a complete granularity control
system, which can be considered the source of inspiration behind the dynamic term size compu
tation technique presented. In this sense we are working on the integration of this system into
a series of other program analysis an transformation tools, that we have implemented, in order
to develop improved automatic parallelizing compilers for logic programs.

9 Acknowledgements

We would like to thank Saumya Debray and all the members of the CLIP group (Com
putational Logic Implementation and Parallelism) at the Facultad de Informatica (UPM), F.
Ballesteros, F. Bueno, D. Cabeza, M. Carro, M. Garcia de la Banda and L.M. Gomez Henriquez
for useful comments during internal presentations of this work. Thanks also to F. Ballesteros and
M. Carro for implementing efficient built-ins to replace predefined predicate is/2 in the counting
process associated with the dynamic term size computation. The work presented in this pa
per is supported in part by ESPRIT project 6707 "PARFORCE" and CICYT proyect number
TIC93-0976-CE. Pedro Lopez Garcia is also supported in part by grant number AP91-27525988
from the Spanish Department of Education.

Report No. CLIP 8/93.1(94) March 1994

20 Manuel Hermenegildo and P. Lopez Garcfa

References

1. B. Bjerner and S. Holmstrom. A compositional approach to time analysis of first order lazy
functional programs. In Proc. ACM Functional Programming Languages and Computer
Architecture, pages 157-165. ACM Press, 1989.

2. M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical
Report CW62, Department of Computer Science, Katholieke Universiteit Leuven, October
1987.

3. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs.
Journal of Logic Programming, 13(2 and 3):103-179, July 1992.

4. S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. ACM
Transactions on Programming Languages and Systems, l l (3):418-450, 1989.

5. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Pro
grams. In Proc. of the 1990 ACM Conf. on Programming Language Design and Implemen
tation, pages 174-188. ACM Press, June 1990.

6. T. Hickey and J. Cohen. Automating Program Analysis. Journal of ACM, 35(1), Jan 1988.

7. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp. Principles of
Programming Languages, pages 111-119. ACM, 1987.

8. D. Le Metayer. Ace: An automatic complexity evaluator. ACM Transactions on Program
ming Languages and Systems, 10(2), April 1988.

9. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness
of Program Variables Through Abstract Interpretation. In 1991 International Conference
on Logic Programming, pages 49-63. MIT Press, June 1991.

10. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2 and 3):315-347, July
1992.

11. M. Rosendhal. Automatic Complexity Analysis. In Proc. ACM Conference on Functional
Programming Languages and Computer Architecture, pages 144-156. MIT Press, 1989.

12. P. Wadler. Strictness analysis aids time analysis. In Proc. Fifteenth ACM Symposium on
Principles of Programming Languages, pages 119-132. ACM Press, 1988.

13. B. Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9), Sep 1975.

14. X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan. A new
method for compile time granularity analysis. In ILPS'91 Workshop on Compilation of
Symbolic Languages for Parallel Computers, 1991.

March 1994 UPM - Dept. of Computer Science

