
facultad de informatica

universidad politecnica de madrid

Data-Flow Analysis of Prolog Programs
with Extra-Logical Features

F. Bueno
D. Cabeza

M. Hermenegildo
G. Puebla

T R N u m b e r CLIP2/95.0

Data-Flow Analysis of Prolog Programs with
Extra-Logical Features

Technical Report Number: CLIP2/95.0
March 1995

Authors

F. Bueno, D. Cabeza, M. Hermenegildo, G. Puebla
{bueno, dcabeza, herme, german}@fi.upm.es
Facultad de Informatica
Universidad Politecnica de Madrid — UPM
Campus de Montengancedo
28660 — Boadilla del Monte, Spain
Phone: +34-1-336-7435
Fax: +34-1-352-4819

Keywords

Data-flow Analysis, Abstract Interpretation, Standard Prolog.

Acknowledgements

This work was partially supported by ESPRIT Project #6707 ParForce, and CICYT Project
IPL-D. The authors would also like to thank M. Garcia de la Banda, F. BaUesteros, M. Carro,
S. Prestwich, and S. Yan.

http://upm.es

Abstract

Abstract interpretation-based data-flow analysis of logic programs is at this point relatively
well understood from the point of view of general frameworks and abstract domains. On the
other hand, comparatively little attention has been given to the problems which arise when
analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions
to these problems have been proposed to date. Such problems relate to dealing correctly with all
builtins, including meta-logical and extra-logical predicates, with dynamic predicates (where
the program is modified during execution), and with the absence of certain program text during
compilation. Existing proposals for dealing with such issues generally restrict in one way or
another the classes of programs which can be analyzed if the information from analysis is to be
used for program optimization. This paper attempts to fill this gap by considering a full dialect
of Prolog, essentially following the recently proposed ISO standard, pointing out the problems
that may arise in the analysis of such a dialect, and proposing a combination of known and
novel solutions that together allow the correct analysis of arbitrary programs using the full
power of the language.

Contents

1 Introduction 1

2 Preliminaries and Notation 2

3 Program Annotations 3

3.1 Predicate Level: Entry Annotations 4
3.2 Predicate Level: Trust Annotations 6
3.3 Goal Level: Pragma Annotations 8

4 Dealing with Standard Prolog 9
4.1 Builtins as Abstract Functions 9
4.2 Meta-Predicates 12

4.3 Database Manipulation and Dynamic Predicates 15

5 Program Modules 18

6 Conclusions 21

References 22

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 1

1 Introduction

Global program analysis, generally based on abstract interpretation [11], is becoming a prac­
tical tool in logic program compilation in which information about calls, answers, and substitu­
tions at different program points is computed statically [17, 26, 22, 25, 4, 13, 1, 12, 21, 8]. Most
proposals to date have concentrated on proposing general frameworks and suitable abstract
domains. On the other hand, comparatively little attention has been given to the problems
which arise when analysis of a full, practical language is attempted. Such problems relate to
dealing correctly with all builtins, including meta-logical, extra-logical, and dynamic predicates
(where the program is modified during execution). Often, problems also arise because not all
the program code is accessible to the analysis, as is the case for some builtins (meta-calls),
some predicates (multifile and/or dynamic), and some programs (multifile or modular).

Implementors of the analyses obviously have to somehow deal with such problems, and some
of the implemented analyses provide solutions for some problems. However, the few solutions
which have been published to date [26, 14, 17, 22, 7] generally restrict the use of builtin pred­
icates in one way or another (and thus the class of programs which can be analyzed) if the
information from analysis is to be used for program optimization.

This paper attempts to fill this gap. We consider the correct analysis of a full dialect of
Prolog. For concreteness, we essentially follow the recently proposed ISO draft standard [18].
Although not yet a standard, this seems an appropriate choice because it essentially gathers and
unifies most of the de-facto standard features present in current Prolog dialects. Our purpose
is to review the features of the language which pose problems to global analysis and propose
alternative solutions for dealing with these features. The most important objective is obviously
to achieve correctness, but also as much accuracy as possible. The proposed alternatives are
a combination of known solutions when they are useful, and novel solutions when the known
ones are found lacking.

One of the motivations of our approach is that we would like to accommodate at the same
time two types of users. First, the naive user, which would like analysis to be as transparent
as possible. Second, we also would like to cater for the advanced user which may like to
guide the analysis in difficult places in order to obtain better optimizations. Thus, for each
feature, in order to accommodate the first class of users, we will propose solutions that require
no user input, but we will also propose solutions that allow the user to provide input to the
analysis process. This requires a clear interface to the analyzer at the program text level.
Clearly, this need arises also for example in the output of the analyzer when expressing the
information gathered by the different analyses supported. We propose an interface, in the form
of annotations, which is useful not only for two-way communication between the user and the
compiler, but also for the cooperation among different analysis tools and for connecting analyses
with other modules of the compiler.

We argue that the proposed set of solutions is the first one to allow the correct analysis of
arbitrary programs using the full power of the language without input from the user (while at
the same time allowing such input if so desired).

Given the length limitations and the objective of addressing the full language the presenta­
tion will be informal. Details can be found in [3]. The rest of the paper proceeds as follows:
after presenting some preliminary notions and notation (Section 2) we first deal with the crucial
issue of program annotations (Section 3). We then review all builtins in the ISO standard (as
described in [18]), and propose several solutions to the problems they pose to analysis. These

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 2

builtins include those that can usually be handled by abstract functions in most domains (Sec­
tion 4.1), meta-calls (Section 4.2), and database manipulation builtins and dynamic predicates
(Section 4.3). Finally, we discuss program modules (Section 5), and present our conclusions.

2 Preliminaries and Notation

For simplicity we will assume that the abstract interpretation based analysis is constructed
using the "Galois insertion" approach [11], in which an abstract domain is used which has a
lattice structure, whose top value we will refer to by T, and its bottom value by ±. We will
refer to the least upper bound (lub) and greatest lower bound (gib) operators in the lattice
by U and l~l, respectively. The abstract computation proceeds using abstract counterparts
of the concrete operations, the most relevant ones being unification (mgua) and composition
(oa), which operate over abstract substitutions (a). Abstract unification is however often also
expressed as a function unify" which computes the abstract mgu of two concrete terms in the
presence of a given abstract substitution.

We will call an abstract substitution a topmost w.r.t. a tuple (set) of variables x iff vars(a) =
x and for all other substitution a! such that vars(a') = x, a1 C. a. An abstract substitution a
referring to variables x is said to be topmost of another substitution a', referring to the same
variables, iff a = a' oa a", where a" is the topmost substitution w.r.t. x.

Usually, a collecting semantics is used which attaches one or more (abstract) substitutions
to program points (such as, for example, the point just before or just after the call of a given
literal — the call and success substitutions for that literal). Traditionally, a distinction is
made between top-down and bottom-up analyses based on whether computation is performed
starting at the queries or at the program facts. These have in turn been associated with goal
dependent and goal independent analyses, respectively. However, recent results [15, 10] show
that call dependence is not tied to a given form of analysis. A goal dependent analysis associates
abstract success substitutions to specific goals, in particular to call patterns, i.e. pairs of a goal
and an abstract call substitution which expresses how the goal is called. Depending on the
granularity of the analysis, one or more success substitutions can be computed for different
call patterns at the same program point. Goal independent analyses compute abstract success
substitutions for generic goals, regardless of the call substitution.

In general we will concentrate on top-down analyses, since they are at present the ones
most frequently used in optimizing compilers. However, we believe the techniques proposed are
equally applicable to bottom-up analyses. In the text, we consider in general goal dependent
analyses, but point out solutions for goal independent analyses where appropriate.

The pairs of call and success patterns computed by the analysis, be it top-down or bottom-
up, goal dependent or independent, will be denoted by AOTa(P) for a given program P. In
goal dependent analyses, for every call pattern of the form {goal-pattern, call substitution)
of a program P there are one or more associated success substitutions which will be denoted
hereafter by AOTa (P, calLpattern). The same holds for goal independent analysis, where the
call pattern is simply reduced to the goal pattern. By program we refer to the entire program
text that the compiler has access to, including any directives and annotations. The issues related
to multifile and modular programs, and interactive compilation, will be addressed in Section 5.
In top-down analyses, annotations may support the specification of given queries in the form
of entry points and their call patterns; AOTa(P) will then be referred to these queries. The
issue of determining the entry points and call patterns for which the analysis is correct will be

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features

addressed in sections 3 and 5.

The predicate spec (or indicator [18]) for the predicate whose name is predicate_name and
whose arity is n is predicate_name/n. The declaration : - term, is a directive. Directives
are not queries [18]. A most general goal pattern (or simply "goal pattern," hereafter) for a
predicate spec is a normalized goal for that predicate, i.e. a goal whose predicate symbol and
arity are the predicate spec and where all arguments are distinct variables.

3 Program Annotations

Annotations are assertions regarding a program that are introduced as part of its code. They
can state properties which hold for the program they appear in. In that case the annotations
do not modify the semantics of the non-annotated program. Rather, they reflect (often in
an abstract way) an aspect of the program meaning. They can also state properties of other
programs whose text is not present but which are to be composed with the present program. In
that case such annotations reflect the semantics of the composed program. Program annotations
can be both input to and output from the analyzer. When used as input, annotations are a
way to provide the analyzer with additional information so that it can generate more precise
information. When used as output, they represent the information obtained by the analyzer
that will eventually be used by other parts of the compiler (including perhaps other analyzers)
or shown to the programmer.

Annotations refer to a given program point. We consider two general classes of program
points: points inside a clause (such as, for example, before or after the execution of a given
goal — the "goal level") and points that refer to a whole predicate (such as, for example,
before entering or after exiting a predicate — the "predicate level"). Correspondingly there are
different annotations for each of these levels. At all levels annotations describe properties of the
variables that appear in the program (be it in the clause or in the arguments of a procedure). We
will call the descriptions of such properties declarations. In general, such descriptions must be
done in some abstract way since often it is necessary to represent an infinite number of concrete
cases. Declarations should be written in a syntax that is compatible with the language (in this
case, Prolog) and, ideally, in a domain-independent way. Thus, syntactically, declarations will
in general be Prolog terms containing variables (or variable designators). Such terms encode
assertions about the state of such variables at run-time.

There are at least two ways of representing declarations which we will call "property oriented"
and "abstract domain oriented". In a property oriented framework, there are declarations for
each property that a given variable or set of variables may have. Examples of such declarations
are:

mode(X,+) X is bound to a non-variable term
term(X,r(Y)) X is bound to term r(Y)
ground (X) X is bound to ground term
free (X) X is bound to free variable
depth(X,r /1) X is bound to a term r (_)
aliased(X,Y) X and Y are aliased
occur ([X, Y]) the same variables occur in the terms bound to X and Y
t rue no information (the top substitution)
f a l s e the computation has failed (±)

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 4

For concreteness, and in order to avoid referring to any abstract domain in particular, we
propose to use such a framework. In addition to the terms such as those above we assume
that declarations can also be first order formulae formed by combining declarations with the
connectives of first order logic. In the following, we will assume that declarations are always in
conjunctive normal form (i.e. they are simplified in that way when being read). Comma and
semicolon will denote, as usual, conjunction and disjunction, respectively.

The property oriented approach presents two advantages. On one hand, it is easily exten­
sible, provided one defines the semantics for the new properties one wants to add. On the
other hand, it is also independent from any abstract domain for analysis. One only needs to
define the semantics of each declaration, and, for each abstract domain, a translation into the
corresponding abstract substitutions. An alternative solution is to define declarations in an
abstract domain oriented way, i.e. representing declarations through some encoding in Prolog
terms of the elements of the abstract domain used in the analysis. For example, for the sharing
domain [20]:

sharing([[X] , [Y,Z]]) the sharing pattern among variables X,Y, Z is {{AT}, {Y, Z}}

This is a simple enough solution but has the disadvantage that the meaning of such domains
is often difficult for users to understand. Also, the interface is bound to change any time the
domain changes. Although this approach can also be extended if more domains are to be
incorporated for analysis, it has two other disadvantages. The semantics and the translation
functions above mentioned have to be defined pairwise, i.e. one for each two different domains to
be communicated. And, secondly, there can exist several (possibly overlapping) properties de­
clared, one for each different domain. In the property oriented approach, additional properties
that several domains might take advantage of are declared only once. In any case, both ap­
proaches are compatible via the syntactic scheme proposed above (and in the following) in that
abstract substitutions can also be seen as "properties" by encapsulating abstract substitutions
for each domain in a term.

3.1 Predicate Level: Entry Annotations

One class of predicate level annotations are entry annotations. They are specified using a
directive style syntax, as follows:

: - ent ry {goal-pattern declaration) .

Declarations in entry annotations refer to the state of the variables appearing as arguments of
calls to the given predicate. These annotations simply state that calls to that predicate with
the given abstract call substitution may exist at execution time. For example, the annotation:

: - entry(p(X,Y), (ground(X),ground(Y))) .

states that there can be a call to predicate p/2 in which its two arguments are ground. The
annotations:

: - entry(p(X,Y), ((ground(X).ground(Y)) ; (ground(X),free(Y))) .

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 5

and

: - entry(p(X,Y), (ground(X),ground(Y))) .
: - entry(p(X,Y), (ground(X),free(Y))) .

are equivalent. In general, several annotations for the same predicate can be viewed as forming
a disjunction. The entire single declaration for a given predicate, once put in conjunctive normal
form, can be seen as stating a number of alternative ways in which the predicate can be called.

The idea of entry annotations is not novel. They are similar in purpose to other declarations
which have been previously proposed (also referred to as "mode," "qmode," "imode," etc.
declarations) to guide different goal dependent analyses [17, 26, 22, 25, 4, 13, 1, 22, 12, 21, 8].
The name is due to VanRoy and we have kept it instead of the one used previously by us
("qmode"), which we feel is less natural.

Entry annotations and goal dependent analysis.

A crucial property of entry annotations, which makes them useful in the goal dependent
analyses mentioned above, is that they must be closed with respect to outside calls. By this we
mean that no call patterns other than those specified by the annotations of the program may
occur from outside the program text. I.e., the list of entry annotations includes all calls that
may occur to a program, apart from those which arise from the literals explicitly present in the
program text. Thus, for now, we assume that they define all entry points, and optionally, their
call patterns. Obviously this is not an issue in goal independent analyses.

Note that according to this definition, a program with no entry annotations is not a useful
program because none of its predicates may be called from outside, i.e. it is entirely dead code.
There are two alternatives in this situation: the first one is to simply issue a warning to the
user. However, in our effort to support the user who perhaps does not want to provide any
information to the analyzer but still would like it to do what it can, another alternative is to
analyze the program but assuming that any predicate may be called in any possible way from
outside. This is equivalent to assuming an entry annotation for each predicate in the program
with the topmost substitution for the argument variables (i.e., t rue) . On the other hand, if
any entry annotation is present (showing thus a will of the user to help the analysis) then it is
assumed to be closed with respect to calls from outside the program text.

Entry annotations and multiple program specialization.

When optimizing a program in the presence of a multivariant analysis it is often convenient
to create different versions of a predicate, through a technique known as multiple specialization
[28, 24, 26]. This allows implementing different optimizations in each version. Each one of these
versions generally receives an automatically generated unique name in the multiply specialized
program. However, in order to keep the multiple specialization process transparent to the
user, whenever more than one version is generated for a predicate which is a declared entry
point of the program (and, thus, appears in an entry directive), the original name of the
predicate is reserved for the version that will be called upon program query. However, if more
than one entry annotation appears for a predicate and different versions are used for different
annotations, it is obviously not possible to assign to all of them the original name of the
predicate. There are two solutions to this. The first one is to add a front end with the exported
name and run-time tests to determine the version to use. However, this implies run-time
overhead. As an alternative we allow the entry directive to have one more argument, which
indicates the name to be used for the version corresponding to this entry point. For example,

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 6

given:

: - entry(mmultiply(A,B,C),ground([A,B]),mmultiply_ground).
: - entry(mmultiply(A,B,C),true,mmultiply_any).

if these two entries originate different versions, one would be called as mmultiply_ground/3
and the other as mmultiply_any/3. Of course if two or more versions such as those above are
collapsed into one, this one will get the name of any of the entry points and, in order to allow
calls to all the names given in the annotations, binary clauses will be added to provide the other
entry points to that same version. In practice, both solutions can be used simultaneously: if
multiple specialization is desired but with a single entry point, a single entry directive should
be supplied, which should express the cases in a disjunction. In this way even if there are several
versions for the predicate, there will only be one exported version, and that one will keep the
original name. Run-time tests will be used to determine the appropriate version.

3.2 Predicate Level: Trust Annotations

In addition to the more standard entry annotations we propose a different kind of annotations
at the predicate level, t r u s t annotations, which take the following form:

: - trust {goal-pattern, call-declaration, success-declaration) .

Declarations in t r u s t annotations put in relation the call and the success points of calls to
the given predicate. These annotations can be read as follows: if a literal that corresponds to
goal-pattern is executed and the call-declaration holds for the associated call substitution, then
the success-declaration holds for the associated success substitution. Thus, these annotations
relate abstract call and success substitutions. Note that the call .declaration can be empty (i.e.,
t rue) . In this way, properties can be stated that must always hold for the success substitution,
no matter what the call substitution is. This is useful also in goal independent analyses (and
in this case it is equivalent to the "omode" declaration of [17]).

Let (p(x), a) denote the call pattern and a' the success substitution of a given t r u s t annota­
tion of aprogram P. The semantics of t r u s t implies that \/ac (ac C. a => AOTa(P, (p(x),ac)) C.
a'). I.e., for all call substitutions approximated by that of the given call pattern, their success
substitutions are approximated by that of the annotation. For this reason, the compiler will
"trust" them. If the declaration of one annotation is a disjunction, the lub of the different
conjunctions will be used in place of a' in the above formula. If several annotations exist for
the same call pattern, or several call patterns in these annotations approximate the one actu­
ally occurring at a given point, the gib of the success substitutions (as justified below) will be
used. Note that this implies that, in contrast to entry annotations, several t r u s t annotations
are assumed to form a conjunction. Also in contrast to entry annotations, the list of t r u s t
annotations of a program does not have to be closed w.r.t. all possible call patterns occurring
in the program.

One of the main uses of t r u s t annotations is in describing definitions of predicates that are
not present in the program text (we will return to this issue in greater length in sections 4.1
and 5). For example, the following annotations describe the behavior of the predicate p/2 for
two possible call patterns:

: - t ru s t (p (X,Y) , (ground(X),free(Y)) , (ground(X), ground(Y))) .

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 7

: - t r u s t (p (X , Y) , (f ree (X) ,ground(Y)) , (f r e e (X) , ground(Y))) .

This would allow performing the analysis even if the code for p / 2 is not present provided tha t
the calls to p / 2 tha t appear in the program conform to (i.e., are identical to or contained in)
one of the two call pat terns in the t r u s t annotations above. In tha t case the corresponding
success information in the annotation can be used ("trusted") as success substitution.

In addition, t r u s t annotations can be used to improve the analysis for example if it is
observed tha t for (one or more) call pat terns the results of the analysis are inaccurate. However,
note tha t the existence of such an annotat ion does not save analyzing the predicate for the
corresponding call pat tern: this is still necessary in order to compute the abstract subtree
underlying tha t call pat tern, since it may contain call pat terns tha t do not occur elsewhere
in the program. Otherwise the analysis would not be correct (and no optimizations could
be performed) for the predicates and goals in tha t subtree, since there would be missing call
pat terns .

After having analyzed a literal for whose predicate a t r u s t annotat ion exists, an interesting
situation arises in tha t , upon exit from the call, two abstract success pat terns will be available
for the call pat tern analyzed (or a comparable one): tha t computed by the analysis (say as)
and tha t given by the t r u s t annotation. As both the t r u s t information and tha t generated by
the analyzer must be correct, the intersection of them (which may be more accurate than any
of them) must also be correct. The intersection among abstract substitutions (whose domain
we have assumed has a lattice structure) is computed with the gib operator, IT1 During
analysis, for every abstract call substitution ac, with corresponding success substitution as,
s.t. ac C a, as is substi tuted by as l~l a', where a' is the abstract success substitution given by
the t r u s t annotation(s) which apply to ac. Therefore, AOTa(P, (p(x),ac)) = as l~l a'. Since
\fas\fa' (as l~l a' C as A as l~l a' C a') correctness of the analysis within the t r u s t semantics is
guaranteed, i.e. AOTa(P, (p(x),ac)) C a' and AOTa(P, (p(x),ac)) C as.

It is interesting to study the different situations which may appear regarding the t r u s t
information (i.e. a') and the one computed during analysis (as):

1. They are identical, as l~l a! = as = a1.

2. Information from analysis is more particular than tha t of the annotation. In this case the
computed information is preferred, as l~l a! = as.

3. Information in the annotation is more particular than tha t computed in the analysis. The
information supplied in the annotation is preferred (and assumed correct — "trusted") ,
as l~l a' = a'.

4. They have non-empty intersection. The most accurate information is their intersection,
thus as n a' is used, too.

5. They have incompatible information. Their intersection is empty, and asr\a' = _L. This is
an error, because the analysis information must be correct, and the same thing is assumed
for the t r u s t information. The analysis should give up and warn the user.

1 Although this operation is not generally implemented in top-down analyzers, which compute the fixpoint
upwards, we believe that, in general, it is not difficult to implement, and a small burden when compared to the
utility brought in by the t r u s t annotation.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 8

An obvious alternative to the scheme outlined above is to always use the information in
the t r u s t annotation as success substitution, AOTa(P, (p(x), acj) = a'. In this case t r u s t
annotations must be used with care, because if the information supplied is more general than
what the analysis can obtain, a loss of accuracy occurs.

Although the use of entry (and omode) declarations has also been proposed for some purposes
similar to our t r u s t annotations [26, 17], we believe that the use of t r u s t provides a superior
solution because they make it possible to relate several call patterns with their associated
success patterns.

3.3 Goal Level: Pragma Annotations

Annotations at the goal level refer to the state of the variables of the clause just at the point
where the annotation appears: between two literals, after the head of a clause or after the last
literal of a clause.2 We propose reserving the literal pragma (as in [23]) to enclose all necessary
information referring to a given program point in a clause. It takes the form:

. . . , goah , pragma.(declaration), goah ,

where the pragma information is valid before calling goah and also after calling goah, that is,
at the success point for goah and at the call point of goah • The intended meaning of pragma
as part of the program is the one given by the following definition:

pragma(_).

i.e., the inclusion of pragma annotations does not alter the meaning of the program in any way.

The information given by pragma can refer to any of the variables in the clause. The informa­
tion is expressed using the same kind of declarations as in the predicate level annotations. This
allows a uniform format for the declarations of properties in annotations at both the predicate
and the goal level. Despite this, pragma in general is richer, since it can express certain asser­
tions which predicate level annotations cannot, due to the lack of the appropriate context. This
is because they refer to relationships between variables in different goals, possibly including
also existential variables of the clause. For example, the following annotation:

p(X,Y) :- q(X,Z), pragma(ground(Z)), r(Z,Y).

states that in the clause above, after execution of q(X,Z), Z will always be bound to a ground
term. This cannot be expressed at the predicate level of p/2.

Pragma annotations are related to t r u s t annotations in the sense that they give information
that should be trusted by the compiler. They are also related to entry, since a pragma annota­
tion needs to be exhaustive in the sense that its declaration specifies everything that can occur
at the corresponding program point. In the same way as with t r u s t annotations, pragma an­
notations can be used to specify the information at a program point after a particular predicate
is called, but in this case for a particular literal rather than for the whole predicate definition.

2 Similar annotations can be used at other levels of granularity, from between head unifications to even
between low level instructions, but we will limit the discussion for concreteness to goal-level program points.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 9

As with t r u s t , they can be used either for predicates whose definition is not available, or to
improve the information derived from the analysis of a particular literal of that predicate. In
the latter case again the literal and its corresponding subtree still needs to be analyzed in order
for the compiler to be able to perform optimizations, but the exit information can be improved
by the contents of the pragma annotation, if it is better than that obtained by the analysis.
In general, a similar set of cases regarding the respective accuracy of the inferred and declared
information as with the t r u s t annotations applies.

In practice it is sometimes useful to relate information that appears in different pragma
annotations occurring at different points of a clause. This allows for example relating two
components (elements of a disjunction) of two different pragma annotations at the call and
success point of a literal, in the same way as in a t r u s t annotation. This requires a slightly
more expressive syntax than that presented up to now. It suffices to add an (optional) identifier
to each declaration, that we will call a key. Declarations in different pragma annotations in a
clause can be related by giving them the same key. These extended annotations have the form:

pragma((key:declaration ; ...))

where key can be any ground term, which acts as a reference relating distinct annotations at
different (call or success) points. The same key appearing in two (or more) declarations at
different points will state that whenever the properties specified at a given point hold (and
only when they hold), then those specified with the same key at later points will also hold.
Under this point of view, t r u s t predicate level annotations summarize a set of pragma goal
level annotations (although t r u s t annotations have to be true for all literals of the predicate).

4 Dealing with Standard Prolog

In the previous sections we have presented a number of user annotations and already ad­
dressed a number of general issues in the practical analysis of programs. We now discuss
different solutions for analyzing the full standard Prolog language. In order to do so we have
divided the complete set of builtins offered by the language in several classes, which are treated
in the following sections.

4.1 Built ins as Abstract Functions

Many Prolog builtins are declarative and they can be dealt with efficiently and accurately
during analysis by means of functions which capture their semantics. Such functions provide an
(as accurate as possible) abstraction of every success substitution of any call to the correspond­
ing builtin. These can be more or less elaborate, from, for example, calling the full abstract
unification function for supporting = to simply identity for t rue . This applies also to goal
independent analyses, with minor modifications. For example, where identity is used in goal
dependent analysis a function returning the empty substitution is used in a goal independent
analysis.

It is interesting to note that the functions that describe builtin predicates are very similar
in spirit to t r u s t annotations. This is not surprising, if builtins are seen as Prolog predicates
for which the code is not available. For example, the identity function mentioned above corre­
sponds, in goal dependent and goal independent analyses respectively, to the following t r u s t

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 10

annotations:

: - t r u s t (t r u e , X , X) . : - t r u s t (t r u e , t r u e , t r u e) .

In this section, we revisit the usual treatment of builtins via abstract functions. Since most
of the treatment is rather straightforward the presentation is very brief, concentrating only on a
few, slightly more involved cases, in order to allow space for discussing the more interesting cases
of meta-logical and dynamic predicates, which will be addressed in the following sections. In
order to avoid reference to any particular abstract domain any functions described will be given
in terms of simple minded t r u s t annotations. For the reader interested in the details, the source
code for the PLAI analyzer (available by ftp from c l i p .d i a . f i . upm.e s) contains detailed
functions for all Prolog builtins and for a large collection of well known abstract domains.
These functions are also summarized in [2]. Finally, it should be noted that the accuracy of all
the solutions proposed can of course be improved by using pragma annotations.

Control Sow.

These predicates include t r u e and repeat , which have a simple treatment: identity can be
used (i.e., they can be simply ignored). The abstraction of f a i l and h a l t is _l_. For example,
f a i l can be described by the following annotation:

:- trust(fail,true,false).

For cut (!) it is also possible to use the identity function (i.e., ignore it). This is certainly
correct in that it only implies that more cases than necessary will be computed in the analysis
upon predicate exit, but may result in some cases (specially if red cuts are used) in a certain loss
of accuracy. This can be addressed by using a semantics which keeps track of sequences, rather
than sets, of substitutions, as shown in [7]. Finally, exception handling can also be included
in this class. The methods used by the different Prolog dialects for this purpose have been
unified in the Prolog standard into two builtins: catch and throw. We propose a method for
dealing with this new mechanism: note that, since analysis in general assumes that execution
can fail at any point, literals of the form catch (Goal, Catcher, Recovery) (where execution
starts in Goal and backtracks to Recovery if the exception described by Catcher occurs) can
be safely approximated by the disjunction (Goal;Recovery), and simply analyzed as a meta-
call (meta-calls, including all solutions predicates, will be considered in Section 4.2). The
correctness of this transformation is based on the fact that no new control paths can appear
due to an exception, since those paths are a subset of those considered by the analysis when it
assumes that any goal may fail. The builtin throw, which explicitly raises and exception, can
then be approximated by the identity function (i.e., ignored). Even more accurately, if we can
determine statically that the exception will be raised, then throw can in those cases be mapped
to failure, i.e. _l_.

Unification and term manipulation.

As mentioned before, the function corresponding to = is simply abstract unification. Special­
ized versions of the full abstract unification function can be used for other builtins such as \=,
functor, arg, univ (=. .) , and copy_term. Other term and string manipulation builtins are
relatively straightforward to implement. For example, the abstraction of the standard string
manipulation builtin atom_cod.es (which replaces name/2) could include the following t r u s t
annotations, among others:

Report No. CLIP2/95.0 March 1995

http://clip.dia.fi.upm.es
http://atom_cod.es

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 11

:- trust(atom_codes(X,Y),true,ground([X,Y])).

:- trust(atom_codes(X,Y),true,(atom(X),depth(Y,'.'/2))).

Arithmetic, comparison, and testing.

Arithmetic builtins and base type tests such as i s , >, @>, in teger , var, number, etc., usually
have a natural mapping in the abstract domain considered. In fact, their incomplete imple­
mentation in Prolog is an invaluable source of information for the analyzer upon their exit
(which assumes that the predicate did not fail — failure is of course always considered as an
alternative). For example, their mappings will include relations such as the following:

: - t r u s t (i s (X ,Y) , t rue ,g round([X ,Y])) .
: - t r u s t (v a r (X) , t r u e , f r e e (X)) .

On the contrary, ==, \==, and their arithmetic counterparts, are somewhat more involved,
and are implemented (in the same way as with the term manipulation builtins above) by using
specialized versions of the abstract unification function.

Data input/output.

Program output does not directly pose any problem since the related predicates do not in­
stantiate any variables or produce any other side effects beyond modifying external streams,
whose effect can only be seen during input to the program. Thus, identity can again be used
in this case. On the other hand, the behavior of builtins which are related to external input
cannot be determined beforehand. The main problem is that no success substitution can be
computed during analysis for the different call patterns to the builtin since the success substi­
tution depends on the state of objects that are external to the Prolog system, such as files or
the user. Depending on the abstract domain, things can however be simple in some cases. For
example, for a domain tracking groundness, simple input builtins like get_char can be easily
abstracted (it always produces ground input). But for more complex input predicates such as
read and for more complex domains this cannot be done. However, analysis can always proceed
by simply assuming that no information is available. In this case, the most general abstract
substitution T is assumed as success substitution for the call to the input predicate. In fact,
analysis can do better by considering the topmost abstract substitution w.r.t. the variables in its
arguments, or, even better, the topmost substitution of the call pattern w.r.t. those variables.
The latter is preferred, since this type of topmost abstract substitution is usually more accurate
for some domains. For example, if a variable is known to be ground in the call substitution, it
will continue being ground. In addition, as always, t rust /pragma annotations may be given to
improve the topmost substitutions.

Directives.

The treatment of directives is somewhat peculiar. The directive dynamic will be considered in
Section 4.3. The directive m u l t i f i l e specifies that the definition of a predicate is not complete
in the program. Multifile predicates can therefore be treated as either dynamic or imported
predicates. See Section 5.

The directives include and ensure_loaded must specify an accessible file, which can be read
in and analyzed together with the current program. The directive i n i t i a l i z a t i o n specifies
new, concrete entry points to the program. The directive module also specifies new entry
points to the program. In the absence of entry annotations for these entry points, topmost
substitutions can be used. See Section 5 for a discussion of modules.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 12

4.2 Meta-Predicates

Meta-predicates are predicates which use other predicates as arguments. All user defined
meta-predicates are in this class but their treatment can be reduced to the treatment of the
meta-call builtins they use. Such meta-calls are literals which call one of their arguments at
run-time, converting at the time of the call a term into a goal. Builtins in this class are not only
c a l l , but also bagof, f i nda l l , setof, negation by failure, and once (single solution). Calls
to the solution gathering builtins can be treated as normal (meta-) calls since most analyzers
are "collecting" in the sense that they always consider all solutions to predicates. Negation by
failure (\+) is also a meta-predicate, since \+ can be defined as

\+ X : - c a l l (X) , !, f a i l .
\+ X.

It can be dealt with by combining the treatment of cut with the treatment of meta-predicates.
Single solution (once) is also a meta-call and can be dealt with in a similar way as above since
it is equivalent to

once(X) : - c a l l (X) , !.

Since meta-call builtins convert a term into a goal, they can be difficult to deal with if it is
not possible to know at compile-time the exact nature of those terms [14, 17]. In particular,
this raises the following problems:

1. How to compute success substitutions for the calls to meta-call builtins.

2. How to compute the subtrees underlying calls to such builtins. Also, since from these
subtrees new calls (and new call patterns) can appear, which affect other parts of the
program, the whole analysis may not be correct.

The first problem is easier to solve: the same approach as for input builtins can be used, i.e.,
using appropriate topmost substitutions. Note that this is in fact enough for goal independent
analyses, for which the second problem is not relevant. However, for goal dependent analyses
the second problem needs to be solved in some way.

A more general solution to both problems is possible if knowledge regarding the terms to be
converted is available at compile-time. Clearly, if the term (functor and arguments) is given in
the program text (this is often the case for example in many uses of bagof, f i nda l l , setof,
\+, and once), then the meta-call can be analyzed in a straightforward way. If the term is not
obvious from the text of the program the nature of the term being used in the meta-call can
sometimes be inferred via a type, or depth-k or, in general, state of instantiation analysis, as
proposed in [14]. As a result of such an analysis perhaps the actual term to be called can be
determined, in which case the treatment outlined above applies. If the exact term cannot be
statically found but at least its main functor can be determined as a result of some analysis, then,
since the predicate that will be called at run-time is known, it is sufficient for analysis to enter
only this predicate using the appropriate projection of the current abstract call substitution on
the variables involved in the call. We will call the first class completely determined meta-calls
and the second one partially determined meta-calls. These classes distinguish subclasses of
the fully determined predicates defined in [14]. Following [14] we will refer to the cases where

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 13

the meta-term is unknown as undetermined meta-calls.3 In [14] certain interesting types of
programs are characterized which allow the static determination of this generally undecidable
property. Relying exclusively on program analysis, as in [14], however has the disadvantage that
it restricts the class of programs which can be optimized to those which are fully determined.

Since our aim is to analyze all programs, we provide a number of solutions for dealing with
undetermined meta-calls. The first and simplest solution is to issue a warning if an undeter­
mined meta-call is found and ask the user to provide information regarding the meta-terms.
This can be easily done via pragma annotations. For example, the following annotation:

. . . , pragma((term(X,p(Y)) ; term(X,q(Z)))) , cal l(X)

states that the term called in the meta-call is either p(Y) or q(Z). Note also that this is in some
way similar to giving entry mode information for the p /1 and q/1 predicates. This suggests
another solution to the problem, which has been used before in Aquarius [26], in MA3 [27] and
in previous versions of the PLAI analyzer [5]. The idea (cast in the terms of our discussion) is
to take the position that meta-calls are external calls. Then, since entry annotations have to
be closed with respect to external calls it is the user's responsibility to declare any entry points
and modes to meta-predicates via entry annotations.4 However, if no multiple specialization
is used, only one variant is generated for each predicate. This variant will be more or less
optimized depending on the accuracy of the information supplied by the user. If the types
of calls that can appear in the meta-calls are very general, then nearly all opportunities for
optimization will be lost. It can also be very tedious for the user to give information for all the
possible new calls.

The above solutions have the disadvantage of putting the burden on the user — something
that we would like to avoid at least for naive users. We propose two alternative solutions that
are completely transparent to the user. The first is to simply observe that fully undetermined
meta-calls do not completely preclude analysis of the program. Having solved the first problem
above (the success substitution of the meta-call) the second can be tackled by simply assuming
that there are unknown call patterns, and thus any of the predicates in the program may be
called (either from the meta-call or from within its subtree). This means that analysis may
still proceed but topmost call patterns must be assumed for all predicates. This is similar to
performing a goal independent analysis and it may allow some optimizations. However, it will
probably preclude others and, in particular, program specialization (since all the predicates in
the program must be prepared to receive any input value).

Finally, we propose another, complete solution which has none of the problems of the solutions
above and can cover all meta-calls, with the only penalty of some cost in code size. The key idea
is to compile essentially two versions of the program — one that is a straightforward compilation
of the original program (although any optimizations possible with a goal independent analysis
may be introduced), and another that is analyzed assuming that the only possible calls to each
predicate are those that appear explicitly in the program, including completely determined
meta-calls. This version will contain all the optimizations, which will be performed ignoring
the effect of undetermined meta-calls. Predicates in this more optimized version are renamed
in an appropriate way (we will assume for simplicity that it is by using the prefix "opt_").

3Note, however, that if at run-time the meta-call is still undetermined an error will be reported. Similarly,
if it can be determined at compile-time that the argument of the meta-call is, for example, free an error should
also be reported.

4The same solution is given for dynamic predicates and predicates in bodies of asserted clauses — see Section
4.3.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 14

Calling from undetermined meta-calls into the more optimized version of the program (which
will possibly be unprepared for the call pat terns created by such meta-calls) is avoided by
making such calls call the less optimized version of the program. This is achieved via the
following transformation, where c a l l (X) is assumed to be an undetermined meta-call :

p (. . .) : - q (. . .) , c a l l (X) , r (. . .) .

is transformed into

p (. . .) : - q (. . .) , c a l l (X) , r (. . .) .

o p t _ p (. . .) : - o p t _ q (. . .) , c a l l (X) , o p t _ r (. . .) .

The top-level rewrites calls which have been declared as entry points to the program so tha t
the optimized version is accessed. Note tha t this also solves (if needed) the general problem
of answering queries tha t have not been declared as entry points: they simply access the less
optimized version of the program. If the top-level does also check the call pat terns , then it
guarantees tha t only the entry pat terns used in the analysis will be executed. For the declared
entry pat terns , execution will s tart in the optimized program and will move to the original
program to compute a resolution subtree each time an undetermined meta-cal l is executed.
Upon return from the undetermined meta-cal l execution will go back to the optimized program.

Note tha t the renamed copy of the program will not be used by the calls in undetermined
meta-calls . This will take place automatically because the terms tha t will be built at run- t ime
will use the names of the original predicates. When a predicate in the original program is called,
it will also call predicates in the original program. Thus, correctness is guaranteed during the
execution of the meta-call .

Meta-calls tha t are fully determined (either by declaration or as a result of analysis) can
be incorporated into the program text and will call the more optimized version. Analysis will
have taken into account the call pat terns produced by such calls since at analysis time fully
determined meta-calls are entered and analyzed as normal calls. I.e., for example,

. . . , p ragma(te rm(X, p(Y))) , c a l l (X) , . . . ,

will be simply transformed at compile-time into

. . . , opt_p(Y)

Meta-calls tha t are partially determined, such as, for example,

. . . , p r a g m a (d e p t h (X , p / l)) , c a l l (X) , . . .

are a special case. One solution is not to rename them. In tha t case they will be treated as
undetermined meta-calls . Alternatively, the effect of these calls, which is much more isolated
than tha t of undetermined calls, may be taken into account during the analysis for the more
optimized version of the program by assuming all possible call pat terns for only the predicates
tha t are called in such calls. It is also necessary in tha t case to ensure tha t the optimized

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 15

program will be entered upon reaching a partially determined meta-call. This can be done
dynamically, using a special version of c a l l / 1 or by providing binary predicates which transform
the calls into new predicates which perform a mapping of the original terms (known from the
analysis) into the renamed ones. Using this idea the example above may be transformed into:

. . . , op t_ca l l (X) , . . .

opt_cal l (p(X)) : - opt_p(X).

The impact of the optimizations performed in the the renamed copy of the program will
depend on the time that execution stays in each of the versions. Therefore, the relative compu­
tational load of undetermined meta-calls w.r.t. the whole program will condition the benefits
of the optimizations achieved. The only drawback with this solution is that it implies keeping
two full copies of the program, although only in case there are undetermined meta-calls. If
cases where code space is a pressing issue, the user should be given the choice of turning this
copying on and off.

4.3 Database Manipulation and Dynamic Predicates

Database manipulation builtins include a s se r t , r e t r a c t , abolish, and clause. These pred­
icates (with the exception of clause) affect the program itself by adding to or removing clauses
from it. Predicates that can be affected by such predicates are called dynamic predicates and
must usually be declared as such in modern Prolog implementations (and this is also the case
in the ISO standard).

The idea of modifying the program during execution might appear to run, in principle,
conceptually counter to the idea of static analysis. However, all is certainly not lost and there
are still quite a number of opportunities for optimizing dynamic programs. The potential
problems created by the use of the database manipulation builtins are threefold:

1. The literals in the body of the new clauses that are added dynamically to the program
can produce new and different call patterns not considered during analysis. This has to
somehow be taken into account for the analysis to be correct. We will call this the "extra
call pattern" problem.

2. How to compute success substitutions for literals which call dynamic predicates. Even if
abstract success substitutions can be computed from any static definition of the predicate
which may be available at compile-time, it may change during program execution. We
will call this the "dynamic literal success substitution" problem.

3. How to compute success substitutions for the calls to the database manipulation builtins
themselves. We will call this the "database builtin success substitution" problem.

Note that clause —which can be viewed as a special case of retract— does not modify the
database and thus clearly only has the third problem above. Note also that the second and
third problems above can always be solved by taking appropriate topmost success substitutions,
as before. We will propose later some better solutions for these two problems. But first, we will
concentrate on the the extra call pattern problem which is by far the most serious and difficult
to solve.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 16

Solving the extra call pattern problem.

As in the case of meta-calls, the extra call pattern problem does not affect goal independent
analyses, since such analyses do not rely on particular call patterns. Note also that, at least
from the correctness point of view, the extra call pattern problem only arises from the use of
a s se r t , but not from the use of abol ish or r e t r a c t . These predicates do not introduce new
clauses in the program, and thus they do not introduce any new call patterns. On the other
hand, it is conceivable that more accuracy could be obtained if these predicates were analyzed
more precisely since removing clauses may remove call patterns which in turn could make the
analysis more precise.5

The a s s e r t predicate is much more problematic, since it can introduce new clauses and
through them new call patterns. The problem is compounded by the fact that asserted clauses
can call predicates which are not declared as dynamic, and thus the effect is not confined to
dynamic predicates. In any case, and as pointed out in [14], not all uses of assert are equally
damaging. To distinguish these uses, we propose to divide dynamic predicates into the following
types:

memo only facts which are logical consequences of the program itself are asserted
data only facts are asserted, or, if clauses are asserted, they are never

called (i.e., only read with clause or r e t r a c t) .
loca l_ca l l the dynamic predicate only calls other dynamic predicates

global_cal l default

The first two classes correspond to the unit-assertive and green-assertive predicates of [14],
except that we have slightly extended the unit-assertive type by also considering in this type
arbitrary predicates which are asserted/retracted but never called. These can be simply con­
sidered as a set of facts for the predicate symbol : - / 2 .

A data predicate can be viewed as a set of terms that can be recorded and retrieved.6

Calls and retracts to data predicates have both the same effect — data retrieval (no further
computation is performed). In any case the advantage of data predicates is that they are
guaranteed to produce no new call patterns and therefore they are safe with respect to the
extra call pattern problem. This is also the case for memo predicates since they only assert
facts.7

Other dynamic predicates that are interesting with respect to the extra call pattern problem
are loca l_ca l l predicates. If all dynamic predicates are of this type, then the analysis of the
static program is correct except for the clauses defining the dynamic predicates themselves.
Analysis can even ignore the clauses defining such predicates. Optimizations can then be
performed over the program text except for those clauses, which in any case may not be such
a big loss since in some systems such clauses are not compiled, but rather interpreted.

While the classification mentioned above is useful, two problems remain. The first one is
how to detect that dynamic procedures are in the classes that are easy to analyze (dynamic
predicates in principle need to be assumed in the global_cal l class). This can be done through

6See the discussion on incremental analysis at the end of the section for a general solution to this problem.
6In fact, the builtins record and recorded provide this exact functionality but without the need for dynamic

declarations and without affecting global analysis. However, those builtins are now absent from the Prolog
standard.

7Note however that certain analyses, and specially cost analyses which are affected by program execution
time, need to treat these predicates specially.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 17

analysis for certain programs, as shown in [14], but, as in the case of meta-calls, this does not
offer a solution in all cases. An obvious alternative is to allow the user to express such a
classification directly. For this purpose we propose to enrich the dynamic directive as follows:

: - dynamic(predicate_spec,declared_type).

where the declared types are those mentioned above. Standard dynamic directives are assumed
to be of the global_cal l type.

Still, the general case in which global_cal l dynamic predicates appear in the program (either
because insufficient information is given by the user, because the type of certain predicates
could not be determined statically, or simply because certain dynamic predicates are really
of the global_cal l type) needs to be addressed. The problem is then similar to that which
appeared with undetermined meta-calls. In fact, the calls that appear in the bodies of asserted
clauses can be seen as undetermined meta-calls, and similar solutions apply.

The simplest solution in order to cater for the naive user is, as before, to resort to analyzing
all predicates for topmost call patterns. This can be time consuming and prevent some opti­
mizations, but is always correct and implies no user burden. There is also again the alternative,
used in Aquarius [26], in MA3 [27], and in previous versions of the PLAI analyzer [22, 5], of
viewing calls from asserted clauses as external calls and make it the user's responsibility to de­
clare any extra calls produced by dynamic predicates via entry annotations. The disadvantage
here is again the burden on the user, and the advantage potentially better optimization.

Finally, we propose a similar solution to the last one proposed in the case of the undetermined
meta-calls: it involves again having two copies of the program, one with few optimizations
(based perhaps on a topmost call pattern analysis for all predicates) and one with the full opti­
mizations (based on an analysis ignoring any clauses not present in the program), as explained
in Section 4.2. There we showed how meta-calls would directly use the less optimized version
due to the renaming mechanism. The same applies here. Whenever a clause for a dynamic
predicate is asserted, the literals in its body will use the original (less optimized) predicates,
which have been compiled for any call pattern. In this way correctness is always guaranteed.
The discussion regarding the relevance of the optimizations is the same as in Section 4.2. In fact,
the static clauses of the dynamic predicates themselves are subject to the same treatment as
the rest of the program. Clearly, this solution can be combined with the previously mentioned
optimizations when particular cases can be identified.

Solving the dynamic literal success substitution problem.

If only abol ish and r e t r a c t are used in the program, the abstract success substitutions of
the static clauses of the dynamic predicates are a safe approximation of the run-time success
substitutions. However, a loss of accuracy can occur, as the abstract success substitution for
the remaining clauses (if any) may be more particular. In the presence of a s se r t , as mentioned
before, it is always possible to generate a correct (but possibly inaccurate) success substitution
for dynamic literals by using appropriate topmost abstract substitutions. This is correct but
may introduce some inaccuracy. If the user knows how the dynamic predicates are going to
behave, valuable information regarding the success substitutions for the predicate can be given
via t rust /pragma annotations. Finally, note that in the case of memo predicates (and for
certain properties) this problem is avoided since the success substitutions computed from the
static program are correct.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 18

Solving the database builtin success substitution problem.
This problem does not affect a s s e r t and abol ish since the success substitution for calls to

these builtins is the same as the call substitution. On the other hand, r e t r a c t (and clause)
cannot be directly analyzed. However, appropriate topmost substitutions can be safely used.
In the special case of dynamic predicates of the memo class, and if the term used as argument
in the call to r e t r a c t or clause is at least partially determined, abstract counterparts of the
static clauses of the program can be used as approximations in order to compute a more precise
success substitution (see [3] for more details).

Summary and other approaches.

In conclusion, we have studied several ways in which optimizations based on static analysis can
still be guaranteed correct for dynamic programs. In particular, we have proposed a technique
(keeping two copies of the program with different levels of optimization) whereby the most
serious problem of the appearance of extra call patterns is solved in a very general way, without
putting any extra burden on the user, and at only the cost of some code space. This, in
combination with any of the other techniques for solving the other two simpler problems, offers
a solution that is general enough to deal with any kind of programs, without burdening the
user, in contrast with previous solutions, which rely on identifying certain classes of programs,
e.g., [14] or on programmer supplied annotations [26, 27].

There is still another, quite different and interesting solution to the problem of dynamic
predicates, which is based on incremental global analysis [16]. Note that in order to implement
a s s e r t some systems include a copy of the full compiler at run-time. The idea would be to
also include the (incremental) global analyzer and the analysis information for the program,
computed for the static part of the program. The program is in principle optimized using
this information but the optimizer is also assumed to be incremental. After each non-trivial
assertion or retraction (ground facts and simple facts, and clauses which can be determined
not to affect the previously inferred information may be treated specially) the incremental
global analysis and optimizer are rerun and any affected parts of the program reanalyzed (and
reoptimized). This has the advantage of having fully optimized code at all times, at the cost of
increasing the cost of calls to database manipulation predicates and of executable size. A system
along these lines has been built by us for a parallelizing compiler. The results presented in [16]
show that such a reanalysis can be made in a very small fraction of the normal compilation
time.

5 Program Modules

Up to now we have assumed a single program text (in one or more files). However, programs
are obviously normally better developed in a modular fashion. In this section we address the
issues of modularity and also to some extent interactive development. The main problem with
studying the impact of modularity in analysis (and the reason we have left the issue until this
section) is the lack of even a de-facto standard. There have been many proposals for module
systems in logic programming languages (see [6]). For concreteness, however, we will focus on
the module system proposed in the new draft ISO standard [19]. In this standard, the module
interface is static, i.e. each module in the program must declare the procedures it exports.8 This

8This is in contrast with other module systems used in some Prolog implementations that allow entering the
code in modules at arbitrary points other than those declared as exported. This defeats the purpose of modules.
We will not discuss such module systems since the corresponding programs in general need to be treated as non

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 19

is done using the module directive. A module can only be compiled if all the module interfaces
for the predicates it imports are defined, even if the actual code is not yet available. Imported
predicates have to be declared also.

As already pointed out in [17] module directives have the nice property that they provide the
entry points for the analysis of a module for free. Thus, if we assume for now that the program
consists of only one module with its module directive and there are no entry declarations,
we can safely assume that the only entry points are the exported predicates. Analysis simply
needs to start at the procedures corresponding to such points with appropriate topmost abstract
substitutions. In line with our previous assumptions, if any entry annotations are present for
such exported predicates, they will be assumed to be closed with respect to external calls.
Then, analysis will start at the exported predicates with the substitutions declared in the
entry annotations if available (and topmost otherwise).

In the general case where there are multiple modules, the analysis of literals which call
imported predicates requires new approaches, some of which we discuss in the following para­
graphs.

Compositional Analysis.

Modular analyses based on compositional semantics (such as, for example, that of [9]) can be
used to analyze programs split in modules. Such analyses leave the abstract substitutions for
the predicates whose definitions are not available open, in the sense that some representation of
the literals and their interaction with the abstract substitution is incorporated as a handle into
the substitutions themselves. Once the corresponding module is analyzed and the (abstract)
semantics of such open predicates known, substitutions can be composed via these handles. The
main drawback of this interesting approach is that the result of the analysis is not definite if
there are open predicates. Thus, total correctness of the partial abstract substitutions computed
at a particular moment cannot always be guaranteed. In principle, this would force some
optimizations to be delayed until the final composed semantics is known, which in general can
only be done when the code for all modules is available. Therefore, although analysis can be
performed for each module separately, optimizations (and thus, compilation) cannot in principle
use the global information.

Incremental Analysis.

A different approach is by means of the previously mentioned technique of incremental anal­
ysis (e.g. [16]). Each call to a predicate not declared in the module being analyzed is mapped
to ±. Each time a new predicate is analyzed, the information obtained is applied directly to
the parts of the analysis where this information may be relevant. The information obtained
with incremental analysis is conservative: it is correct and optimal. By optimal we mean that
if we put together in a single module the code for all modules (with the necessary renaming to
avoid name clashes) and analyze it in the traditional way, we obtain the same information as
with incremental analysis. However, incremental analysis, in a very similar way to the previous
solution, is only useful for optimization if the code for all modules is available. The information
obtained for one isolated module is partial and in principle cannot be used to optimize a module
independently of others, thus precluding its use for modular optimization from the point of view
of software engineering. On the other hand, if optimization is also made incremental, as men­
tioned in previous sections, then this does present a solution to the general problem: modules
are optimized as much as possible assuming no knowledge of the other modules. Optimizations
will be correct with respect to the partial information available at that time. Upon module corn-
modular programs from the point of view of analysis.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 20

position incremental reanalysis and reoptimization will make the composed optimized program
always correct.

Note that Prolog compilers are incremental in the sense that at any point in time new
clauses can be compiled into the program - this allows a powerful interactive development
environment. Another advantage of incremental analysis (aided by incremental optimization)
is that it allows the combination of full interactive program development with full global analysis
based optimization.

Trust-Enhanced Module Interface.

We propose yet another approach which is based on the fact that in [19] imported predicates
have to be declared in the module importing them and such a module can only be compiled
if all the module interfaces for the predicates it imports are defined, even if the actual code
is not yet available. Note that the same happens for most languages with modules (e.g.,
Modula). When such languages have some kind of global analysis (e.g., type checking) the
module interface also includes suitable declarations. For data-flow analysis we propose to
augment the module interface definition so that it may include trust annotations for the
exported predicates. Each call to a predicate not defined in the module being analyzed but
exported by some module interface is in principle mapped to appropriate topmost substitutions.
But if in the module interface there are one or more trust annotations applicable to the call
pattern, such annotations will be used instead. Any call to a predicate not defined in that
module and not present in any of the module interfaces can be safely mapped to ± during
analysis (this corresponds to mapping program errors to failure - note that error can also be
treated alternatively as a first class element in the analysis). The advantages are that we do
not need the code for other modules and also that we can perform optimizations using the
(inaccurate) analysis information obtained in this way.

Analysis using the trust-enhanced interface is correct. However, the fact that we may assume
T for those calls that are imported from other modules makes this analysis procedure subopti-
mal. This can be avoided if the programmer provides trust annotations that are as accurate
as possible for imported predicates. The disadvantage of this method is that it requires the
trust-enhanced interface for each module. However, note that the process of generating these
trust annotations can be automated. In a given module, if the programmer has provided no
trust annotation suitable for our purposes, we assume topmost substitutions for the imported
predicates. Whenever the module is analyzed, the call/success-patterns for each exported pred­
icate in the module which are obtained by the analysis are written out in the module interface
as trust annotations. From there, they will be seen by other modules during their analysis and
will improve their exported information. A global fixpoint can be reached in a distributed way
even if different modules are being developed by different programmers at different times and
running the analysis only locally, provided that, as required by the module system, the module
interfaces (but not necessarily the code) are always made visible to other modules.

Summary.

In practice it may be useful to use a combination of incremental analysis and the trust-
enhanced module interface for programs split in modules. The trust-enhanced interface can be
used during the development phase of a modular program to compile modules independently.
However, as hinted at before, the use of the trust-interface does not always guarantee that the
analysis information obtained once the analysis of all modules converges is optimal. We believe,
however, that analysis information is most important once the actual code for all modules is
present and the resulting composed program is compiled. At this moment, incremental analysis

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 21

can be used to analyze modules loading them one after the other. Annotations which appear
in the code of the modules will be used, but t r u s t annotations in module interfaces might be
ignored at this point. In this way we will obtain the most accurate analysis information.

Multifile predicates (those defined over more than one file or module) also need to be treated
in a special way. They can be easily identified due to the m u l t i f i l e declaration. They are
similar to dynamic predicates (and also imported predicates) in that if we analyze a module
independently of others, some of the code of a predicate is missing. We can treat such predicates
as dynamic predicates and assume topmost substitutions as their abstract success substitutions
unless there is a t r u s t annotation for them. When the whole program composed of several
modules is compiled, we can again use incremental analysis. At that point, clauses for predicates
are added to the analysis using incremental addition [16] (regardless of whether these clauses
belong to different modules).

A case also worth discussing is that of libraries. Usually utility libraries provide predicates
with an intended use. These predicates can be used by many different modules, even belonging
to different programs. For such library files we can use the automatic generation of t r u s t
annotations after analysis to provide information regarding the exported predicates. This is
done for all the different uses and the generated t r u s t annotations stored in the library interface.
With this scheme it is not necessary to analyze a library predicate when it is used in different
programs. Instead, it is only analyzed once, and the information stored in the t r u s t annotation
is used from then on. If new uses of the library predicates arise for a given program, the
library code can be reanalyzed and recompiled for that use, keeping track of this new use for
future compilations. An alternative approach to the analysis of libraries is to perform a goal
independent analysis for them, coupled with a goal dependent analysis when the library is used
for the particular use in the program [10].

6 Conclusions

We have proposed a number of techniques for the analysis of a dialect of the Prolog language,
essentially following the recently proposed ISO standard. We argue that these solutions, when
considered as a whole, provide a means for the analysis and optimization of the full language.
This can be done without any input from the user, even in the difficult cases of dynamic pro­
grams, albeit at some loss of optimization and/or increase in code size. We have also introduced
several types of program annotations that can be used to both increase the accuracy and effi­
ciency of the analysis and to express its results. We have also discussed software engineering
issues such as modular program development. The proposed techniques offer different trade­
offs between accuracy, analysis cost, and user involvement. While we feel there is still plenty of
work left in achieving more accurate analysis of many features (such as, for example, cut) we
argue that the presented combination of known and novel techniques is the most comprehen­
sive solution to date for the correct analysis of arbitrary programs using the full power of the
language.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 22

References

1. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programming, 10:91-124, 1991.

2. F. Bueno, D. Cabeza, M. Garcia de la Banda, M. Hermenegildo, and G. Puebla. Abstract
Functions for the Analysis of Builtins in the PLAI System. Technical Report CLIP1/95.0,
Computer Science Dept., Technical U. of Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain, January 1995.

3. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis of Prolog
Programs with Extra-Logical Features. Technical Report CLIP2/95.0, Computer Science
Dept., Technical U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, March 1995.

4. F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global Anal­
ysis in Strict Independence-Based Automatic Program Parallelization. In International
Symposium on Logic Programming, pages 320-336. MIT Press, November 1994.

5. F. Bueno, M. Garcia de la Banda, D. Cabeza, and M. Hermenegildo. The &-Prolog Com­
piler System — Automatic Parallelization Tools for LP. Technical Report CLIP5/93.0,
Computer Science Dept., Technical U. of Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain, June 1993.

6. M. Bugliesi, E. Lamma, and P. Mello. Modularity in Logic Programming. Journal of Logic
Programming, 19-20:443-502, July 1994.

7. B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation Framework
Which Accurately Handles Prolog Search-Rule and the Cut. In International Symposium
on Logic Programming, pages 157-171. MIT Press, November 1994.

8. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog. ACM Transactions on Programming Languages and
Systems, 16(1):35-101, 1994.

9. M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modular Logic Pro­
grams. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL'93, pages 451-464, Charleston, South Carolina, 1993. ACM.

10. M. Codish, M. Garcia de la Banda, M. Bruynooghe, and M. Hermenegildo. Goal Dependent
vs Goal Independent Analysis of Logic Programs. In F. Pfenning, editor, Fifth International
Conference on Logic Programming and Automated Reasoning, number 822 in LNAI, pages
305-320, Kiev, Ukraine, July 1994. Springer-Verlag.

11. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principles of Programming Languages, pages 238-252, 1977.

12. S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Interpretation,
volume 13(1-2). North-Holland, July 1992.

13. S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. ACM
Transactions on Programming Languages and Systems, ll(3):418-450, 1989.

Report No. CLIP2/95.0 March 1995

Data-Flow Analysis of Prolog Programs with Extra-Logical Features 23

14. S.K. Debray. Flow analysis of dynamic logic programs. Journal of Logic Programming,
7(2):149-176, September 1989.

15. M. Gabbrielli, R. Giacobazzi, and G. Levi. Goal independency and call patterns in the
analysis of logic programs. In A CM Symposium, on Applied Computing. ACM Press, 1994.

16. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Logic
Programs. In International Conference on Logic Programming, pages 797-811. MIT Press,
June 1995.

17. M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical
Compilation Tool. Journal of Logic Programming, 13(4):349-367, August 1992.

18. International Organization for Standardization, National Physical Laboratory, Teddington,
Middlesex, England. PROLOG. ISO/IEC DIS 13211 — Part 1: General Core, 1994.

19. International Organization for Standardization, National Physical Laboratory, Teddington,
Middlesex, England. PROLOG. Working Draft 7.0 X3J17/95/1 — Part 2: Modules, 1995.

20. D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284-297, 1988.

21. K. Marriott, H. S0ndergaard, and N.D. Jones. Denotational Abstract Interpretation of
Logic Programs. ACM Transactions on Programming Languages and Systems, 16(3):607-
648, 1994.

22. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347, July 1992.

23. University of Bristol, Katholieke Universiteit Leuven, and Universidad Politecnica
de Madrid. Interface between the prince prolog analysers and the compiler. Technical
Report KUL/PRINCE/92.1, Katholieke Universiteit Leuven, October 1992.

24. G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic Pro­
grams. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based
Program Manipulation, pages 77-87. ACM Press, June 1995.

25. V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Support­
ing Full Prolog on the Basic Andorra Model. In 1991 International Conference on Logic
Programming, pages 443-456. MIT Press, June 1991.

26. P. Van Roy and A.M. Despain. High-Performace Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine, pages 54-68, January 1992.

27. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis
of Logic Programs. In Fifth International Conference and Symposium on Logic Program­
ming, pages 684-699. MIT Press, August 1988.

28. W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics. Jour­
nal of Logic Programming, 13(2 and 3):259-290, July 1992.

Report No. CLIP2/95.0 March 1995

