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Abstract 

Abstract interpretation-based data-flow analysis of logic programs is at this point relatively 
well understood from the point of view of general frameworks and abstract domains. On the 
other hand, comparatively little attention has been given to the problems which arise when 
analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions 
to these problems have been proposed to date. Such problems relate to dealing correctly with all 
builtins, including meta-logical and extra-logical predicates, with dynamic predicates (where 
the program is modified during execution), and with the absence of certain program text during 
compilation. Existing proposals for dealing with such issues generally restrict in one way or 
another the classes of programs which can be analyzed if the information from analysis is to be 
used for program optimization. This paper attempts to fill this gap by considering a full dialect 
of Prolog, essentially following the recently proposed ISO standard, pointing out the problems 
that may arise in the analysis of such a dialect, and proposing a combination of known and 
novel solutions that together allow the correct analysis of arbitrary programs using the full 
power of the language. 



Contents 

1 Introduction 1 

2 Preliminaries and Notation 2 

3 Program Annotations 3 

3.1 Predicate Level: Entry Annotations 4 
3.2 Predicate Level: Trust Annotations 6 
3.3 Goal Level: Pragma Annotations 8 

4 Dealing with Standard Prolog 9 
4.1 Builtins as Abstract Functions 9 
4.2 Meta-Predicates 12 

4.3 Database Manipulation and Dynamic Predicates 15 

5 Program Modules 18 

6 Conclusions 21 

References 22 



Data-Flow Analysis of Prolog Programs with Extra-Logical Features 1 

1 Introduction 

Global program analysis, generally based on abstract interpretation [11], is becoming a prac­
tical tool in logic program compilation in which information about calls, answers, and substitu­
tions at different program points is computed statically [17, 26, 22, 25, 4, 13, 1, 12, 21, 8]. Most 
proposals to date have concentrated on proposing general frameworks and suitable abstract 
domains. On the other hand, comparatively little attention has been given to the problems 
which arise when analysis of a full, practical language is attempted. Such problems relate to 
dealing correctly with all builtins, including meta-logical, extra-logical, and dynamic predicates 
(where the program is modified during execution). Often, problems also arise because not all 
the program code is accessible to the analysis, as is the case for some builtins (meta-calls), 
some predicates (multifile and/or dynamic), and some programs (multifile or modular). 

Implementors of the analyses obviously have to somehow deal with such problems, and some 
of the implemented analyses provide solutions for some problems. However, the few solutions 
which have been published to date [26, 14, 17, 22, 7] generally restrict the use of builtin pred­
icates in one way or another (and thus the class of programs which can be analyzed) if the 
information from analysis is to be used for program optimization. 

This paper attempts to fill this gap. We consider the correct analysis of a full dialect of 
Prolog. For concreteness, we essentially follow the recently proposed ISO draft standard [18]. 
Although not yet a standard, this seems an appropriate choice because it essentially gathers and 
unifies most of the de-facto standard features present in current Prolog dialects. Our purpose 
is to review the features of the language which pose problems to global analysis and propose 
alternative solutions for dealing with these features. The most important objective is obviously 
to achieve correctness, but also as much accuracy as possible. The proposed alternatives are 
a combination of known solutions when they are useful, and novel solutions when the known 
ones are found lacking. 

One of the motivations of our approach is that we would like to accommodate at the same 
time two types of users. First, the naive user, which would like analysis to be as transparent 
as possible. Second, we also would like to cater for the advanced user which may like to 
guide the analysis in difficult places in order to obtain better optimizations. Thus, for each 
feature, in order to accommodate the first class of users, we will propose solutions that require 
no user input, but we will also propose solutions that allow the user to provide input to the 
analysis process. This requires a clear interface to the analyzer at the program text level. 
Clearly, this need arises also for example in the output of the analyzer when expressing the 
information gathered by the different analyses supported. We propose an interface, in the form 
of annotations, which is useful not only for two-way communication between the user and the 
compiler, but also for the cooperation among different analysis tools and for connecting analyses 
with other modules of the compiler. 

We argue that the proposed set of solutions is the first one to allow the correct analysis of 
arbitrary programs using the full power of the language without input from the user (while at 
the same time allowing such input if so desired). 

Given the length limitations and the objective of addressing the full language the presenta­
tion will be informal. Details can be found in [3]. The rest of the paper proceeds as follows: 
after presenting some preliminary notions and notation (Section 2) we first deal with the crucial 
issue of program annotations (Section 3). We then review all builtins in the ISO standard (as 
described in [18]), and propose several solutions to the problems they pose to analysis. These 
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builtins include those that can usually be handled by abstract functions in most domains (Sec­
tion 4.1), meta-calls (Section 4.2), and database manipulation builtins and dynamic predicates 
(Section 4.3). Finally, we discuss program modules (Section 5), and present our conclusions. 

2 Preliminaries and Notation 

For simplicity we will assume that the abstract interpretation based analysis is constructed 
using the "Galois insertion" approach [11], in which an abstract domain is used which has a 
lattice structure, whose top value we will refer to by T, and its bottom value by ±. We will 
refer to the least upper bound (lub) and greatest lower bound (gib) operators in the lattice 
by U and l~l, respectively. The abstract computation proceeds using abstract counterparts 
of the concrete operations, the most relevant ones being unification (mgua) and composition 
(oa), which operate over abstract substitutions (a). Abstract unification is however often also 
expressed as a function unify" which computes the abstract mgu of two concrete terms in the 
presence of a given abstract substitution. 

We will call an abstract substitution a topmost w.r.t. a tuple (set) of variables x iff vars(a) = 
x and for all other substitution a! such that vars(a') = x, a1 C. a. An abstract substitution a 
referring to variables x is said to be topmost of another substitution a', referring to the same 
variables, iff a = a' oa a", where a" is the topmost substitution w.r.t. x. 

Usually, a collecting semantics is used which attaches one or more (abstract) substitutions 
to program points (such as, for example, the point just before or just after the call of a given 
literal — the call and success substitutions for that literal). Traditionally, a distinction is 
made between top-down and bottom-up analyses based on whether computation is performed 
starting at the queries or at the program facts. These have in turn been associated with goal 
dependent and goal independent analyses, respectively. However, recent results [15, 10] show 
that call dependence is not tied to a given form of analysis. A goal dependent analysis associates 
abstract success substitutions to specific goals, in particular to call patterns, i.e. pairs of a goal 
and an abstract call substitution which expresses how the goal is called. Depending on the 
granularity of the analysis, one or more success substitutions can be computed for different 
call patterns at the same program point. Goal independent analyses compute abstract success 
substitutions for generic goals, regardless of the call substitution. 

In general we will concentrate on top-down analyses, since they are at present the ones 
most frequently used in optimizing compilers. However, we believe the techniques proposed are 
equally applicable to bottom-up analyses. In the text, we consider in general goal dependent 
analyses, but point out solutions for goal independent analyses where appropriate. 

The pairs of call and success patterns computed by the analysis, be it top-down or bottom-
up, goal dependent or independent, will be denoted by AOTa(P) for a given program P. In 
goal dependent analyses, for every call pattern of the form {goal-pattern, call substitution) 
of a program P there are one or more associated success substitutions which will be denoted 
hereafter by AOTa (P, calLpattern). The same holds for goal independent analysis, where the 
call pattern is simply reduced to the goal pattern. By program we refer to the entire program 
text that the compiler has access to, including any directives and annotations. The issues related 
to multifile and modular programs, and interactive compilation, will be addressed in Section 5. 
In top-down analyses, annotations may support the specification of given queries in the form 
of entry points and their call patterns; AOTa(P) will then be referred to these queries. The 
issue of determining the entry points and call patterns for which the analysis is correct will be 
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addressed in sections 3 and 5. 

The predicate spec (or indicator [18]) for the predicate whose name is predicate_name and 
whose arity is n is predicate_name/n. The declaration : - term, is a directive. Directives 
are not queries [18]. A most general goal pattern (or simply "goal pattern," hereafter) for a 
predicate spec is a normalized goal for that predicate, i.e. a goal whose predicate symbol and 
arity are the predicate spec and where all arguments are distinct variables. 

3 Program Annotations 

Annotations are assertions regarding a program that are introduced as part of its code. They 
can state properties which hold for the program they appear in. In that case the annotations 
do not modify the semantics of the non-annotated program. Rather, they reflect (often in 
an abstract way) an aspect of the program meaning. They can also state properties of other 
programs whose text is not present but which are to be composed with the present program. In 
that case such annotations reflect the semantics of the composed program. Program annotations 
can be both input to and output from the analyzer. When used as input, annotations are a 
way to provide the analyzer with additional information so that it can generate more precise 
information. When used as output, they represent the information obtained by the analyzer 
that will eventually be used by other parts of the compiler (including perhaps other analyzers) 
or shown to the programmer. 

Annotations refer to a given program point. We consider two general classes of program 
points: points inside a clause (such as, for example, before or after the execution of a given 
goal — the "goal level") and points that refer to a whole predicate (such as, for example, 
before entering or after exiting a predicate — the "predicate level"). Correspondingly there are 
different annotations for each of these levels. At all levels annotations describe properties of the 
variables that appear in the program (be it in the clause or in the arguments of a procedure). We 
will call the descriptions of such properties declarations. In general, such descriptions must be 
done in some abstract way since often it is necessary to represent an infinite number of concrete 
cases. Declarations should be written in a syntax that is compatible with the language (in this 
case, Prolog) and, ideally, in a domain-independent way. Thus, syntactically, declarations will 
in general be Prolog terms containing variables (or variable designators). Such terms encode 
assertions about the state of such variables at run-time. 

There are at least two ways of representing declarations which we will call "property oriented" 
and "abstract domain oriented". In a property oriented framework, there are declarations for 
each property that a given variable or set of variables may have. Examples of such declarations 
are: 

mode(X,+) X is bound to a non-variable term 
term(X,r(Y)) X is bound to term r(Y) 
ground (X) X is bound to ground term 
free (X) X is bound to free variable 
depth(X,r /1) X is bound to a term r (_ ) 
aliased(X,Y) X and Y are aliased 
occur ( [X, Y] ) the same variables occur in the terms bound to X and Y 
t rue no information (the top substitution) 
f a l s e the computation has failed (±) 

Report No. CLIP2/95.0 March 1995 



Data-Flow Analysis of Prolog Programs with Extra-Logical Features 4 

For concreteness, and in order to avoid referring to any abstract domain in particular, we 
propose to use such a framework. In addition to the terms such as those above we assume 
that declarations can also be first order formulae formed by combining declarations with the 
connectives of first order logic. In the following, we will assume that declarations are always in 
conjunctive normal form (i.e. they are simplified in that way when being read). Comma and 
semicolon will denote, as usual, conjunction and disjunction, respectively. 

The property oriented approach presents two advantages. On one hand, it is easily exten­
sible, provided one defines the semantics for the new properties one wants to add. On the 
other hand, it is also independent from any abstract domain for analysis. One only needs to 
define the semantics of each declaration, and, for each abstract domain, a translation into the 
corresponding abstract substitutions. An alternative solution is to define declarations in an 
abstract domain oriented way, i.e. representing declarations through some encoding in Prolog 
terms of the elements of the abstract domain used in the analysis. For example, for the sharing 
domain [20]: 

sharing([[X] , [Y,Z]]) the sharing pattern among variables X,Y, Z is {{AT}, {Y, Z}} 

This is a simple enough solution but has the disadvantage that the meaning of such domains 
is often difficult for users to understand. Also, the interface is bound to change any time the 
domain changes. Although this approach can also be extended if more domains are to be 
incorporated for analysis, it has two other disadvantages. The semantics and the translation 
functions above mentioned have to be defined pairwise, i.e. one for each two different domains to 
be communicated. And, secondly, there can exist several (possibly overlapping) properties de­
clared, one for each different domain. In the property oriented approach, additional properties 
that several domains might take advantage of are declared only once. In any case, both ap­
proaches are compatible via the syntactic scheme proposed above (and in the following) in that 
abstract substitutions can also be seen as "properties" by encapsulating abstract substitutions 
for each domain in a term. 

3.1 Predicate Level: Entry Annotations 

One class of predicate level annotations are entry annotations. They are specified using a 
directive style syntax, as follows: 

: - ent ry {goal-pattern declaration) . 

Declarations in entry annotations refer to the state of the variables appearing as arguments of 
calls to the given predicate. These annotations simply state that calls to that predicate with 
the given abstract call substitution may exist at execution time. For example, the annotation: 

: - entry(p(X,Y), (ground(X),ground(Y)) ) . 

states that there can be a call to predicate p/2 in which its two arguments are ground. The 
annotations: 

: - entry(p(X,Y), ( (ground(X).ground(Y)) ; (ground(X),free(Y))) . 
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and 

: - entry(p(X,Y), (ground(X),ground(Y)) ) . 
: - entry(p(X,Y), (ground(X),free(Y)) ) . 

are equivalent. In general, several annotations for the same predicate can be viewed as forming 
a disjunction. The entire single declaration for a given predicate, once put in conjunctive normal 
form, can be seen as stating a number of alternative ways in which the predicate can be called. 

The idea of entry annotations is not novel. They are similar in purpose to other declarations 
which have been previously proposed (also referred to as "mode," "qmode," "imode," etc. 
declarations) to guide different goal dependent analyses [17, 26, 22, 25, 4, 13, 1, 22, 12, 21, 8]. 
The name is due to VanRoy and we have kept it instead of the one used previously by us 
("qmode"), which we feel is less natural. 

Entry annotations and goal dependent analysis. 

A crucial property of entry annotations, which makes them useful in the goal dependent 
analyses mentioned above, is that they must be closed with respect to outside calls. By this we 
mean that no call patterns other than those specified by the annotations of the program may 
occur from outside the program text. I.e., the list of entry annotations includes all calls that 
may occur to a program, apart from those which arise from the literals explicitly present in the 
program text. Thus, for now, we assume that they define all entry points, and optionally, their 
call patterns. Obviously this is not an issue in goal independent analyses. 

Note that according to this definition, a program with no entry annotations is not a useful 
program because none of its predicates may be called from outside, i.e. it is entirely dead code. 
There are two alternatives in this situation: the first one is to simply issue a warning to the 
user. However, in our effort to support the user who perhaps does not want to provide any 
information to the analyzer but still would like it to do what it can, another alternative is to 
analyze the program but assuming that any predicate may be called in any possible way from 
outside. This is equivalent to assuming an entry annotation for each predicate in the program 
with the topmost substitution for the argument variables (i.e., t rue) . On the other hand, if 
any entry annotation is present (showing thus a will of the user to help the analysis) then it is 
assumed to be closed with respect to calls from outside the program text. 

Entry annotations and multiple program specialization. 

When optimizing a program in the presence of a multivariant analysis it is often convenient 
to create different versions of a predicate, through a technique known as multiple specialization 
[28, 24, 26]. This allows implementing different optimizations in each version. Each one of these 
versions generally receives an automatically generated unique name in the multiply specialized 
program. However, in order to keep the multiple specialization process transparent to the 
user, whenever more than one version is generated for a predicate which is a declared entry 
point of the program (and, thus, appears in an entry directive), the original name of the 
predicate is reserved for the version that will be called upon program query. However, if more 
than one entry annotation appears for a predicate and different versions are used for different 
annotations, it is obviously not possible to assign to all of them the original name of the 
predicate. There are two solutions to this. The first one is to add a front end with the exported 
name and run-time tests to determine the version to use. However, this implies run-time 
overhead. As an alternative we allow the entry directive to have one more argument, which 
indicates the name to be used for the version corresponding to this entry point. For example, 
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given: 

: - entry(mmultiply(A,B,C),ground([A,B]),mmultiply_ground). 
: - entry(mmultiply(A,B,C),true,mmultiply_any). 

if these two entries originate different versions, one would be called as mmultiply_ground/3 
and the other as mmultiply_any/3. Of course if two or more versions such as those above are 
collapsed into one, this one will get the name of any of the entry points and, in order to allow 
calls to all the names given in the annotations, binary clauses will be added to provide the other 
entry points to that same version. In practice, both solutions can be used simultaneously: if 
multiple specialization is desired but with a single entry point, a single entry directive should 
be supplied, which should express the cases in a disjunction. In this way even if there are several 
versions for the predicate, there will only be one exported version, and that one will keep the 
original name. Run-time tests will be used to determine the appropriate version. 

3.2 Predicate Level: Trust Annotations 

In addition to the more standard entry annotations we propose a different kind of annotations 
at the predicate level, t r u s t annotations, which take the following form: 

: - trust {goal-pattern, call-declaration, success-declaration) . 

Declarations in t r u s t annotations put in relation the call and the success points of calls to 
the given predicate. These annotations can be read as follows: if a literal that corresponds to 
goal-pattern is executed and the call-declaration holds for the associated call substitution, then 
the success-declaration holds for the associated success substitution. Thus, these annotations 
relate abstract call and success substitutions. Note that the call .declaration can be empty (i.e., 
t rue) . In this way, properties can be stated that must always hold for the success substitution, 
no matter what the call substitution is. This is useful also in goal independent analyses (and 
in this case it is equivalent to the "omode" declaration of [17]). 

Let (p(x), a) denote the call pattern and a' the success substitution of a given t r u s t annota­
tion of aprogram P. The semantics of t r u s t implies that \/ac (ac C. a => AOTa(P, (p(x),ac)) C. 
a'). I.e., for all call substitutions approximated by that of the given call pattern, their success 
substitutions are approximated by that of the annotation. For this reason, the compiler will 
"trust" them. If the declaration of one annotation is a disjunction, the lub of the different 
conjunctions will be used in place of a' in the above formula. If several annotations exist for 
the same call pattern, or several call patterns in these annotations approximate the one actu­
ally occurring at a given point, the gib of the success substitutions (as justified below) will be 
used. Note that this implies that, in contrast to entry annotations, several t r u s t annotations 
are assumed to form a conjunction. Also in contrast to entry annotations, the list of t r u s t 
annotations of a program does not have to be closed w.r.t. all possible call patterns occurring 
in the program. 

One of the main uses of t r u s t annotations is in describing definitions of predicates that are 
not present in the program text (we will return to this issue in greater length in sections 4.1 
and 5). For example, the following annotations describe the behavior of the predicate p/2 for 
two possible call patterns: 

: - t ru s t (p (X,Y) , (ground(X),free(Y)) , (ground(X), ground(Y)) ) . 
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: - t r u s t ( p ( X , Y ) , ( f ree (X) ,ground(Y) ) , ( f r e e ( X ) , ground(Y)) ) . 

This would allow performing the analysis even if the code for p / 2 is not present provided tha t 
the calls to p / 2 tha t appear in the program conform to (i.e., are identical to or contained in) 
one of the two call pat terns in the t r u s t annotations above. In tha t case the corresponding 
success information in the annotation can be used ("trusted") as success substitution. 

In addition, t r u s t annotations can be used to improve the analysis for example if it is 
observed tha t for (one or more) call pat terns the results of the analysis are inaccurate. However, 
note tha t the existence of such an annotat ion does not save analyzing the predicate for the 
corresponding call pat tern: this is still necessary in order to compute the abstract subtree 
underlying tha t call pat tern, since it may contain call pat terns tha t do not occur elsewhere 
in the program. Otherwise the analysis would not be correct (and no optimizations could 
be performed) for the predicates and goals in tha t subtree, since there would be missing call 
pat terns . 

After having analyzed a literal for whose predicate a t r u s t annotat ion exists, an interesting 
situation arises in tha t , upon exit from the call, two abstract success pat terns will be available 
for the call pat tern analyzed (or a comparable one): tha t computed by the analysis (say as) 
and tha t given by the t r u s t annotation. As both the t r u s t information and tha t generated by 
the analyzer must be correct, the intersection of them (which may be more accurate than any 
of them) must also be correct. The intersection among abstract substitutions (whose domain 
we have assumed has a lattice structure) is computed with the gib operator, IT1 During 
analysis, for every abstract call substitution ac, with corresponding success substitution as, 
s.t. ac C a, as is substi tuted by as l~l a', where a' is the abstract success substitution given by 
the t r u s t annotation(s) which apply to ac. Therefore, AOTa(P, (p(x),ac)) = as l~l a'. Since 
\fas\fa' (as l~l a' C as A as l~l a' C a') correctness of the analysis within the t r u s t semantics is 
guaranteed, i.e. AOTa(P, (p(x),ac)) C a' and AOTa(P, (p(x),ac)) C as. 

It is interesting to study the different situations which may appear regarding the t r u s t 
information (i.e. a') and the one computed during analysis (as): 

1. They are identical, as l~l a! = as = a1. 

2. Information from analysis is more particular than tha t of the annotation. In this case the 
computed information is preferred, as l~l a! = as. 

3. Information in the annotation is more particular than tha t computed in the analysis. The 
information supplied in the annotation is preferred (and assumed correct — "trusted") , 
as l~l a' = a'. 

4. They have non-empty intersection. The most accurate information is their intersection, 
thus as n a' is used, too. 

5. They have incompatible information. Their intersection is empty, and asr\a' = _L. This is 
an error, because the analysis information must be correct, and the same thing is assumed 
for the t r u s t information. The analysis should give up and warn the user. 

1 Although this operation is not generally implemented in top-down analyzers, which compute the fixpoint 
upwards, we believe that, in general, it is not difficult to implement, and a small burden when compared to the 
utility brought in by the t r u s t annotation. 
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An obvious alternative to the scheme outlined above is to always use the information in 
the t r u s t annotation as success substitution, AOTa(P, (p(x), acj) = a'. In this case t r u s t 
annotations must be used with care, because if the information supplied is more general than 
what the analysis can obtain, a loss of accuracy occurs. 

Although the use of entry (and omode) declarations has also been proposed for some purposes 
similar to our t r u s t annotations [26, 17], we believe that the use of t r u s t provides a superior 
solution because they make it possible to relate several call patterns with their associated 
success patterns. 

3.3 Goal Level: Pragma Annotations 

Annotations at the goal level refer to the state of the variables of the clause just at the point 
where the annotation appears: between two literals, after the head of a clause or after the last 
literal of a clause.2 We propose reserving the literal pragma (as in [23]) to enclose all necessary 
information referring to a given program point in a clause. It takes the form: 

. . . , goah , pragma.(declaration), goah , 

where the pragma information is valid before calling goah and also after calling goah, that is, 
at the success point for goah and at the call point of goah • The intended meaning of pragma 
as part of the program is the one given by the following definition: 

pragma(_). 

i.e., the inclusion of pragma annotations does not alter the meaning of the program in any way. 

The information given by pragma can refer to any of the variables in the clause. The informa­
tion is expressed using the same kind of declarations as in the predicate level annotations. This 
allows a uniform format for the declarations of properties in annotations at both the predicate 
and the goal level. Despite this, pragma in general is richer, since it can express certain asser­
tions which predicate level annotations cannot, due to the lack of the appropriate context. This 
is because they refer to relationships between variables in different goals, possibly including 
also existential variables of the clause. For example, the following annotation: 

p(X,Y) :- q(X,Z), pragma(ground(Z)), r(Z,Y). 

states that in the clause above, after execution of q(X,Z), Z will always be bound to a ground 
term. This cannot be expressed at the predicate level of p/2. 

Pragma annotations are related to t r u s t annotations in the sense that they give information 
that should be trusted by the compiler. They are also related to entry, since a pragma annota­
tion needs to be exhaustive in the sense that its declaration specifies everything that can occur 
at the corresponding program point. In the same way as with t r u s t annotations, pragma an­
notations can be used to specify the information at a program point after a particular predicate 
is called, but in this case for a particular literal rather than for the whole predicate definition. 

2 Similar annotations can be used at other levels of granularity, from between head unifications to even 
between low level instructions, but we will limit the discussion for concreteness to goal-level program points. 
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As with t r u s t , they can be used either for predicates whose definition is not available, or to 
improve the information derived from the analysis of a particular literal of that predicate. In 
the latter case again the literal and its corresponding subtree still needs to be analyzed in order 
for the compiler to be able to perform optimizations, but the exit information can be improved 
by the contents of the pragma annotation, if it is better than that obtained by the analysis. 
In general, a similar set of cases regarding the respective accuracy of the inferred and declared 
information as with the t r u s t annotations applies. 

In practice it is sometimes useful to relate information that appears in different pragma 
annotations occurring at different points of a clause. This allows for example relating two 
components (elements of a disjunction) of two different pragma annotations at the call and 
success point of a literal, in the same way as in a t r u s t annotation. This requires a slightly 
more expressive syntax than that presented up to now. It suffices to add an (optional) identifier 
to each declaration, that we will call a key. Declarations in different pragma annotations in a 
clause can be related by giving them the same key. These extended annotations have the form: 

pragma((key:declaration ; ...)) 

where key can be any ground term, which acts as a reference relating distinct annotations at 
different (call or success) points. The same key appearing in two (or more) declarations at 
different points will state that whenever the properties specified at a given point hold (and 
only when they hold), then those specified with the same key at later points will also hold. 
Under this point of view, t r u s t predicate level annotations summarize a set of pragma goal 
level annotations (although t r u s t annotations have to be true for all literals of the predicate). 

4 Dealing with Standard Prolog 

In the previous sections we have presented a number of user annotations and already ad­
dressed a number of general issues in the practical analysis of programs. We now discuss 
different solutions for analyzing the full standard Prolog language. In order to do so we have 
divided the complete set of builtins offered by the language in several classes, which are treated 
in the following sections. 

4.1 Built ins as Abstract Functions 

Many Prolog builtins are declarative and they can be dealt with efficiently and accurately 
during analysis by means of functions which capture their semantics. Such functions provide an 
(as accurate as possible) abstraction of every success substitution of any call to the correspond­
ing builtin. These can be more or less elaborate, from, for example, calling the full abstract 
unification function for supporting = to simply identity for t rue . This applies also to goal 
independent analyses, with minor modifications. For example, where identity is used in goal 
dependent analysis a function returning the empty substitution is used in a goal independent 
analysis. 

It is interesting to note that the functions that describe builtin predicates are very similar 
in spirit to t r u s t annotations. This is not surprising, if builtins are seen as Prolog predicates 
for which the code is not available. For example, the identity function mentioned above corre­
sponds, in goal dependent and goal independent analyses respectively, to the following t r u s t 
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annotations: 

: - t r u s t ( t r u e , X , X ) . : - t r u s t ( t r u e , t r u e , t r u e ) . 

In this section, we revisit the usual treatment of builtins via abstract functions. Since most 
of the treatment is rather straightforward the presentation is very brief, concentrating only on a 
few, slightly more involved cases, in order to allow space for discussing the more interesting cases 
of meta-logical and dynamic predicates, which will be addressed in the following sections. In 
order to avoid reference to any particular abstract domain any functions described will be given 
in terms of simple minded t r u s t annotations. For the reader interested in the details, the source 
code for the PLAI analyzer (available by ftp from c l i p .d i a . f i . upm.e s ) contains detailed 
functions for all Prolog builtins and for a large collection of well known abstract domains. 
These functions are also summarized in [2]. Finally, it should be noted that the accuracy of all 
the solutions proposed can of course be improved by using pragma annotations. 

Control Sow. 

These predicates include t r u e and repeat , which have a simple treatment: identity can be 
used (i.e., they can be simply ignored). The abstraction of f a i l and h a l t is _l_. For example, 
f a i l can be described by the following annotation: 

:- trust(fail,true,false). 

For cut (!) it is also possible to use the identity function (i.e., ignore it). This is certainly 
correct in that it only implies that more cases than necessary will be computed in the analysis 
upon predicate exit, but may result in some cases (specially if red cuts are used) in a certain loss 
of accuracy. This can be addressed by using a semantics which keeps track of sequences, rather 
than sets, of substitutions, as shown in [7]. Finally, exception handling can also be included 
in this class. The methods used by the different Prolog dialects for this purpose have been 
unified in the Prolog standard into two builtins: catch and throw. We propose a method for 
dealing with this new mechanism: note that, since analysis in general assumes that execution 
can fail at any point, literals of the form catch (Goal, Catcher, Recovery) (where execution 
starts in Goal and backtracks to Recovery if the exception described by Catcher occurs) can 
be safely approximated by the disjunction (Goal;Recovery), and simply analyzed as a meta-
call (meta-calls, including all solutions predicates, will be considered in Section 4.2). The 
correctness of this transformation is based on the fact that no new control paths can appear 
due to an exception, since those paths are a subset of those considered by the analysis when it 
assumes that any goal may fail. The builtin throw, which explicitly raises and exception, can 
then be approximated by the identity function (i.e., ignored). Even more accurately, if we can 
determine statically that the exception will be raised, then throw can in those cases be mapped 
to failure, i.e. _l_. 

Unification and term manipulation. 

As mentioned before, the function corresponding to = is simply abstract unification. Special­
ized versions of the full abstract unification function can be used for other builtins such as \=, 
functor, arg, univ (=. .) , and copy_term. Other term and string manipulation builtins are 
relatively straightforward to implement. For example, the abstraction of the standard string 
manipulation builtin atom_cod.es (which replaces name/2) could include the following t r u s t 
annotations, among others: 

Report No. CLIP2/95.0 March 1995 

http://clip.dia.fi.upm.es
http://atom_cod.es


Data-Flow Analysis of Prolog Programs with Extra-Logical Features 11 

:- trust(atom_codes(X,Y),true,ground([X,Y])). 

:- trust(atom_codes(X,Y),true,(atom(X),depth(Y,'.'/2))). 

Arithmetic, comparison, and testing. 

Arithmetic builtins and base type tests such as i s , >, @>, in teger , var, number, etc., usually 
have a natural mapping in the abstract domain considered. In fact, their incomplete imple­
mentation in Prolog is an invaluable source of information for the analyzer upon their exit 
(which assumes that the predicate did not fail — failure is of course always considered as an 
alternative). For example, their mappings will include relations such as the following: 

: - t r u s t ( i s (X ,Y) , t rue ,g round( [X ,Y] ) ) . 
: - t r u s t ( v a r ( X ) , t r u e , f r e e ( X ) ) . 

On the contrary, ==, \==, and their arithmetic counterparts, are somewhat more involved, 
and are implemented (in the same way as with the term manipulation builtins above) by using 
specialized versions of the abstract unification function. 

Data input/output. 

Program output does not directly pose any problem since the related predicates do not in­
stantiate any variables or produce any other side effects beyond modifying external streams, 
whose effect can only be seen during input to the program. Thus, identity can again be used 
in this case. On the other hand, the behavior of builtins which are related to external input 
cannot be determined beforehand. The main problem is that no success substitution can be 
computed during analysis for the different call patterns to the builtin since the success substi­
tution depends on the state of objects that are external to the Prolog system, such as files or 
the user. Depending on the abstract domain, things can however be simple in some cases. For 
example, for a domain tracking groundness, simple input builtins like get_char can be easily 
abstracted (it always produces ground input). But for more complex input predicates such as 
read and for more complex domains this cannot be done. However, analysis can always proceed 
by simply assuming that no information is available. In this case, the most general abstract 
substitution T is assumed as success substitution for the call to the input predicate. In fact, 
analysis can do better by considering the topmost abstract substitution w.r.t. the variables in its 
arguments, or, even better, the topmost substitution of the call pattern w.r.t. those variables. 
The latter is preferred, since this type of topmost abstract substitution is usually more accurate 
for some domains. For example, if a variable is known to be ground in the call substitution, it 
will continue being ground. In addition, as always, t rust /pragma annotations may be given to 
improve the topmost substitutions. 

Directives. 

The treatment of directives is somewhat peculiar. The directive dynamic will be considered in 
Section 4.3. The directive m u l t i f i l e specifies that the definition of a predicate is not complete 
in the program. Multifile predicates can therefore be treated as either dynamic or imported 
predicates. See Section 5. 

The directives include and ensure_loaded must specify an accessible file, which can be read 
in and analyzed together with the current program. The directive i n i t i a l i z a t i o n specifies 
new, concrete entry points to the program. The directive module also specifies new entry 
points to the program. In the absence of entry annotations for these entry points, topmost 
substitutions can be used. See Section 5 for a discussion of modules. 
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4.2 Meta-Predicates 

Meta-predicates are predicates which use other predicates as arguments. All user defined 
meta-predicates are in this class but their treatment can be reduced to the treatment of the 
meta-call builtins they use. Such meta-calls are literals which call one of their arguments at 
run-time, converting at the time of the call a term into a goal. Builtins in this class are not only 
c a l l , but also bagof, f i nda l l , setof, negation by failure, and once (single solution). Calls 
to the solution gathering builtins can be treated as normal (meta-) calls since most analyzers 
are "collecting" in the sense that they always consider all solutions to predicates. Negation by 
failure (\+) is also a meta-predicate, since \+ can be defined as 

\+ X : - c a l l ( X ) , !, f a i l . 
\+ X. 

It can be dealt with by combining the treatment of cut with the treatment of meta-predicates. 
Single solution (once) is also a meta-call and can be dealt with in a similar way as above since 
it is equivalent to 

once(X) : - c a l l (X) , !. 

Since meta-call builtins convert a term into a goal, they can be difficult to deal with if it is 
not possible to know at compile-time the exact nature of those terms [14, 17]. In particular, 
this raises the following problems: 

1. How to compute success substitutions for the calls to meta-call builtins. 

2. How to compute the subtrees underlying calls to such builtins. Also, since from these 
subtrees new calls (and new call patterns) can appear, which affect other parts of the 
program, the whole analysis may not be correct. 

The first problem is easier to solve: the same approach as for input builtins can be used, i.e., 
using appropriate topmost substitutions. Note that this is in fact enough for goal independent 
analyses, for which the second problem is not relevant. However, for goal dependent analyses 
the second problem needs to be solved in some way. 

A more general solution to both problems is possible if knowledge regarding the terms to be 
converted is available at compile-time. Clearly, if the term (functor and arguments) is given in 
the program text (this is often the case for example in many uses of bagof, f i nda l l , setof, 
\+, and once), then the meta-call can be analyzed in a straightforward way. If the term is not 
obvious from the text of the program the nature of the term being used in the meta-call can 
sometimes be inferred via a type, or depth-k or, in general, state of instantiation analysis, as 
proposed in [14]. As a result of such an analysis perhaps the actual term to be called can be 
determined, in which case the treatment outlined above applies. If the exact term cannot be 
statically found but at least its main functor can be determined as a result of some analysis, then, 
since the predicate that will be called at run-time is known, it is sufficient for analysis to enter 
only this predicate using the appropriate projection of the current abstract call substitution on 
the variables involved in the call. We will call the first class completely determined meta-calls 
and the second one partially determined meta-calls. These classes distinguish subclasses of 
the fully determined predicates defined in [14]. Following [14] we will refer to the cases where 
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the meta-term is unknown as undetermined meta-calls.3 In [14] certain interesting types of 
programs are characterized which allow the static determination of this generally undecidable 
property. Relying exclusively on program analysis, as in [14], however has the disadvantage that 
it restricts the class of programs which can be optimized to those which are fully determined. 

Since our aim is to analyze all programs, we provide a number of solutions for dealing with 
undetermined meta-calls. The first and simplest solution is to issue a warning if an undeter­
mined meta-call is found and ask the user to provide information regarding the meta-terms. 
This can be easily done via pragma annotations. For example, the following annotation: 

. . . , pragma(( term(X,p(Y)) ; term(X,q(Z)) ) ) , cal l(X) 

states that the term called in the meta-call is either p(Y) or q(Z). Note also that this is in some 
way similar to giving entry mode information for the p /1 and q/1 predicates. This suggests 
another solution to the problem, which has been used before in Aquarius [26], in MA3 [27] and 
in previous versions of the PLAI analyzer [5]. The idea (cast in the terms of our discussion) is 
to take the position that meta-calls are external calls. Then, since entry annotations have to 
be closed with respect to external calls it is the user's responsibility to declare any entry points 
and modes to meta-predicates via entry annotations.4 However, if no multiple specialization 
is used, only one variant is generated for each predicate. This variant will be more or less 
optimized depending on the accuracy of the information supplied by the user. If the types 
of calls that can appear in the meta-calls are very general, then nearly all opportunities for 
optimization will be lost. It can also be very tedious for the user to give information for all the 
possible new calls. 

The above solutions have the disadvantage of putting the burden on the user — something 
that we would like to avoid at least for naive users. We propose two alternative solutions that 
are completely transparent to the user. The first is to simply observe that fully undetermined 
meta-calls do not completely preclude analysis of the program. Having solved the first problem 
above (the success substitution of the meta-call) the second can be tackled by simply assuming 
that there are unknown call patterns, and thus any of the predicates in the program may be 
called (either from the meta-call or from within its subtree). This means that analysis may 
still proceed but topmost call patterns must be assumed for all predicates. This is similar to 
performing a goal independent analysis and it may allow some optimizations. However, it will 
probably preclude others and, in particular, program specialization (since all the predicates in 
the program must be prepared to receive any input value). 

Finally, we propose another, complete solution which has none of the problems of the solutions 
above and can cover all meta-calls, with the only penalty of some cost in code size. The key idea 
is to compile essentially two versions of the program — one that is a straightforward compilation 
of the original program (although any optimizations possible with a goal independent analysis 
may be introduced), and another that is analyzed assuming that the only possible calls to each 
predicate are those that appear explicitly in the program, including completely determined 
meta-calls. This version will contain all the optimizations, which will be performed ignoring 
the effect of undetermined meta-calls. Predicates in this more optimized version are renamed 
in an appropriate way (we will assume for simplicity that it is by using the prefix "opt_"). 

3Note, however, that if at run-time the meta-call is still undetermined an error will be reported. Similarly, 
if it can be determined at compile-time that the argument of the meta-call is, for example, free an error should 
also be reported. 

4The same solution is given for dynamic predicates and predicates in bodies of asserted clauses — see Section 
4.3. 
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Calling from undetermined meta-calls into the more optimized version of the program (which 
will possibly be unprepared for the call pat terns created by such meta-calls) is avoided by 
making such calls call the less optimized version of the program. This is achieved via the 
following transformation, where c a l l (X) is assumed to be an undetermined meta-call : 

p ( . . . ) : - q ( . . . ) , c a l l ( X ) , r ( . . . ) . 

is transformed into 

p ( . . . ) : - q ( . . . ) , c a l l ( X ) , r ( . . . ) . 

o p t _ p ( . . . ) : - o p t _ q ( . . . ) , c a l l ( X ) , o p t _ r ( . . . ) . 

The top-level rewrites calls which have been declared as entry points to the program so tha t 
the optimized version is accessed. Note tha t this also solves (if needed) the general problem 
of answering queries tha t have not been declared as entry points: they simply access the less 
optimized version of the program. If the top-level does also check the call pat terns , then it 
guarantees tha t only the entry pat terns used in the analysis will be executed. For the declared 
entry pat terns , execution will s tart in the optimized program and will move to the original 
program to compute a resolution subtree each time an undetermined meta-cal l is executed. 
Upon return from the undetermined meta-cal l execution will go back to the optimized program. 

Note tha t the renamed copy of the program will not be used by the calls in undetermined 
meta-calls . This will take place automatically because the terms tha t will be built at run- t ime 
will use the names of the original predicates. When a predicate in the original program is called, 
it will also call predicates in the original program. Thus, correctness is guaranteed during the 
execution of the meta-call . 

Meta-calls tha t are fully determined (either by declaration or as a result of analysis) can 
be incorporated into the program text and will call the more optimized version. Analysis will 
have taken into account the call pat terns produced by such calls since at analysis time fully 
determined meta-calls are entered and analyzed as normal calls. I.e., for example, 

. . . , p ragma( te rm(X, p(Y) ) ) , c a l l ( X ) , . . . , 

will be simply transformed at compile-time into 

. . . , opt_p(Y) 

Meta-calls tha t are partially determined, such as, for example, 

. . . , p r a g m a ( d e p t h ( X , p / l ) ) , c a l l ( X ) , . . . 

are a special case. One solution is not to rename them. In tha t case they will be treated as 
undetermined meta-calls . Alternatively, the effect of these calls, which is much more isolated 
than tha t of undetermined calls, may be taken into account during the analysis for the more 
optimized version of the program by assuming all possible call pat terns for only the predicates 
tha t are called in such calls. It is also necessary in tha t case to ensure tha t the optimized 
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program will be entered upon reaching a partially determined meta-call. This can be done 
dynamically, using a special version of c a l l / 1 or by providing binary predicates which transform 
the calls into new predicates which perform a mapping of the original terms (known from the 
analysis) into the renamed ones. Using this idea the example above may be transformed into: 

. . . , op t_ca l l (X) , . . . 

opt_cal l (p(X)) : - opt_p(X). 

The impact of the optimizations performed in the the renamed copy of the program will 
depend on the time that execution stays in each of the versions. Therefore, the relative compu­
tational load of undetermined meta-calls w.r.t. the whole program will condition the benefits 
of the optimizations achieved. The only drawback with this solution is that it implies keeping 
two full copies of the program, although only in case there are undetermined meta-calls. If 
cases where code space is a pressing issue, the user should be given the choice of turning this 
copying on and off. 

4.3 Database Manipulation and Dynamic Predicates 

Database manipulation builtins include a s se r t , r e t r a c t , abolish, and clause. These pred­
icates (with the exception of clause) affect the program itself by adding to or removing clauses 
from it. Predicates that can be affected by such predicates are called dynamic predicates and 
must usually be declared as such in modern Prolog implementations (and this is also the case 
in the ISO standard). 

The idea of modifying the program during execution might appear to run, in principle, 
conceptually counter to the idea of static analysis. However, all is certainly not lost and there 
are still quite a number of opportunities for optimizing dynamic programs. The potential 
problems created by the use of the database manipulation builtins are threefold: 

1. The literals in the body of the new clauses that are added dynamically to the program 
can produce new and different call patterns not considered during analysis. This has to 
somehow be taken into account for the analysis to be correct. We will call this the "extra 
call pattern" problem. 

2. How to compute success substitutions for literals which call dynamic predicates. Even if 
abstract success substitutions can be computed from any static definition of the predicate 
which may be available at compile-time, it may change during program execution. We 
will call this the "dynamic literal success substitution" problem. 

3. How to compute success substitutions for the calls to the database manipulation builtins 
themselves. We will call this the "database builtin success substitution" problem. 

Note that clause —which can be viewed as a special case of retract— does not modify the 
database and thus clearly only has the third problem above. Note also that the second and 
third problems above can always be solved by taking appropriate topmost success substitutions, 
as before. We will propose later some better solutions for these two problems. But first, we will 
concentrate on the the extra call pattern problem which is by far the most serious and difficult 
to solve. 
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Solving the extra call pattern problem. 

As in the case of meta-calls, the extra call pattern problem does not affect goal independent 
analyses, since such analyses do not rely on particular call patterns. Note also that, at least 
from the correctness point of view, the extra call pattern problem only arises from the use of 
a s se r t , but not from the use of abol ish or r e t r a c t . These predicates do not introduce new 
clauses in the program, and thus they do not introduce any new call patterns. On the other 
hand, it is conceivable that more accuracy could be obtained if these predicates were analyzed 
more precisely since removing clauses may remove call patterns which in turn could make the 
analysis more precise.5 

The a s s e r t predicate is much more problematic, since it can introduce new clauses and 
through them new call patterns. The problem is compounded by the fact that asserted clauses 
can call predicates which are not declared as dynamic, and thus the effect is not confined to 
dynamic predicates. In any case, and as pointed out in [14], not all uses of assert are equally 
damaging. To distinguish these uses, we propose to divide dynamic predicates into the following 
types: 

memo only facts which are logical consequences of the program itself are asserted 
data only facts are asserted, or, if clauses are asserted, they are never 

called (i.e., only read with clause or r e t r a c t ) . 
loca l_ca l l the dynamic predicate only calls other dynamic predicates 

global_cal l default 

The first two classes correspond to the unit-assertive and green-assertive predicates of [14], 
except that we have slightly extended the unit-assertive type by also considering in this type 
arbitrary predicates which are asserted/retracted but never called. These can be simply con­
sidered as a set of facts for the predicate symbol : - / 2 . 

A data predicate can be viewed as a set of terms that can be recorded and retrieved.6 

Calls and retracts to data predicates have both the same effect — data retrieval (no further 
computation is performed). In any case the advantage of data predicates is that they are 
guaranteed to produce no new call patterns and therefore they are safe with respect to the 
extra call pattern problem. This is also the case for memo predicates since they only assert 
facts.7 

Other dynamic predicates that are interesting with respect to the extra call pattern problem 
are loca l_ca l l predicates. If all dynamic predicates are of this type, then the analysis of the 
static program is correct except for the clauses defining the dynamic predicates themselves. 
Analysis can even ignore the clauses defining such predicates. Optimizations can then be 
performed over the program text except for those clauses, which in any case may not be such 
a big loss since in some systems such clauses are not compiled, but rather interpreted. 

While the classification mentioned above is useful, two problems remain. The first one is 
how to detect that dynamic procedures are in the classes that are easy to analyze (dynamic 
predicates in principle need to be assumed in the global_cal l class). This can be done through 

6See the discussion on incremental analysis at the end of the section for a general solution to this problem. 
6In fact, the builtins record and recorded provide this exact functionality but without the need for dynamic 

declarations and without affecting global analysis. However, those builtins are now absent from the Prolog 
standard. 

7Note however that certain analyses, and specially cost analyses which are affected by program execution 
time, need to treat these predicates specially. 
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analysis for certain programs, as shown in [14], but, as in the case of meta-calls, this does not 
offer a solution in all cases. An obvious alternative is to allow the user to express such a 
classification directly. For this purpose we propose to enrich the dynamic directive as follows: 

: - dynamic(predicate_spec,declared_type). 

where the declared types are those mentioned above. Standard dynamic directives are assumed 
to be of the global_cal l type. 

Still, the general case in which global_cal l dynamic predicates appear in the program (either 
because insufficient information is given by the user, because the type of certain predicates 
could not be determined statically, or simply because certain dynamic predicates are really 
of the global_cal l type) needs to be addressed. The problem is then similar to that which 
appeared with undetermined meta-calls. In fact, the calls that appear in the bodies of asserted 
clauses can be seen as undetermined meta-calls, and similar solutions apply. 

The simplest solution in order to cater for the naive user is, as before, to resort to analyzing 
all predicates for topmost call patterns. This can be time consuming and prevent some opti­
mizations, but is always correct and implies no user burden. There is also again the alternative, 
used in Aquarius [26], in MA3 [27], and in previous versions of the PLAI analyzer [22, 5], of 
viewing calls from asserted clauses as external calls and make it the user's responsibility to de­
clare any extra calls produced by dynamic predicates via entry annotations. The disadvantage 
here is again the burden on the user, and the advantage potentially better optimization. 

Finally, we propose a similar solution to the last one proposed in the case of the undetermined 
meta-calls: it involves again having two copies of the program, one with few optimizations 
(based perhaps on a topmost call pattern analysis for all predicates) and one with the full opti­
mizations (based on an analysis ignoring any clauses not present in the program), as explained 
in Section 4.2. There we showed how meta-calls would directly use the less optimized version 
due to the renaming mechanism. The same applies here. Whenever a clause for a dynamic 
predicate is asserted, the literals in its body will use the original (less optimized) predicates, 
which have been compiled for any call pattern. In this way correctness is always guaranteed. 
The discussion regarding the relevance of the optimizations is the same as in Section 4.2. In fact, 
the static clauses of the dynamic predicates themselves are subject to the same treatment as 
the rest of the program. Clearly, this solution can be combined with the previously mentioned 
optimizations when particular cases can be identified. 

Solving the dynamic literal success substitution problem. 

If only abol ish and r e t r a c t are used in the program, the abstract success substitutions of 
the static clauses of the dynamic predicates are a safe approximation of the run-time success 
substitutions. However, a loss of accuracy can occur, as the abstract success substitution for 
the remaining clauses (if any) may be more particular. In the presence of a s se r t , as mentioned 
before, it is always possible to generate a correct (but possibly inaccurate) success substitution 
for dynamic literals by using appropriate topmost abstract substitutions. This is correct but 
may introduce some inaccuracy. If the user knows how the dynamic predicates are going to 
behave, valuable information regarding the success substitutions for the predicate can be given 
via t rust /pragma annotations. Finally, note that in the case of memo predicates (and for 
certain properties) this problem is avoided since the success substitutions computed from the 
static program are correct. 
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Solving the database builtin success substitution problem. 
This problem does not affect a s s e r t and abol ish since the success substitution for calls to 

these builtins is the same as the call substitution. On the other hand, r e t r a c t (and clause) 
cannot be directly analyzed. However, appropriate topmost substitutions can be safely used. 
In the special case of dynamic predicates of the memo class, and if the term used as argument 
in the call to r e t r a c t or clause is at least partially determined, abstract counterparts of the 
static clauses of the program can be used as approximations in order to compute a more precise 
success substitution (see [3] for more details). 

Summary and other approaches. 

In conclusion, we have studied several ways in which optimizations based on static analysis can 
still be guaranteed correct for dynamic programs. In particular, we have proposed a technique 
(keeping two copies of the program with different levels of optimization) whereby the most 
serious problem of the appearance of extra call patterns is solved in a very general way, without 
putting any extra burden on the user, and at only the cost of some code space. This, in 
combination with any of the other techniques for solving the other two simpler problems, offers 
a solution that is general enough to deal with any kind of programs, without burdening the 
user, in contrast with previous solutions, which rely on identifying certain classes of programs, 
e.g., [14] or on programmer supplied annotations [26, 27]. 

There is still another, quite different and interesting solution to the problem of dynamic 
predicates, which is based on incremental global analysis [16]. Note that in order to implement 
a s s e r t some systems include a copy of the full compiler at run-time. The idea would be to 
also include the (incremental) global analyzer and the analysis information for the program, 
computed for the static part of the program. The program is in principle optimized using 
this information but the optimizer is also assumed to be incremental. After each non-trivial 
assertion or retraction (ground facts and simple facts, and clauses which can be determined 
not to affect the previously inferred information may be treated specially) the incremental 
global analysis and optimizer are rerun and any affected parts of the program reanalyzed (and 
reoptimized). This has the advantage of having fully optimized code at all times, at the cost of 
increasing the cost of calls to database manipulation predicates and of executable size. A system 
along these lines has been built by us for a parallelizing compiler. The results presented in [16] 
show that such a reanalysis can be made in a very small fraction of the normal compilation 
time. 

5 Program Modules 

Up to now we have assumed a single program text (in one or more files). However, programs 
are obviously normally better developed in a modular fashion. In this section we address the 
issues of modularity and also to some extent interactive development. The main problem with 
studying the impact of modularity in analysis (and the reason we have left the issue until this 
section) is the lack of even a de-facto standard. There have been many proposals for module 
systems in logic programming languages (see [6]). For concreteness, however, we will focus on 
the module system proposed in the new draft ISO standard [19]. In this standard, the module 
interface is static, i.e. each module in the program must declare the procedures it exports.8 This 

8This is in contrast with other module systems used in some Prolog implementations that allow entering the 
code in modules at arbitrary points other than those declared as exported. This defeats the purpose of modules. 
We will not discuss such module systems since the corresponding programs in general need to be treated as non 
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is done using the module directive. A module can only be compiled if all the module interfaces 
for the predicates it imports are defined, even if the actual code is not yet available. Imported 
predicates have to be declared also. 

As already pointed out in [17] module directives have the nice property that they provide the 
entry points for the analysis of a module for free. Thus, if we assume for now that the program 
consists of only one module with its module directive and there are no entry declarations, 
we can safely assume that the only entry points are the exported predicates. Analysis simply 
needs to start at the procedures corresponding to such points with appropriate topmost abstract 
substitutions. In line with our previous assumptions, if any entry annotations are present for 
such exported predicates, they will be assumed to be closed with respect to external calls. 
Then, analysis will start at the exported predicates with the substitutions declared in the 
entry annotations if available (and topmost otherwise). 

In the general case where there are multiple modules, the analysis of literals which call 
imported predicates requires new approaches, some of which we discuss in the following para­
graphs. 

Compositional Analysis. 

Modular analyses based on compositional semantics (such as, for example, that of [9]) can be 
used to analyze programs split in modules. Such analyses leave the abstract substitutions for 
the predicates whose definitions are not available open, in the sense that some representation of 
the literals and their interaction with the abstract substitution is incorporated as a handle into 
the substitutions themselves. Once the corresponding module is analyzed and the (abstract) 
semantics of such open predicates known, substitutions can be composed via these handles. The 
main drawback of this interesting approach is that the result of the analysis is not definite if 
there are open predicates. Thus, total correctness of the partial abstract substitutions computed 
at a particular moment cannot always be guaranteed. In principle, this would force some 
optimizations to be delayed until the final composed semantics is known, which in general can 
only be done when the code for all modules is available. Therefore, although analysis can be 
performed for each module separately, optimizations (and thus, compilation) cannot in principle 
use the global information. 

Incremental Analysis. 

A different approach is by means of the previously mentioned technique of incremental anal­
ysis (e.g. [16]). Each call to a predicate not declared in the module being analyzed is mapped 
to ±. Each time a new predicate is analyzed, the information obtained is applied directly to 
the parts of the analysis where this information may be relevant. The information obtained 
with incremental analysis is conservative: it is correct and optimal. By optimal we mean that 
if we put together in a single module the code for all modules (with the necessary renaming to 
avoid name clashes) and analyze it in the traditional way, we obtain the same information as 
with incremental analysis. However, incremental analysis, in a very similar way to the previous 
solution, is only useful for optimization if the code for all modules is available. The information 
obtained for one isolated module is partial and in principle cannot be used to optimize a module 
independently of others, thus precluding its use for modular optimization from the point of view 
of software engineering. On the other hand, if optimization is also made incremental, as men­
tioned in previous sections, then this does present a solution to the general problem: modules 
are optimized as much as possible assuming no knowledge of the other modules. Optimizations 
will be correct with respect to the partial information available at that time. Upon module corn-
modular programs from the point of view of analysis. 

Report No. CLIP2/95.0 March 1995 



Data-Flow Analysis of Prolog Programs with Extra-Logical Features 20 

position incremental reanalysis and reoptimization will make the composed optimized program 
always correct. 

Note that Prolog compilers are incremental in the sense that at any point in time new 
clauses can be compiled into the program - this allows a powerful interactive development 
environment. Another advantage of incremental analysis (aided by incremental optimization) 
is that it allows the combination of full interactive program development with full global analysis 
based optimization. 

Trust-Enhanced Module Interface. 

We propose yet another approach which is based on the fact that in [19] imported predicates 
have to be declared in the module importing them and such a module can only be compiled 
if all the module interfaces for the predicates it imports are defined, even if the actual code 
is not yet available. Note that the same happens for most languages with modules (e.g., 
Modula). When such languages have some kind of global analysis (e.g., type checking) the 
module interface also includes suitable declarations. For data-flow analysis we propose to 
augment the module interface definition so that it may include trust annotations for the 
exported predicates. Each call to a predicate not defined in the module being analyzed but 
exported by some module interface is in principle mapped to appropriate topmost substitutions. 
But if in the module interface there are one or more trust annotations applicable to the call 
pattern, such annotations will be used instead. Any call to a predicate not defined in that 
module and not present in any of the module interfaces can be safely mapped to ± during 
analysis (this corresponds to mapping program errors to failure - note that error can also be 
treated alternatively as a first class element in the analysis). The advantages are that we do 
not need the code for other modules and also that we can perform optimizations using the 
(inaccurate) analysis information obtained in this way. 

Analysis using the trust-enhanced interface is correct. However, the fact that we may assume 
T for those calls that are imported from other modules makes this analysis procedure subopti-
mal. This can be avoided if the programmer provides trust annotations that are as accurate 
as possible for imported predicates. The disadvantage of this method is that it requires the 
trust-enhanced interface for each module. However, note that the process of generating these 
trust annotations can be automated. In a given module, if the programmer has provided no 
trust annotation suitable for our purposes, we assume topmost substitutions for the imported 
predicates. Whenever the module is analyzed, the call/success-patterns for each exported pred­
icate in the module which are obtained by the analysis are written out in the module interface 
as trust annotations. From there, they will be seen by other modules during their analysis and 
will improve their exported information. A global fixpoint can be reached in a distributed way 
even if different modules are being developed by different programmers at different times and 
running the analysis only locally, provided that, as required by the module system, the module 
interfaces (but not necessarily the code) are always made visible to other modules. 

Summary. 

In practice it may be useful to use a combination of incremental analysis and the trust-
enhanced module interface for programs split in modules. The trust-enhanced interface can be 
used during the development phase of a modular program to compile modules independently. 
However, as hinted at before, the use of the trust-interface does not always guarantee that the 
analysis information obtained once the analysis of all modules converges is optimal. We believe, 
however, that analysis information is most important once the actual code for all modules is 
present and the resulting composed program is compiled. At this moment, incremental analysis 

Report No. CLIP2/95.0 March 1995 



Data-Flow Analysis of Prolog Programs with Extra-Logical Features 21 

can be used to analyze modules loading them one after the other. Annotations which appear 
in the code of the modules will be used, but t r u s t annotations in module interfaces might be 
ignored at this point. In this way we will obtain the most accurate analysis information. 

Multifile predicates (those defined over more than one file or module) also need to be treated 
in a special way. They can be easily identified due to the m u l t i f i l e declaration. They are 
similar to dynamic predicates (and also imported predicates) in that if we analyze a module 
independently of others, some of the code of a predicate is missing. We can treat such predicates 
as dynamic predicates and assume topmost substitutions as their abstract success substitutions 
unless there is a t r u s t annotation for them. When the whole program composed of several 
modules is compiled, we can again use incremental analysis. At that point, clauses for predicates 
are added to the analysis using incremental addition [16] (regardless of whether these clauses 
belong to different modules). 

A case also worth discussing is that of libraries. Usually utility libraries provide predicates 
with an intended use. These predicates can be used by many different modules, even belonging 
to different programs. For such library files we can use the automatic generation of t r u s t 
annotations after analysis to provide information regarding the exported predicates. This is 
done for all the different uses and the generated t r u s t annotations stored in the library interface. 
With this scheme it is not necessary to analyze a library predicate when it is used in different 
programs. Instead, it is only analyzed once, and the information stored in the t r u s t annotation 
is used from then on. If new uses of the library predicates arise for a given program, the 
library code can be reanalyzed and recompiled for that use, keeping track of this new use for 
future compilations. An alternative approach to the analysis of libraries is to perform a goal 
independent analysis for them, coupled with a goal dependent analysis when the library is used 
for the particular use in the program [10]. 

6 Conclusions 

We have proposed a number of techniques for the analysis of a dialect of the Prolog language, 
essentially following the recently proposed ISO standard. We argue that these solutions, when 
considered as a whole, provide a means for the analysis and optimization of the full language. 
This can be done without any input from the user, even in the difficult cases of dynamic pro­
grams, albeit at some loss of optimization and/or increase in code size. We have also introduced 
several types of program annotations that can be used to both increase the accuracy and effi­
ciency of the analysis and to express its results. We have also discussed software engineering 
issues such as modular program development. The proposed techniques offer different trade­
offs between accuracy, analysis cost, and user involvement. While we feel there is still plenty of 
work left in achieving more accurate analysis of many features (such as, for example, cut) we 
argue that the presented combination of known and novel techniques is the most comprehen­
sive solution to date for the correct analysis of arbitrary programs using the full power of the 
language. 
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