
Incremental Analysis of Logic 
Programs 
Manuel Hermenegildo, German Puebla 
Facultad de Informatica, Universidad Politecnica de Madrid 
28660-Boadilla del Monte, Madrid, Spain 
{herme,german}@f i.upm.es 

Kimbal Marriott 
Dept. of Computer Science, Monash University 
Clayton 3168, Australia 
marriott@cs.monash.oz.au 

Peter J . Stuckey 
Dept. of Computer Science, The University of Melbourne 
Parkville 3052, Australia 
pjs@cs.mu.oz.au 

Abstract 

Global analyzers traditionally read and analyze the entire program at once, in a 
non-incremental way. However, there are many situations which are not well suited 
to this simple model and which instead require reanalysis of certain parts of a pro­
gram which has already been analyzed. In these cases, it appears inefficient to 
perform the analysis of the program again from scratch, as needs to be done with 
current systems. We describe how the fixpoint algorithms in current generic analysis 
engines can be extended to support incremental analysis. The possible changes to 
a program are classified into three types: addition, deletion, and arbitrary change. 
For each one of these, we provide one or more algorithms for identifying the parts 
of the analysis that must be recomputed and for performing the actual recompu-
tation. The potential benefits and drawbacks of these algorithms are discussed. 
Finally, we present some experimental results obtained with an implementation of 
the algorithms in the PLAI generic abstract interpretation framework. The results 
show significant benefits when using the proposed incremental analysis algorithms. 

1 Introduction 

Global program analysis is becoming a practical tool in logic program compilation 
in which information about calls, answers, and substitutions at different program 
points is computed statically [11, 17, 14, 18, 3]. The underlying theory, formalized 
in terms of abstract interpretation [6], and the related implementation techniques 
are well understood for several general types of analysis and, in particular, for top-
down analysis of Prolog [8, 2, 14, 7, 12, 4]. Several generic analysis engines, such 
as PLAI [14, 13] and GAIA [4], facilitate construction of such top-down analyzers. 
These generic engines have the description domain and functions on this domain 
as parameters. Different domains give analyzers which provide different types of 
information and degrees of accuracy. The core of each generic engine is an algorithm 

1 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marriott@cs.monash.oz.au
mailto:pjs@cs.mu.oz.au


for efficient fixpoint computation [13, 14]. Efficiency is obtained by keeping track of 
which parts of a program must be reexamined when a success pattern is updated. 
Current generic analysis engines are non-incremental - the entire program is read, 
analyzed and the analysis results written out. 

Despite the obvious progress made in global program analysis, most LP and 
CLP compilers still perform only local analysis (the &-Prolog [9], Aquarius [17], 
and Andorra-I [18] systems are notable exceptions). We believe that an important 
contributing factor to this is the simple, non-incremental model supported by global 
analysis systems, which is unsatisfactory for at least four reasons. The first reason is 
that optimizations are often source-to-source transformations, and so optimization 
consists of an analyze, perform optimization then reanalyze cycle. This is inefficient 
if the analysis starts from scratch each time. Such analyze-optimize cycles may oc­
cur for example when program optimization and multivariant specialization are 
combined [20, 15]. This is used, for instance, in program parallelization, where an 
initial analysis is used to introduce specialized predicate definitions with run-time 
parallelization tests, and then these new definitions are analyzed and redundant 
tests removed. This is also the case in optimization of CLP(7?.) in which special­
ized predicate definitions are reordered and then reanalyzed. The second reason 
is that incremental analysis supports incremental runtime compilation during the 
test-debug cycle. Again, for efficiency only those parts of the program which are 
affected by the changes should be reanalyzed. Incremental compilation is important 
in the context of logic programs as traditional environments have been interpretive, 
allowing the rapid generation of prototypes. The third reason is to handle cor­
rectly and accurately the optimization of programs in which clauses are asserted or 
retracted at runtime. The fourth reason is to support incremental compilation of 
programs broken into modules. 

In this paper we describe how the fixpoint algorithm in the generic analysis 
engines can be extended to support incremental analysis. Surprisingly, there has 
been little research into incremental analysis for logic programs. Several researchers 
have looked at compositional analysis of modules in logic programs [5]. There has 
been much research into incremental analysis for other programming paradigms 
(see for example the bibliography of Ramalingam and Reps [16]). However, to our 
knowledge this is the first paper to identify the different types of incremental change 
which are useful in logic program analysis and to give practical algorithms which 
handle these types of incremental change. Another contribution of the paper is 
a simple formalization of the non-incremental fixpoint algorithms used in generic 
analysis engines. 

2 Non-Incremental Analysis Algorithm 

We start by providing a stylized formalization of the non-incremental fixpoint algo­
rithms used in a good number of the existing generic analysis engines. The purpose 
of our presentation is not so much to present a practical algorithm for performing 
program analysis but rather to capture the core behavior of the standard algorithms 
and then use this stylized algorithm to present our proposals regarding how to make 
them incremental. 

The aim of the kind of (goal oriented) program analysis performed by the above 
mentioned engines is, for a particular description domain, to take a program and a 
set of initial calling patterns and to annotate the program with information about 
the current environment at each program point whenever that point is reached when 
executing calls described by the calling patterns. 

2 



(app(X, Y, Z) : Y H+ Y A X <-> Z) 

app(X,Y,Z)° :- X = [J1, Y = Z2 app(X,Y,Z)3 :- X = [U|V]4, Z = [U|W]5, app(V,Y,W)6 . 

0 : Y 

1 : YAX 

2 : XAYAZ 

Figure 1: Example Program Analysis Graph 

To illustrate this, we now develop an example. The description domain, as in 
all of our examples, will be the definite Boolean functions [1]. The key idea in this 
description is to use implication to capture groundness dependencies. The reading 
of the function x —> y is: "if the program variable x is (becomes) ground, so is 
(does) program variable y." For example, the best description of the constraint 
f(X, Y) = f(a, g{U, V)) is X A Y o (U A V). 

Now consider the program for appending lists: 

app(X,Y,Z) : - X=[], Y=Z. 
app(X,Y,Z) : - X=[U|V], Z=[U|W], app(V,Y,W). 

Assume that we are interested in analyzing the program for the call app(X, Y, Z) 
with initial calling pattern Y indicating that we wish to analyze it for any call 
to app with the second argument definitely ground. In essence the analyzer must 
produce the program, analysis graph given in Figure 1, which can be viewed as a finite 
representation (through a "widening") of the set of AND-OR trees explored by the 
concrete execution [2]. The graph has two sorts of nodes: those belonging to rules 
(also called "AND-nodes") and those belonging to atoms (also called "OR-nodes"). 
For example, the atom node (app(X, Y, Z) : Y i->- Y A (X o Z)) indicates that the 
calling pattern Y for the atom append(X, Y, Z) has answer pattern Y A (X o Z). 
This answer pattern depends on the two rules defining app which are attached by 
arcs to the node. These rules are annotated by descriptions at each program point 
of the constraint store when the rule is executed from the calling pattern of the 
node connected to the rules. The program points are entry to the rule, the point 
between each two literals, and return from the call. Atoms in the rule body have 
arcs to OR-nodes with the corresponding calling pattern. If such a node is already 
in the tree it becomes a recursive call. Thus, the analysis graph in Figure 1 has a 
recursive call to the calling pattern app(X, Y, Z) : Y. 

A program analysis graph is defined in terms of an initial set of calling patterns, 
a program, and four abstract operations on the description domain. The abstract 
operations are: 

• Aproject(CP, L) which performs the abstract restriction of a calling pattern 
CP to the variables in the literal L; 

• Aadd(C, CP) which performs the abstract operation of conjoining the actual 
constraint C with the description CP; 

3 

3 : Y 
4 : Y AX ^ (U AV) 

5 : Y AX ^ (U AV) AZ ^ (U AW) 

6 : YAX^(UAV)AZ^(UAW)AU^W 



• Acombine(CPi, CP2) which performs the abstract conjunction of two descrip­
tions; 

• Alub(CPi, CP2) which performs the abstract disjunction of two descriptions. 

For a given program and calling pattern there may be many different analysis 
graphs. However, for a given set of initial calling patterns, a program and abstract 
operations on the descriptions, there is a unique least analysis graph which gives 
the most precise information possible. This analysis graph corresponds to the least 
fixpoint of the abstract semantic equations. 

We now give an algorithm which computes the least analysis graph. We first 
introduce some notation. CP, possibly subscripted, stands for a calling pattern (in 
the abstract domain). AP, possibly subscripted, stands for an answer pattern (in 
the abstract domain). Each literal in the program is subscripted with an identifier 
or pair of identifiers. A : CP stands for an atom (unsubscripted) together with a 
calling pattern. A]. : CP or A/~vi : CP stands for subscripted literals together with 
a calling pattern. Rules are assumed to be normalized and each rule for a predicate 
p has identical sets of variables p(xPl,... xPn) in the head atom. Call this the base 
form of p. Rules in the program are written with a unique subscript attached to 
the head atom (the rule number), and dual subscript (rule number, body position) 
attached to each body atom (and constraint redundantly) e.g. Hf. <— B^i,..., Bk,nk 

where B].^ is a subscripted atom or constraint. The rule may also be referred to as 
rule k, the subscript of the head atom. E.g. the append program is written: 

app(X,Y,Z)i : - X = [ ] M , Y=Zi,2. 
app(X,Y,Z)2 : - X=[U|V]2,i, Z=[U|W]2,2, app(V, Y,W)2j3. 

The program analysis graph is implicitly represented in the algorithm by means 
of two data structures, the answer table and the dependency arc table. The answer 
table contains entries of the form A : CP \-> AP. A is always a base form. This 
represents a node in the analysis graph of the form (A : CP H->- AP). It is interpreted 
as the answer pattern for calls of the form CP to A is AP. A dependency arc is 
of the form H\. : CPQ =>- [CP\\ B/~vi : CP^. This is interpreted as that if the rule 
with Hk as head is called with calling pattern CPQ then this causes literal Bk,i 
to be called with calling pattern CPi- The remaining part CP\ is the program 
annotation just before B].^ is reached and contains information about all variables 
in rule k. CP\ is not really necessary, but is included for efficiency. Dependency 
arcs represent the arcs in the program analysis graph from atoms in a rule body to 
an atom node. E.g. the program analysis graph in Figure 1 is represented by 

answer table: app(X, Y, Z) : Y i->- Y A (X <-> Z) 
dependency arc table: 

app2(X,Y,Z):F => [Y A X ^ (U AV) A Z ^ (U AW)] app2i3 (V, Y,W) : Y 

Intuitively, the analysis algorithm is just a graph traversal algorithm which 
places entries in the answer table and dependency arc table as new nodes and arcs 
in the program analysis graph are encountered. To capture the different graph 
traversal strategies used in different fixpoint algorithms, we use a priority queue. 
Thus, the third, and final structure used in our algorithms is a prioritized event 
queue. Events are of three forms. The first, updated(A : CP), indicates that the 
answer pattern to atom A with calling pattern CP has been changed. The second, 
arc(R), indicates that the rule referred to in R needs to be (re) computed from the 
position indicated. The third, newcall(A : CP), indicates that a new call has been 
encountered. The priority mechanism for the queue is left as a parameter of the 
algorithm. 

4 



analyze(S) 
foreach A : CP G S 

add-event(newcall(A 
main_loop() 

CP)) 

main_loop() 
while E := next_event() 

if (E = = newcall(A : CP)) 
new_calling_pattern(A : CP) 

elseif (E = = updated{A : CP)) 
add_dependent_rules(^4 : CP) 

elseif (E = = arc(R)) 
process_arc(P) 

endwhi le 
remove_useless_ca 115(5*) 

k,nk 

new_calling_pattern(A : CP) 
foreach rule Ak <— Bk,i, • • • , B, 

CPi := Aproject(CP,PM) 
add_event(orc( 

Ak:CP=>[CP] Bktl :CP!)) 
AP := initial-guess(A : CP) 
if ( A P O . L ) 

add_event(Mpdated(^4 : CP)) 
add A : CP !-• AP to answer_table 

add_dependent_rules(^4 : CP) 
foreach arc of the form 

Hk : CP0 => [CP!] Bkti : CP2 

in graph 
where there exists renaming a 

s.t. A : CP = (Bk,i • CP2)a 
add_event(orc( 

Hk : CP0 => [CPi] Bk4 : CP2)) 

Bk CP2 

CP2 

process_arc(.ff;i : CPo =>• [CPij 
if (Bk,i is not a constraint) 

add Hk : CP0 => [CPi] Bk,., 
to dependency_arc_table 

AP0 := get_answer(B4ii : CP2) 
CP3 := Acombine(CPi,^P0) 
if (CP3 <> -L and i <> nk) 

CPA := Aproject(CP3,Bfc,; 
add_event( orc( 

Hk : CP0 => [CP3] Bk, 
elseif (CP3 <> -L and i 

^ P i := Aproject(CP3,#*) 
insert_answer_inf o ( P : CPo *-¥ APi) 

i+U 

nk) 
CPi)) 

get_answer(L : CP) 
if (L is a constraint) 

r e t u r n Aadd(L, CP) 
else r e t u r n lookup_answer(L, CP) 

lookup_answer(A : CP) 
if (there exists a renaming a s.t. 

a (A : CP) i-¥ AP in answer-table) 
return a~1(AP) 

else 
add-.event(newcall(a(A : CP))) 
wherecr is a renaming s.t. 
<T(A) is in base form 

r e t u r n _L 

insert_answer_inf o(H : CP >-¥ AP) 
APo := lookup_answer(P : CP) 
AP! := Alub(AP,AP0) 
if (AP0 < > APi) 

add (H : CP >->• AP\) to answer .table 
add_event(wpdoied(P : CP)) 

Figure 2: Non-incremental analysis algorithm 

The non-incremental analysis algorithm is given in Figure 2. Apart from the 
parametric description domain dependent functions, the algorithm has several other 
undefined functions. The functions add_event and next_event respectively add an 
event to the priority queue and return (and delete) the event of highest priority. 
When an event being added to the priority queue is already in the priority queue, a 
single event with the maximum of the priorities is kept in the queue. When an arc 
Hk : CP =3- [CP"]Bk,i • CP' is added to the dependency arc table, it overwrites any 
other arcs of the form H^ : CP => [-]-Bfc,j : - in the table and in the priority queue. 
The function initiaLguess returns an initial guess for the answer to a new calling 
pat tern. The default value is _l_ but if the calling pa t tern is more general than 
an already computed call then its current value may be returned. The procedure 
remove_useless-calls traverses the dependency graph given by the dependency arcs 
from the initial calls S and marks those entries in the dependency arc and answer 
table which are reachable. The remainder are removed. 

Space limitations prevent us from providing examples for this algorithm or for 
the incremental versions proposed - they can be found in [10]. It is also important to 
remember the purpose of this algorithm. It is not intended as a practical algorithm 
for computing a program analysis graph, as the overhead of event handling is too 

5 



increment al_addition(_R) 
foreach rule Ak <— Bk,i, • • • , Bku„k G R 

foreach entry A : CP i-¥ AP in the answer_table 
CPi : = Aproject(CP,BM) 
add.event(arc(^fc : CP => [CP] B M : CPi)) 

main_loop() 

Figure 3: Incremental Addition Algorithm 

high. Rather it is intended to capture the behavior of several algorithms which are 
used for computing the program analysis graph. Different algorithms correspond to 
different event processing strategies. In addition, practical algorithms incorporate 
a series of optimizations. The strategy used in PLAI is presented in Section 6. 

Theorem 1 For a program P and call patterns S, the non-incremental analysis 
algorithm returns an answer table and dependency arc table which represents the 
least program analysis graph of P and S. 

The corollary of this is that the priority strategy does not involve correctness of 
the analysis. This corollary will be vital when arguing correctness of the incremental 
algorithms in the following sections. 

Corollary 1 The result of the non-incremental analysis algorithm does not depend 
on the strategy used to prioritize events. 

3 Incremental Addition 

Since the answer and dependency arc tables are incrementally extended in the non-
incremental analysis of a program, incremental addition of new rules and new calling 
patterns does not place extra demands on the analysis algorithm. If the analysis is 
required for new calling patterns, then the routine analyze (S), where S is the set 
of new calling patterns may be repeatedly called. 

The new routine for analysis of programs in which rules are added incrementally 
is given in Figure 3. The routine takes as input the set of new rules R. If these 
define a calling pattern of interest, then requests to process the rule are placed 
on the priority queue. Subsequent processing is exactly as for the non-incremental 
case. 

Correctness of the incremental addition algorithm follows from correctness of 
the original non-incremental algorithm. Execution of the incremental addition al­
gorithm corresponds to executing the non-incremental algorithm with all rules but 
with the new rules having the lowest priority for processing. 

Theorem 2 If the rules in a program are analyzed incrementally with the incremen­
tal addition algorithm, the same answer and dependency arc tables will be obtained 
as when all rules are analyzed at once by the non-incremental algorithm. 

In a sense, therefore, the cost of performing the analysis incrementally can be no 
worse than performing the analysis all at once, as the non-incremental analysis could 
have used a priority strategy which has the same cost as the incremental strategy. 
We will now formalize this intuition. Our cost measure will be the number of calls 
to the underlying parametric functions. This is a fairly simplistic measure, but our 
results will continue to hold for reasonable measures. 

6 



top_down_delete(.D, S) 
H := {A\(A^B)GD} 
T := up(H) 
foreach A : CP G T 

delete entry A : CP i-» AP from answer_table 
delete each arc Ak : CP => [CPi]Bkj : CP2 from dependency. arc_table 

foreach A : CP G S H T 
add-event(newcall(A : CP)) 

main_loop() 

Figure 4: Top-down Incremental Deletion Algorithm 

Let Cnoninc(F, R, S) be the worst case number of calls to the parametric func­
tions F when analyzing the rules R and call patterns S for all possible priority 
strategies with the non-incremental analysis algorithm. 

Let Cadd(F, R, R', S) be the worst case number of calls to the parametric func­
tions F when analyzing the new rules Ri for all possible priority strategies with 
the incremental addition algorithm after already analyzing the program R for call 
patterns S. 

Theorem 3 Let the set of rules R be partitioned into R\,..., Rn rule sets. For any 
call patterns S and parametric functions F, 

n j<i 

Cnoninc(F, R, S) > ^ Cadd{F, ( |^J Rj),Ri,S). 

i=l j=l 

4 Incremental Deletion 

In this section we consider deletion of clauses from an already analyzed program 
and how to incrementally update the analysis information. The first thing to note 
is that we need not change the analysis results at all. The current approximation is 
trivially guaranteed to be correct. This approach is obviously inaccurate but simple. 
More accuracy can be obtained by applying a narrowing like strategy. The current 
approximation in the answer table is greater than the least fixpoint of the semantic 
equations. Thus, applying the analysis engine as usual except taking the greatest 
lower bound of (the lub of) the new answers with the old rather than the least upper 
bound is guaranteed to produce a safe result. The disadvantage of this method is 
its inaccuracy. Starting the analysis from scratch will often give a more accurate 
result. We now give two algorithms which are incremental yet are as accurate as 
the non-incremental analysis. 

"Top-Down" Deletion Algori thm 

The first method for incremental analysis of programs after deletion is to remove all 
information in the answer and dependency arc tables which depends on the rules 
which have been deleted and then to restart the analysis. Not only will removal 
of rules change the answers in the answer table, it will also mean that subsequent 
calling patterns may change. Thus we must also remove entries for calling patterns 
which may no longer exist. 

Information in the dependency arc table allows us to find these no longer valid 
call and answer patterns. Consider the dependency arcs of the analyzed program. 
Let D be the set of deleted rules. Let H be the set of atoms which occur as the head 

7 



bottom_up_delete(S', D) 
H := 0 
foreach rule Ak <— Bk,i, • • • , Bku„k G D 

foreach A : CP >->• AP in table 
H := H U(A: CP) 

while H is not empty 
let B : _ G H be such that B is of minimum predicate SCC level 
T := calling patterns in dependency graph for predicates in 

same predicate SCC as B 
foreach A : CP G T 

delete each arc Ak : CP => [CPi]Bkj : CP2 from dependency_arc_table 
foreach A : CP G external_calls(T, S) 

move entry A : CP i-» AP from answer_table to old-table 
foreach arc Bk : CPo => [CPi] Bkj : CP2 in dependency_arc_table 

where there exists renaming a s.t. (A : CP) = (Bkj : CP-2)a 
move Bk : CP0 =S> [CPi] BkJ : CP2 to old.table 

add_event(newco//(A : CP)) 
main_loop() 
foreach A : CP G external_calls(T, S) 

if answer pattern in old_table and answer_table agree 
foreach arc Bk : CP0 => [CPi] BkJ : CP2 in old-table 

where there exists renaming a s.t. (̂ 4 : CP) = (Bkj : CP2)a 
move Bk : CPo => [CPi] Bkj : CP2 to dependency_arc_table 

else 
H := H U (B : CP0) 

H := H I T 
delete old_table 

external_cal ls(T, S) 
U := 0 
foreach A : CP G T 

where exists arc Bk : CP0 => [CPi] Bkti : CP2 

and B : CP0 & T 
and there exists renaming a s.t. (A : CP) = {Bkti : CP2)a 
%% this means there is an external call 
U = U U (A : CP) 

return U U (T l~l S) 

Figure 5: Bottom-up Incremental Deletion Algorithm 

of a deleted rule. Let up(H) be the set of atom/call ing pa t tern pairs whose answers 
depended on an atom in H. Tha t is, all of the atom/call ing pat tern pairs tha t can 
reach a pair p : CP in the dependency graph where p £ H. After entries concerning 
these now invalid atom/call ing pa t tern pairs are deleted, the usual non-incremental 
analysis is performed. The routine for top-down rule deletion is given in Figure 4. 
It is called with the set of deleted rules D and a set of initial calls S. 

Correctness of the incremental top-down deletion algorithm follows from correct­
ness of the original non-incremental algorithm. Execution of the top-down deletion 
algorithm is identical to tha t of the non-incremental algorithm except tha t informa­
tion about the answers to some call pat terns which do not depend on the deleted 
rules is already in the da ta structures. 

T h e o r e m 4 If a program P is first analyzed and then rules R are deleted from 
the program and the remaining rules are reanalyzed with the top-down deletion al­
gorithm, the same answer and dependency arc tables will be obtained as when the 
rules P\R are analyzed by the non-incremental algorithm. 

The cost of performing the actual analysis incrementally can be no worse than 

8 



performing the analysis all at once. Let Cdei-td(F, R, R', S) be the worst case num­
ber of calls to the parametric functions F when analyzing the program R with rules 
R' deleted for all possible priority strategies with the top-down deletion algorithm 
after already analyzing the program R for call patterns S. 

Theorem 5 Let R and R' be sets of rules such that R' C R. For any call patterns 
S and parametric functions F, 

(F, R \ R', S) > Cdel-td{F, R, R', S). 

"Bottom-up" Deletion Algorithm 

The last theorem shows that the top-down deletion algorithm is never worse than 
starting the analysis from scratch. However, in practice it is unlikely to be that much 
better, as on average deleting a single rule will mean that half of the dependency 
arcs and answers are deleted in the first phase of the algorithm. The reason is that 
the top-down algorithm is very pessimistic - deleting everything unless it is sure 
that it will be useful. For this reason we now consider a more optimistic algorithm. 
The algorithm assumes that calling patterns to changed predicate definitions are still 
likely to be useful. In the worst case it may spend a large amount of time reanalyzing 
calling patterns that end up being useless. But in the best case we do not need 
to reexamine large parts of the program above changes when no actual effect is 
felt. The algorithm proceeds by computing new answers for calls to the lowest 
strongly connected component (SCC) in the program call graph which is affected 
by the rule deletion, and then moving upwards to higher SCCs. At each stage the 
algorithm recomputes or verifies the current answers to the calls to the SCC without 
considering dependency arcs from SCC in higher levels. This is possible because if 
the answer changes, the arc events they would generate are computed anyway. If the 
answers are unchanged then the algorithm stops, otherwise it examines the SCCs 
which depend on the changed answers (using the dependency arcs). For obvious 
reasons we call the algorithm Bottom-Up Deletion. It is shown in Figure 5. 

Proving correctness of the incremental bottom-up deletion algorithm requires 
an inductive proof on the SCCs. Correctness of the algorithm for each SCC follows 
from correctness of the non-incremental algorithm. 

Theorem 6 If a program P is first analyzed for calls S and then rules R are deleted 
from the program and the remaining rules are reanalyzed with the bottom-up deletion 
algorithm, the same answer and dependency arc tables will be obtained as when the 
rules P\R are analyzed by the non-incremental algorithm for S. 

Unfortunately, in the worst case, reanalysis with the bottom-up deletion algo­
rithm may take longer than reanalyzing the program from scratch using the non-
incremental algorithm. This is because the bottom-up algorithm may do a lot of 
work recomputing the answer patterns to calls in the lower SCCs which are no 
longer made. In practice, however, if the changes are few and have local extent, the 
bottom-up algorithm will be faster than the top-down. 

5 Arbitrary Change 

Given the above algorithms for addition and deletion of clauses we can handle any 
possible change of a set of clauses by first deleting the original and then adding 
the revised version. This is inefficient since the revision may not involve very far 

9 



local_change(S', R) 
let R be of the form Ak <- Dk,i,- • •, Dkt„k 
T : = 0 
foreach A : CP i-t AP in answer table 

T := T U (A : CP) 
T := T plus all B : CPo in same SCCs of dependency graph 
delete each arc of the form Ak : CPo => [CPi] Bkji : CP2 from graph 
foreach A : CP £ external_calls(T, S) 

CP! := Aproject(CP, Dkfl) 
add_event(arc(^fc : CP => [CP] £>M : CPi)) 

main_loop() 

Figure 6: Local Change Algorithm 

reaching changes while the deletion and addition together do. Moreover we compute 
two fixpoints rather than one. 

In fact the bottom-up and top-down deletion algorithms of the previous subsec­
tion can handle arbitrary change with only minor modification. Care must be taken 
to ensure that we reset enough answer information to ± to ensure correctness. In 
particular the call dependency graph may have altered after the change, so we must 
recompute the SCCs. 

Local Change 

One common reason for incremental modification to a program is optimizing compi­
lation. Changes from optimization are special in the sense that usually the answers 
to the modified clause do not change. This means that the changes caused by the 
modification are local in that they cannot affect SCCs above the change. Thus, 
changes to the analysis are essentially restricted to computing the new call patterns 
that these clauses generate. This allows us to obtain an algorithm for local change 
(related to bottom-up deletion) which is more efficient than arbitrary change. 

The algorithm for local change is given in Figure 6. It takes as arguments the 
original calling patterns S and a modified rule R, which we assume has the same 
number as the rule it replaces. 

Correctness of the local change algorithm essentially follows from correctness of 
the bottom-up deletion algorithm. 

Let A <— B and A -(— B' be two rules. They are local variants with respect to 
the calls S and program P if for each call pattern in S P U { A < - B } has the same 
answer patterns a s P U { A { - B ' } . 

Theorem 7 Let P be a program, analyzed for the initial call patterns S. Let R be 
a rule in P which in the analysis is called with call patterns S' and let R' be a local 
variant of R with respect to S' and P \ {R}- If the program P is reanalyzed with 
the routine local_change(5',i?') the same answer and dependency arc tables will 
be obtained as when the rules P U {R1} \ {R} are analyzed by the non-incremental 
algorithm. 

The cost of performing the actual analysis incrementally can be no worse than 
performing the analysis all at once. Let Ciocai (F, P, R, R', S) be the worst case num­
ber of calls to the parametric functions F when analyzing the program P with rule 
R changed to R' for all possible priority strategies with the local change algorithm 
after already analyzing the program P for call patterns S. 

10 



Theorem 8 Let P be a program analyzed for the initial call patterns S. Let R be 
a rule in P which in the analysis is called with call patterns S' and let R' be a local 
variant of R with respect to S' and P \ {R}- For any parametric functions F, 

CnoninciF, PU{R'}\ {R}, S) > Clocal(F, P, R, R',S). 

6 Experimental Results 

Bench. 
aiakl 
ann 
bid 
boyer 
browse 
deriv 
fib 
grammar 
hanoiapp 
mmatrix 
occur 
peephole 
progeom 
qplan 
qsortapp 
query 
rdtok 
read 
serialize 
tak 
warplan 
witt 
zebra 

CI 
12 
170 
50 
133 
29 
10 
3 
15 
4 
6 
8 

134 
18 
148 
7 
52 
54 
88 
12 
2 

101 
160 
18 

Strd 

3746 
7882 
916 
3625 
495 
766 
46 
155 
613 
306 
342 
7256 
240 
1973 
346 
176 
2032 
36416 
569 
109 

4682 
2543 
4068 

Incr 

3859 
7746 
962 
2808 
516 
492 
52 
175 
629 
329 
335 
6605 
256 
2036 
372 
185 

2793 
47899 
733 
123 

3966 
2526 
4146 

I_cl 

4050 
50830 
4436 
20853 
1703 
3199 
53 
496 
1036 
733 
396 

65546 
406 

41912 
646 
2079 
23606 
187512 
1596 
127 

45592 
21143 
9312 

NI_cl 

6153 
643609 
16937 

271043 
9560 
1736 
89 

1193 
1419 
1003 
523 

567572 
1066 

154500 
1169 
4626 
39193 

1044112 
3556 
166 

122562 
65109 
45340 

Average 

I S D 

1.05 
6.56 
4.61 
7.43 
3.30 
6.50 
1.02 
2.83 
1.65 
2.23 
1.18 
9.92 
1.59 

20.59 
1.74 
11.24 
8.45 
3.91 
2.18 
1.03 
11.50 
8.37 
2.25 
5.44 

NI SD 
1.59 

83.09 
17.61 
96.53 
18.53 
3.53 
1.71 
6.82 
2.26 
3.05 
1.56 

85.93 
4.16 
75.88 
3.14 
25.01 
14.03 
21.80 
4.85 
1.35 

30.90 
25.78 
10.94 
33.53 

I su 
1.52 
12.66 
3.82 
13.00 
5.61 
0.54 
1.68 
2.41 
1.37 
1.37 
1.32 
8.66 
2.63 
3.69 
1.81 
2.23 
1.66 
5.57 
2.23 
1.31 
2.69 
3.08 
4.87 
6.16 

Table 1: Incremental vs. Non-incremental Addition 

We have conducted a number of experiments using the PLAI generic abstract inter­
pretation system in order to assess the practicality of the techniques proposed in the 
previous sections. The original fixpoint used in PLAI is quite close to the stylized 
non-incremental algorithm that we have used as a starting point, and uses the con­
crete strategy of always performing newcall events first, processing non-recursive 
rules before recursive rules, and finishing processing a rule before starting another. 
Prior to the invocation of the fixpoint algorithm a step is performed in which the 
set of predicates in the program is split into the SCCs based on the call graph of the 
program found using Tarjan's algorithm [19]. This information is used among other 
things to determine which predicates and clauses of a predicate are recursive. 

PLAI also incorporates some additional optimizations such as dealing directly 
with non-normalized programs and filtering out non eligible clauses using concrete 
unification (or constraint solving) when possible. Also, instead of explicitly storing 
the annotation and call-pattern in the dependency arcs, it is recomputed from the 
head of the rule. In one way, however, PLAI is somewhat simpler than the proposed 
algorithm: in order to simplify the implementation, the original fixpoint algorithm 
does not keep track of dependencies at the level of literals, but rather, in a coarser 
way, at the level of clauses. 

11 



B e n c h . 
aiakl 
ann 
bid 
boyer 
browse 
deriv 
hanoiapp 
mmatr ix 
occur 
peephole 
progeom 
qplan 
query 
read 
serialize 
warplan 
zebra 

CI 
1 

11 
6 
2 
4 
4 
1 
2 
2 
2 
1 
2 
2 
1 
1 
8 
1 

1 St 

3859 
7746 

962 
2808 

516 
492 
629 
329 
335 

6605 
256 

2036 
185 

47899 
733 

3966 
4146 

Inc 
642 

3526 
533 
909 
545 

1018 
319 
416 
473 

1082 
52 

273 
109 

52 
58 

4086 
3019 

Scr 
4046 

10256 
1395 
4725 
1043 
1239 

778 
669 
752 

7546 
276 

2312 
242 

48618 
803 

22589 
4729 

A v e r a g e 

S c r \ I n c 
6.30 
2.91 
2.62 
5.20 
1.91 
1.22 
2.44 
1.61 
1.59 
6.97 
5.31 
8.47 
2.22 

934.96 
13.84 

5.53 
1.57 
6.55 

S c r \ ( l s * + I n c ) 
0.90 
0.91 
0.93 
1.27 
0.98 
0.82 
0.82 
0.90 
0.93 
0.98 
0.90 
1.00 
0.82 
1.01 
1.02 
2.81 
0.66 
1.11 

Table 3: Local Change 

respect to analyzing the whole program at once (i.e., with respect to Incr). I SU 
(NLcl / I_cl) shows the speedup obtained by incremental analysis. The results 
are quite encouraging: in the worst case studied of compiling clause by clause the 
slowdown with respect to analyzing the entire file in one block is on the average 
of only a factor of 5.44. Doing the same thing with the non-incremental analysis 
implies an average slowdown of 33.53 (i.e., over six times worse than Incr). 

In order to test the relative performance of incremental and non incremental 
analysis in the context of deletion, we timed the analysis of the same benchmarks 
but deleting the clauses one by one. Starting from an already analyzed file, the 
last clause was deleted and the resulting program (re-)analyzed. This process was 
repeated until the file was empty. The total time involved in this process is given 
in Table 2 by NI, for the case of restarting the analysis from scratch every time 
a clause is deleted (this is equivalent to NI_cl - Incr in Table 1), by I_td for 
the case of incremental analysis using the "top-down" algorithm, and by IJbu for 
the "bottom-up" algorithm. I_td SU and I_bu SU represent the speedups ob­
tained by the top-down and bottom up algorithms, respectively, with respect to 
non-incremental analysis (NI). The results are also very encouraging: in the worst 
case studied of compiling clause by clause the speedup with respect to the non-
incremental algorithm is on the average a factor of 2.63 for top-down and 8.21 
for bottom-up. The results seem to favour the bottom-up algorithm, as shown by 
t d / b u in Table 2, giving an average speedup of 3.12 with respect to top-down. 

Although we have implemented it, we do not report on the performance of 
arbitrary change because of the difficulty in modeling in a systematic way the types 
of changes that are likely to occur in the circumstances in which this type of change 
occurs (as, for example, during an interactive program development session). We 
have studied however the case of local reanalysis in a realistic environment: within 
the &-Prolog compiler, in which, after a first pass of analysis, new, specialized 
clauses are generated containing run-time tests, and a reanalysis is performed in 
order to propagate the more precise information which can be obtained in the 
program beyond the points where the new tests have been introduced. This more 

13 



precise information is then used for multiple specialization [15]. The results are 
shown in Table 3 in which benchmarks that do not generate run-time tests have 
been left out, since no specialization is performed for them and no reanalysis is 
needed in that case. Only program entry points are given to the analysis, i.e., no 
input patterns are specified for such entry points. This represents the likely situation 
where the user provides little information to the analyzer and also produces more 
run-time tests and thus more specializations and reanalysis, which allows us to 
study more benchmarks (note that if very precise information is given by the user 
then many benchmarks are parallelized without any run-time tests). CI is the 
number of clauses that have changed. 1 s t is the time for analysis of the program 
in the first pass. Inc is the time for additional analysis after annotation (using the 
incremental algorithm). Scr is the time for additional analysis after annotation but 
restarting the analysis from scratch, i.e., no incrementality. Scr\Inc is the speedup 
in the reanalysis part due to incrementality. Scr\( l s t+Inc) is a measure of the 
incrementality (close to one or over one is desirable). The results of incremental 
analysis of local change are even more encouraging than the previous ones. The 
speedups are quite impressive and the incrementality level is high or very high in 
all cases. In fact, in boyer, and, specially, in warplan incrementality is indeed very 
high. This is related to the fact that there is a high degree of specialization in these 
programs and the first analysis is run over many less clauses than the second pass, 
which penalizes reanalyzing from scratch. 

Acknowledgments 

This work was supported in part by ESPRIT project 6707 "ParForCE" and CICYT 
project TIC93-0737-C02-01. The authors would also like to thank M. J. Garcia de 
la Banda, Harald Sondergaard, and the anonymous referees for useful comments. 

References 

[1] T. Armstrong, K. Marriott, P. Schachte, and H. S0ndergaard. Boolean func­
tions for dependency analysis: Algebraic properties and efficient representation. 
In Springer-Verlag, editor, Static Analysis Symposium, SAS'94, number 864 in 
LNCS, pages 266-280, Namur, Belgium, September 1994. 

[2] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of 
Logic Programs. Journal of Logic Programming, 10:91-124, 1991. 

[3] F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global 
Analysis in Strict Independence-Based Automatic Program Parallelization. In 
International Symposium on Logic Programming, pages 320-336. MIT Press, 
November 1994. 

[4] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic 
Abstract Interpretation Algorithm for Prolog. A CM Transactions on Program­
ming Languages and Systems, 16(1):35-101, 1994. 

[5] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modu­
lar Logic Programs. In A CM SIGPLAN-SIGACT Symposium on Principles 
of Programming Languages POPL'93, pages 451-464, Charleston, South Car­
olina, 1993. ACM. 

14 



[6] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for 
Static Analysis of Programs by Construction or Approximation of Fixpoints. 
In Fourth ACM Symposium on Principles of Programming Languages, pages 
238-252, 1977. 

[7] S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract In­
terpretation, volume 13(1-2). North-Holland, July 1992. 

[8] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic 
Programs. ACM Transactions on Programming Languages and Systems, 
ll(3):418-450, 1989. 

[9] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Indepen­
dent And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991. 

[10] M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremen­
tal Analysis of Logic Programs. Technical Report CLIP 14/94.0, Com­
puter Science Dept., Technical U. of Madrid (UPM), Spain, October 1994. 
f t p : / / c l i p . d i a . f i . u p m . e s / p u b / p a p e r s / 

[11] M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a Prac­
tical Compilation Tool. Journal of Logic Programming, 13(4):349-367, August 
1992. 

[12] K. Marriott, H. S0ndergaard, and N.D. Jones. Denotational Abstract Inter­
pretation of Logic Programs. A CM Transactions on Programming Languages 
and Systems, 16(3):607-648, 1984. 

[13] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al­
gorithm for Top-down Abstract Interpretation of Logic Programs. Technical 
Report ACT-DC-153-90, Microelectronics and Computer Technology Corpo­
ration (MCC), Austin, TX 78759, April 1990. 

[14] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable 
Dependency Using Abstract Interpretation. Journal of Logic Programming, 
13(2 and 3):315-347, July 1992. 

[15] G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in 
Logic Programs. In Proc. ACM SIGPLAN Symposium on Partial Evaluation 
and Semantics Based Program Manipulation. ACM, June 1995. 

[16] G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental 
Computation. In A CM SIGPLAN-SIGACT Symposium on Principles of Pro­
gramming Languages POPL'93, Charleston, South Carolina, 1993. ACM. 

[17] P. Van Roy and A.M. Despain. High-Performace Logic Programming with the 
Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68, January 
1992. 

[18] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: 
Supporting Full Prolog on the Basic Andorra Model. In 1991 International 
Conference on Logic Programming, pages 443-456. MIT Press, June 1991. 

[19] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Corn-
put., 1:140-160, 1972. 

[20] W. Winsborough. Multiple Specialization using Minimal-Function Graph Se­
mantics. Journal of Logic Programming, 13(2 and 3):259-290, July 1992. 

15 

ftp://clip.dia.fi.upm.es/pub/papers/

