
facultad de informatica 

universidad politecnica de madrid 

An Automat ic Translation Scheme from 
CLP to AKL 

Francisco Bueno 

Manuel Hermenegildo 

TR Number CLIP7/95 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Automatic Translation Scheme from CLP 
to AKL 

Keywords 

Constraints, Concurrent Constraint Prog: 

Acknowledgements 

Technical Report Number: CLIP7/95 

June 1995 

ing, AKL, Program Transformation 

This work was funded in part by ESPRIT project 7195 "ACCLAIM" and by CICYT 
projects TIC93-0975-CE and TIC93-0737-C02-01 IPL-D. 



Abstract 

The Andorra Kernel language scheme was aimed, in principle, at simultaneously sup
porting the programming styles of Prolog and committed choice languages. Within 
the constraint programming paradigm, this family of languages could also in principle 
support the concurrent constraint paradigm. This happens for the Agents Kernel Lan
guage (AKL). On the other hand, AKL requires a somewhat detailed specification of 
control by the user. This could be avoided by programming in CLP to run on AKL. 
However, CLP programs cannot be executed directly on AKL. This is due to a number 
of factors, from more or less trivial syntactic differences to more involved issues such 
as the treatment of cut and making the exploitation of certain types of parallelism 
possible. This paper provides a translation scheme which is a basis of an automatic 
compiler of CLP programs into AKL, which can bridge those differences. In addition to 
supporting CLP, our style of translation achieves independent and-parallel execution 
where possible, which is relevant since this type of parallel execution preserves, through 
the translation, the user-perceived "complexity" of the original program. 



Contents 

1 Introduction 1 

2 The Agents Kernel Language 2 

3 Translating Definite Clauses 5 

4 Translating CLP Constructions 7 
4.1 Translation of Cut 7 
4.2 Synchronisation of Side-effects 12 

5 Achievement of Independent And-Parallelism 13 
5.1 Cohabitation of Dependent and Independent And-Parallelism and Stability 

Checks 16 

6 The Role of Program Analysis 17 

7 Experimental Results 18 

8 Conclusions 20 

References 22 

VII 



An Automatic Translation Scheme from CLP to AKL 1 

1 Introduction 

Previous work [BH92] showed that it is possible to perform program transformations 
to bridge the existing gap between the sequential and concurrent paradigms of logic 
programming. In [BH92] a transformation from Prolog to AKL was proposed, which 
had the additional advantage of allowing the latter to fully exploit the Independent And-
Parallelism (IAP) present in Prolog programs. Exploitation of this kind of parallelism 
has the advantage of preserving the computational complexity of the original sequential 
programs [HR95], thus allowing a rational exploitation of the concurrent underlying 
machinery. 

When extending the transformation techniques to the constraint logic programming 
paradigm [JL87, Col90, Hen89] — CLP, some issues have to be initially solved. First, 
the notion of independence in CLP had to be clarified. In this line of work, the notion 
of Constraint Independence has been proposed [dlBG94] (see also [dlBHM94]), which 
extends the IAP notions of traditional logic programming and prove equivalent to them 
when restricting the constraint system to that of (pure) logic programming, i.e. Her-
brand. Second, compile-time tools based on the above notions had to be developed in 
order to capture the independence of goals, allowing such transformation. In [dlBBH95] 
a complete automatic parallelizing compiler for CLP is presented, based on constraint 
independence notions and suitable analysis technology for CLP. 

We present in this report an extension of the work reported in [BH92] which makes use 
of the program analysis and transformation methodology of [dlBBH95]. The resulting 
transformation achieves similar results for CLP to those of [BH92] for Prolog. Although 
AKL does not share the same semantics as the sequential logic programming paradigm, 
its functionality is available in AKL. Thus, we can define a program transformation from 
CLP into a subset of AKL which shares similar semantic properties. Therefore available 
analysis technology for CLP is still applicable. 

Because of that reason, our aim is not to take advantage of AKL properties to 
provide the best possible translation, but rather to bridge the gap between CLP and 
AKL. Our main objective is to show how the independence principle can be moved to 
paradigms other than the sequential one by using program transformation, and with 
similar methods than in the sequential case. The transformed program will thus respect 
the semantics and complexity of the original program, perhaps reducing the search space 
complexity because of exploiting independence. This is an important result also, and 
additionally, because of the possibility of achieving stability earlier (and at compile-
time) in the framework of AKL — an important control principle for efficiency, by 
detecting goal independence in the source language. 

Report No. CLIP7/95 June 1995 



2 Francisco Bueno and Manuel Hermenegildo 

2 The Agents Kernel Language 

The Agents Kernel Language — AKL, is a logic programming language which sub
sumes important parts of both the sequential and the concurrent logic programming 
paradigms, offering possibilities for both committed-choice style indeterminism (and 
thus concurrency) and also search-oriented nondeterminism. Its computational model 
is based on the extended Andorra model — EAM [War90, HJ90], and thus allows a 
wide range of capabilities for exploiting parallelism, being this a main objective in the 
conception of the EAM. AKL is therefore quite a powerful language; nonetheless it can 
be argued that it has some drawbacks, stemming from its powerful execution model: it 
doesn't have as simple a semantics as SLD-resolution, and it does put quite a burden 
on the programmer in requiring certain specification of control. This motivates consid
ering a translation to it of programs with a simple semantics and minimal specification 
of control, such as CLP programs. Such a translation is also useful for simply running 
CLP programs in AKL which may have been written for a CLP system. The language 
and computational model of AKL have been fully described in [Jan94]. In the following 
we will review the AKL computational model restricted to a subset of that in [Jan94], 
with the purpose of, based on an understanding of this, extracting the correct rules for 
a translation of CLP which achieves the desired results. 

Procedures are defined in AKL by the guarded clauses of a definition. Thus, clauses 
are divided into two parts: the guard and the body, separated by a guard operator. 
Guard operators are: wait (?), conditional (->), and commit ( I ) . An additional con
ditional guard operator has also been implemented in AKL (!), which we will discuss 
later. 

Definit ion 1 ( A K L program) Let x be a tuple of variables. The following grammar 
gives the syntax of the (subset of) AKL that we consider: 
Program ::= Procedure.Program | e 
Procedure ::= Clause.Procedure | Clause 
Clause ::= Head | Head:- Body | Head:- Body GuardOp Body 
Head ::= Atom 
Body ::= Literal | Literal, Body 
Literal ::= Atom 
GuardOp ::= I | ? | -> | ! 
Atom ::= p(a?) • 

Note the following syntactical restrictions on the above grammar: 

• Heads for the clauses of the same procedure definition relate to the same predicate. 

• Each clause is expected to have one and only one guard operator. 

• All clauses in a procedure definition have to have the same guard operator. Thus, 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 3 

if any of the clauses is not guarded, the guard operator of its companions is 
assumed and positioned just after the clause neck. 

• A wait operator is assumed, and in the above mentioned position, where no other 
operator can be assumed using the above mentioned rules. 

Guards in AKL can be deep. Guards are regarded as part of clause selection. This 
means that a clause body is not entered unless head unification succeeds and its guard is 
completely solved. Then, execution proceeds by expansion of the present configuration 
by application of a rule of the computation model. Configurations describe computation 
states. 

Definition 2 (configuration) Let c denote a constraint. The following grammar de
fines AKL configurations: 
Configuration ::= AndBox \ Or Box 
Or Box ::= or {AndBox*) 
AndBox ::= axidc(Goal*) 
Goal ::= atom | ChoiceBox 
ChoiceBox ::= cho±ce(GuardedGoal*) 
GuardedGoal ::= Configuration GuardOp Goal+ 

GuardOp ::= I | ? | -> | ! • 

A choice-box will always have a unique associated guard operator. Choice-boxes are 
fundamental in AKL as they represent unfolding of procedures. Atomic goals will be 
rewritten into the choice-boxes corresponding to their procedure definitions. Guards 
will be executed in and-boxes and solved until completion, the and-boxes then being 
empty. And-boxes have a constraint part: their environment. Environments will hold 
the solution of empty and-boxes. When an atomic goal is a constraint, the constraint 
rule adds it to the environment of the configuration. 

axidc{R,G,T) ^ axidcUG{R,T) 

For other program atoms the reduction rule allows unfolding of procedure definitions. 
If the atomic goal G is defined by n guarded clauses of the form Aj%Bj^ for some guard 

%, 
andc(i?, G, T) => andc(i?, choice(andc(,4i)%Si,..., andc(An)%Bn),T) 

Environments also allow capturing local computations of guards. Guards are exe
cuted in independent environments, and thus, isolated from the parent configuration. 
Therefore, solutions of guards are not "visible" to the rest of the computation until 
they are promoted. Solutions can be either consistent or inconsistent with the parent 
environment. Configurations will then be either successfully promoted or failed. A 
single solved remaining alternative in a choice-box is promoted by the promotion rule, 

Report No. CLIP7/95 June 1995 



4 Francisco Bueno and Manuel Hermenegildo 

if its solution is consistent with the parent environment. If the guard operator is either 
conditional or commit, quietness of the solution is required. 

andc(i?, cho ice (and d ( )%E) ,T) => andcUd(R,B,T) 

If the solution of a solved guard is inconsistent with the environment (cLIdh false), 
the guard is failed. Failed guards in a choice-box are eliminated by the guard failure 
rule. 

cho ice (S i , aiLdfaise()%B, S2) =>• choice(5 ' i , S2) 

A choice-box can then become empty by failure of all alternatives. Failure is then 
propagated by the goal failure rule. 

andc(i?, cho i ce ( ) ,T ) ^> and / a | s e ( ) 

If a guard is solved in a choice-box which shows other alternatives, a nondeterminate 
promotion of the guarded-goal with solved guard has to be done. The choice splitting 
rule does this. A control restriction is added in this case: the configuration has to be 
stable. We will comment on this later. 

and c ( i ? , cho ice (5 , i , and d ( )%S,S ,
2 ) ,T) => 

or(andc(_R, choice(and^()%-B),T), andc(_R, cho ice (S i , S2), T)) 

Finally, if when solving a guard, it shows alternatives, these will end by applying 
nondeterminate promotion in an or-box. Or-boxes in guards are distributed over the 
surrounding choice-box by the guard distribution rule. 

cho ice ( i ? ,o r (S , i , 5 ,
2 )%S,T) => cho±ce(R, S1%B,or(S2)%B,T) 

Note that in this case, a singleton or-box is equivalent to its contained and-box: 
or(and c(Goa/)) -H- andc(Goal). 

Pruning is achieved by the condition and commit rules. The condition rule may be 
applied if the "right" part of the alternatives (T) is not empty; the commit rule if there 
is at least one alternative (either R or T is not empty). Quietness of the solved guard 
is also required. The noisy cut rule is the same as the condition rule except for the 
quietness requirement. 

choice( i? , and c()-> JB,T) =>- cho±ce(R, andc()->B) 

choice( i? , andc() \B,T) =4> choice(and c ( ) IB) 

Pruning rules in AKL (except for the noisy cut) are applicable only to quiet solutions. 
A solution for the guard of a conditional or commit guarded-goal (clause) is quiet if it 
does not further restrict (or constrain) variables outside its own configuration. 

The rules in the AKL computational model allow rewriting of configurations leading 
to valid configurations from valid ones. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 5 

Definit ion 3 ( A K L c o m p u t a t i o n [Jan94]) Given an AKL program P and an ini
tial goal g, a computation for g in P is a finite or infinite transition sequence of 
the form or(andtr.ue(fl')) => • • • which, if finite, ends with a configuration of the form 
or(and(j1 ( ) , . . . , and,jn()) ; where the Si are the solutions to g, and the computation is 
successful; if the or-box is empty, the computation is failed. • 

An AKL computation is deterministic, except for the application of the choice split
ting rule, or nondeterminate promotion. The application of this rule in fact amounts 
to copying1 the "continuation" configuration. Because of this, if it were the case that 
in this configuration a rule other than the nondeterminate promotion rule could be 
applied, then it should have to be applied separately in all the copies, after promotion. 
Therefore, the situation will be inefficient. This same situation can occur because of 
external constraints, which could prune the search space of the configurations involved, 
making determinate promotion applicable where it was not before. Hence, the stability 
restriction. 

A configuration is stable if no (deterministic) rule is applicable within it, and no pos
sible changes in its environment will lead to a situation in which a (deterministic) rule 
can become applicable. If otherwise, copying the continuation will force to apply the 
applicable rules in both copies. Note that this restriction causes (deterministic) pro
motion to be preferred over nondeterminate promotion. In this manner, configurations 
(goals) becoming deterministic upon execution are executed first, as by the Andorra 
principle. 

Stability is central to AKL efficiency. However, the global stability condition is dif
ficult to check, and in fact, it is undecidable. Instead, a local sufficient condition is 
usually employed: if a configuration, where no other rule than nondeterminate pro
motion is applicable, can not produce constraints over variables with scope outside 
the configuration itself, then no sibling configuration can "affect" it. Indeed, config
urations can not affect each other, and in this sense, are independent. Note that the 
condition effectively amounts to the independence notions which have been studied for 
constraint programming in [dlBG94, dlBHM94]. Therefore, a transformation based on 
independence, as the one we will propose, would deal effectively with stability, too. 

3 Translating Definite Clauses 

We will first show how AKL gives the basic CLP functionality, i.e. SLD-resolution. 
We consider definite clause syntax as given by Definition 4. In the AKL transformed 
programs we will make guards and guard operators explicit, for the sake of clarity. Def
inite clause programs can be considered AKL programs, with no other transformation 
than bridging syntactical differences and making unification constraints explicit. 

1 Although we refer to "copying," part of the continuation in the configuration could in principle be 
shared [War90]. 

Report No. CLIP7/95 June 1995 



6 Francisco Bueno and Manuel Hermenegildo 

Definit ion 4 ( C L P program) Let c be a constraint, and t a tuple of terms. The 
following grammar defines the syntax of CLP programs: 
Program ::= Clause.Program | e 
Clause ::= Atom | Atom:- B 
B ::= C | Body \ C.Body 

C ::=c\c,C 
Body ::= Literal | Literal, Body 
Literal ::= Atom 
Atom ::= p(i) • 

For convenience, we have defined CLP programs in such a way that constraints can 
be separated from the rest of the clause bodies. Except where explicitly said, when 
referring to a body in a CLP program, we will mean the literal part of it. The classical 
left-to-right operational semantics of Prolog and CLP [JL87] will be considered. We 
will denote the computation states in this semantics by a goal and a store, as in (g, 6), 
where g is the goal and 6 the store. 

A l g o r i t h m 1 (definite c lause A K L program) Given a definite clause program P, 
its corresponding AKL program is given by dc2akl(P). Let t denote a tuple of terms and 
x a tuple of variables. Let true be a constraint always satisfied. Then dc2akl(C.P) = 
dc2aklc(C).dc2akl(P), where: 

, „ , , ,„N I p(x):-truelx = t,B if C is pit):-B 
dc2aklc(C) =< ) ' 0 ^ -1 ., _. . )4 

I p(x):- true'.x = t if C is p(t) 

Additionally, for every predicate p / n defined in P a clause of the form p(x):- true? fail 
is added to dc2akl(P). • 

The reason for adding dummy clauses to every definition is to eliminate predicates 
which, from its definition, will be deterministic [Jan94]. Every AKL procedure defini
tion will then have at least two clauses. This will forbid application of the promotion 
rule until choice splitting is done, and will also guarantee stability of configurations. 

Given a definite goal gi,... ,gn, it will then be executed as an AKL initial configu
ration o r ( a n d ( # i , . . . , gn)), where the reduction rule will be applied yielding: 

o r ( a n d c ( c h o i c e ( G i , . . . , Gmi),..., c h o i c e ( G n , . . . , G m J ) ) 

where the corresponding procedure definition for each g,b has m;b clauses of the form 
Gj = truelBj, with j = i,..., m,. Note that guards are all solved. 

Because Vi,TO, > 2 no determinate computational rule can be applied. As it also 
happens that guards do not add constraints to the environment, the resulting and-box 
is stable. A choice split of any of the choice-boxes will then be performed. However, we 
will be able to identify the computational step which applies this rule to the leftmost 
choice-boxes with a corresponding SLD-derivation. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 7 

T h e o r e m 1 ( A K L s u b s u m e s S L D - r e s o l u t i o n ) Given a definite clause program P 
and its corresponding AKL program dc2akl(P), then for every SLD-derivation of P 
there exists an AKL computation of dc2akl(P) which has the same solution. 

Proof: (Outline) Consider an AKL computation in which choice split is always performed 
on the leftmost choice-box of the configuration. Since for the program dc2akl(P) no 
determinate computational rule is applicable, and all and-boxes are stable, applying 
choice split to the leftmost choice-box results in an AKL computation which resembles 
SLD-resolution. Thus, this computation yields the same solutions. | 

4 Translating CLP Constructions 

In addition to SLD-resolution, CLP programs have the cut (!) pruning operator, 
side-effects, and meta-logical predicates. For the latter, no corresponding builtins are 
given in AKL. For the cut and side-effects, we will show how to extend the above 
transformation. 

Even this straightforward step is nontrivial, as we shall soon see. This is due mainly 
to the semantics of cut in both CLP and AKL, cut being a guard operator in the 
latter. With the restrictions required for guard operators to achieve both syntactic and 
semantic correctness in AKL, we find problems in the following constructions: 

• syntactical restrictions: 

- definitions of predicates in which a pruning clause appears, 

- clauses in which more than one cut appears; 

• semantic restrictions: 

- if-then-elses, where the cut has a local pruning effect, 

- pruning clauses where the cut is regarded as noisy (i.e. a t tempts to further 
restrict variables outside its scope), 

- side-effects and meta-logical predicates, which should be sequentialised. 

For the translation we consider CLP syntax as given above and regard the cut as 
an atom. Thus, the first thing to be noticed is the translation of if-then-elses, which 
are not considered in the syntax given. If-then-elses can be folded into new procedure 
definitions, where the cut can be given a global scope within the definition, and thus 
it can be directly considered as an AKL guard operator. 

4.1 Translation of Cut 

It is obvious that the cut can be translated either to the conditional guard operator, 
or the (non quiet) cut operator of AKL. We will show that the first option shows 

Report No. CLIP7/95 June 1995 



Francisco Bueno and Manuel Hermenegildo 

advantages over the second one. But first, let us consider the syntactical restrictions 
on guard operators. One of them is that only one guard operator is to be allowed 
in a clause. Therefore repeated cuts in the same body (which are otherwise strongly 
discouraged as a matter of style and declarativeness) have to be folded out using the 
technique sketched below. 

E x a m p l e 1 For the CLP program to the left, the AKL program to the right has single 
guard operators in all clauses. 

p ( X , Y ) : - t e s t ( X ) , ! , p ( X , Y ) : - t e s t ( X ) -> p l ( X , Y ) . 
t e s t ( Y ) , ! , 
accept (X.Y) . p l ( X , Y ) : - t e s t ( Y ) -> accept (X ,Y) . 

Assume that for a given program P, we have that pM/n is a new predicate name, not 
appearing in P, taken from an infinite set of names, all of them distinct. Given a CLP 
clause C, let cut(C) be true if there is an atom ! in body(C). 

A l g o r i t h m 2 (unravel led cuts ) Let P be a CLP program, and let x denote a tuple 
of variables, and t a tuple of terms. We obtain a CLP program P' = fold(P), where: 
fold(C.P) = unravel{C).fold{P) 
fold(e) = e 
and 

p(t):- left(B),TpN(x).unravel(-pN(x):- right(B)) if cut(C) and 
C = p(t).'- B(x) and left(B) ^ e and right(B) ^ e 

C otherwise 

unravel(C) 

and 

left(B) = 

and 

right(B) 

ifB = \,B' 
A,left(B') ifB = A,B'andA + \ 

B otherwise 

B' ifB = \,B' 
right(B') if B = A, B' and A ^ ! 
e otherwise 

A second syntactic restriction is that all AKL clauses in a procedure definition are 
forced to have the same guard operator. We can achieve this by simple foldings of the 
CLP definitions. 

E x a m p l e 2 For the CLP program to the left, the AKL program to the right shows the 
same guard operator in all definitions. 

p ( X . Y ) : - q(X) , r ( Y ) . p ( X , Y ) : - q (X) , r ( Y ) . 
p ( X , Y ) : - t e s t ( X ) , ! , output(Y) . p ( X , Y ) : - p l ( X , Y ) . 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 9 

p ( X . Y ) : - s ( X , Y ) . 
p ( X . Y ) : - t ( X , Y ) . p l ( X , Y ) : - t e s t ( X ) -> ou tpu t (Y) 

p l ( X , Y ) : - p2(X,Y). 

p2 (X ,Y) : - s (X ,Y) . 
p2 (X ,Y) : - t ( X , Y ) . 

Note that clauses before the pruning one will have an (assumed) wait operator and 
clauses after that one (and that one itself) will have an (assumed) conditional operator. 
Guard operators can be made explicit in the same way as in the previous section by 
introducing true in guards. Note that, had the program not been rewritten, the rules 
for assuming guard operators would have put a conditional operator in the first clause, 
which is obviously not the correct translation. Note also that successive foldings of the 
procedure definition have to be done as clauses with or without cut appear. 

We formalise this transformation also on the CLP side. Assume pM/n given as before, 
let rename(pN, P) be a program P' where all clause heads are renamed to pN. 

Algorithm 3 (folded cuts) Given a CLP program, P, let it be composed by different 
procedure definitions D such that P = D.P', and P' is a CLP program, made up of 
procedure definitions, too. Let xn denote a n-tuple of variables, and tn a n-tuple of 
terms, the program pl2cut(P) is obtained by: 
pl2cut(D.P) = pl2cut{cut(D),D).pl2cut(P) 
pl2cut(e) = e 
where 

1 ifcut(C) 
0 otherwise 

and 
v(%n):- pN(aj7j).pZ2cut(l,rename(pN, CD)) if cut(C) and 

head(C) = p(tn) 
C.pl2cut(0, D) if ->cut(C) 
v(%n):- pN(aj7j).pZ2cut(0, rename(pN, CD)) if ->cut(C) and 

pl2cut{l, CD) = { head(C) = p(fn) 
unravel(C).pl2cut(l,D) if cut(C) 

pl2cut(N, e) = e • 

The resulting program pl2cut(P) is obviously equivalent to P , as the foldings preserve 
its semantics (as shown for example in [TS84]), and the semantics of cut is also preserved 
(by preserving its scope in all cases). The remaining part to translate cut to AKL is 
to rewrite "!" into "->." We have already mentioned that cut exists in AKL, and 
that this operator does not require quietness of its guard to proceed. However, we will 
prefer to use the conditional for translation purposes. This is due to the experimental 
evidence (which will be shown in Section 7) that the conditional shows performance 
advantages over the "noisy" cut. 

Report No. CLIP7/95 June 1995 



10 Francisco Bueno and Manuel Hermenegildo 

In order to guarantee correctness when using conditional instead of cut, we have to 
guarantee quietness of the guards when solved. Quietness of a solved guard is achieved 
if its solution does not add constraints to variables outside the guarded goal, other 
than those which already appear in its environment. Entailment of the guard solutions 
by their environment could be checked (by an analysis of the program) to guarantee 
this. Instead, we prefer a simpler solution, where all constraints possibly added on 
external variables by the guard are delayed until after the guard. In the examples 
shown, quietness is straightforward, as no constraints (bindings, in those cases) appear 
before the cut (assuming that t e s t ( X ) does not further constrain X). If this is not the 
case, constraint telling has to be made explicit in the form of an equality constraint (a 
unification) and placed after the cut itself, i.e. outside the guarded part of the clause. 

E x a m p l e 3 Consider that Y is further instantiated by the output /1 predicate in the 
CLP program to the left. The corresponding AKL program to the right makes the 
corresponding conditional quiet. 

p ( X , Y ) : - t e s t ( X ) , output(Y) , !. p ( X , Y ) : - t e s t ( X ) , output(Yl) -> Y1=Y. 
p ( X . Y ) : - s (X ,Y) . p ( X , Y ) : - s (X ,Y) . 

Note that knowledge of input /output modes of variables is required for performing 
this transformation, and that the transformation may not always be safe.2 Safety 
can be guaranteed by employing existing techniques for semantic analysis of the CLP 
program, as we will illustrate. When safe, such transformation can indeed make quiet 
an otherwise noisy pruning. What it does is to delay "output" constraint telling until 
the guard is promoted by making it explicit in the body part of the clause. 

We regard a variable to be output in a query if execution for this query will further 
constrain it; a variable will be regarded as input if execution will depend on its state of 
instantiation (or constraint). In other words, a variable is an output variable in a literal 
if it is further constrained by the query this literal represents, it is an input variable if 
it makes a difference for the execution of the literal whether the variable is constrained 
or not.3 Note that a given variable can be both input and output, or none of them. 

Definit ion 5 ( input and o u t p u t variables) Given a CLP program P, and a literal 
g of a clause C of P, a variable x G vars(g) is an input variable if for any derivation 

2Note also that this transformation, when safe, may be of advantage as well in standard CLP 
compilers in order to avoid trailing overhead. 

3These definitions are similar to those independently proposed in [SCWY91], (and also in the spirit 
of those of Gregory [Gre85]), which describes translation techniques from Prolog to Andorra-I, an 
implementation of the Basic Andorra Model. Although the techniques used in such a translation have 
some relationship with those involved in Prolog-AKL (and CLP-AKL) translation, the latter requires 
in practice quite different techniques due to AKL being based on the Extended Andorra Model (thus 
having to deal with the possibility of parallelism among non-determinate goals and the stability rules) 
and the rather different way in which the control of the execution model (explicit in AKL and implicit 
in Andorra-I) is done in each language. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 11 

ofP, say 

s0 - > • . . . ->• {{ga,gi),9i) - > - . . . - > • (giOi+n) 

by replacing g with g[x/y] where y is a completely new variable, we obtain a derivation 
with the same derivation steps 

s0 ->• • • • ->• {{ga[x/y],gi),6i[x/y]) ->• . . . ->• (&0j+n[a;/y]) 

Variable x is an output variable if for any derivation of the form above it happens than 

Qi+n\x entails 6i\x. • 

The objective of a transformation such as the one proposed is to rename apart all 
output variables in the head of a pruning clause, and then bind the new variables to the 
original ones in the body of the clause, leaving input variables untouched. In general, it 
is unwise to rename apart input variables since, from their own definition, this renaming 
would make the variable appear unconstrained and potentially result in growth in the 
search space of the goals involved. This would not meet our objective of preserving the 
complexity of the program (and perhaps not even that of preserving its semantics). 

However, since a variable can be both input and output a conflict between renaming 
and not-renaming requirements appears in such cases. For the cases in which a variable 
cannot be "moved" after the guard operator, the translation has to default to the noisy 
cut operator. It is necessary that every noisy cut be sequentialised, by using the AKL 
sequential composition operator (&4). This is to ensure that pruning would occur in 
the same context that it would in CLP. Thus, every call to the pruning predicate has 
to be sequent ialised to its right, and every call to a predicate sequent ialised has in turn 
to be also sequent ialised. For this reason noisy pruning is not very efficient, and thus 
the translation tries to minimise its use. 

The final step of the transformation for cuts will then try to rewrite every cut into an 
AKL conditional, possibly renaming apart output variables, based on the knowledge of 
input /output modes in the CLP program. Let us now consider input(x) to be true if 
x is known to be an input variable, output(x) if an output variable. 

A l g o r i t h m 4 (quiet cuts ) Given a CLP program P, cuts are made quiet by trans
forming P into cut2akl(P) as follows. Let x.„hn denote a tuple of variables Xi with 
i £ (m,n\. 
cut2akl{C.P) = cut2aklc{C).cut2akl{P) 
cut2akl(e) = e 
where 
cut2aklc(C) = C if-<cut(C), otherwise 

This operator inhibits concurrent execution, and can be viewed as a guard. For example, it can be 
defined as: A & B : - A ? B. 

Report No. CLIP7/95 June 1995 



12 Francisco Bueno and Manuel Hermenegildo 

cut2aklc(-p(aTny):- L(aTnz), \,R(yz)) 

J>(xny):- L(w~*mXm,nZ)->Xm = vTm,R(yz) 

if\/i G [l,m]output(xi) A -<input(xi) 
and Vi G [m, n\-^output(x.{) 

V{xny):- L(xnz)\R{yz) 
if 3i G [l,n]output(xi) A input(xi) 

V{xny):- L(xnz)->R{yz) 
if\/i G [l,n]^output(xi) 

Note that the knowledge assumed in the transformation requires in general a global 
analysis of the program and can only be approximated. In order for the translation to 
be correct, conservative approximations have to be made. Thus, some variables may be 
regarded as being input (resp. output) when they are not. For these (and only these) 
variables, an automated translation, if interactive, could "ask" the user for the kind 
of transformation to be performed. If a non-interactive translation is preferred, these 
cases default to those of the above transformation algorithm. 

We will consider the issue of program analysis in Section 6. At this point, given that 
the analysis is conservative in the sense just described, we obtain the following result. 

T h e o r e m 2 ( A K L and C L P program equivalence) Given a CLP program P, the 
computations of its transformed AKL program cut2akl(pl2cut(P)) give the same solu
tions than those of P. 

Proof: (Outline) Consider an AKL computation in which choice split is always performed 
on the leftmost choice-box of the configuration. Since the analysis of the CLP program 
is conservative, any application of a conditional rule is enabled for a quiet guard. For a 
noisy guard, any application of the noisy cut rule is enabled in a configuration equivalent 
to the CLP environment, due to sequentialisation. The choice split rule follows Theorem 
1. Therefore the AKL program cut2akl{pl2cut(P)) obtains the same solutions. | 

4.2 Synchronisation of Side-effects 

In general, the purpose of side-effect synchronisation is to prevent a side effect from 
being executed before other preceding (in the sense of the sequential operational se
mantics) side-effects or goals, in the cases when such adherence to the sequential order 
is desired. In our context, if side-effects are allowed within (parallel) AKL code and 
a behaviour of the program identical to that observable on a sequential CLP imple
mentation is to be preserved, then some type of synchronisation code should be added 
to the program. In general, in order to preserve the sequential observable behaviour, 
side-effects can only be executed when every subgoal to their left has been executed, 
i.e. when they are "leftmost" in the execution tree. However, a distinction can be made 
between soft and hard side-effects (a side-effect is regarded to be hard if it could affect 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 13 

subsequent execution), see [DeG87] and [MH89]. This distinction allows more paral
lelism. It is also convenient in this context to distinguish between side-effect builtins 
and side-effect procedures, i.e. those procedures that have side-effects in their clauses 
or call other side-effect procedures. 

To achieve side-effect synchronisation, various compile-time methods are possible: 

• To use a chain of variables to pass a "leftmost token", taking advantage of the 
suspension properties of guards to suspend execution until arrival of the token 
[SCWY91]. 

• To use chains of variables as semaphores with some compact primitives that 
test their value. In [Mut91] a solution was proposed along such lines, and its 
implementation discussed. 

• To use a sequentialisation builtin to make the side-effect and the code surrounding 
it wait; this primitive would be in our case the sequentialisation operator "&". 

In the first solution, a pair of arguments is added to the heads of relevant predicates 
for synchronisation. Side-effects are encapsulated in clauses with a wait guard con
taining an ask unification (being quiet) of the first argument with some known value 
(token), to be passed by the preceding side-effect upon its completion. Upon successful 
execution of the current side-effect the second argument is bound ("told") to the known 
value and the token thus passed along. This quite elegant solution can be optimised in 
several cases. 

The second solution can be viewed as an efficient implementation of the first one, 
which allows further optimisation [Mut91]. The logical variables which are passed to 
procedures in the extra arguments behave as semaphores, and synchronisation primi
tives operate on the semaphore values. 

In the third solution, every soft side-effect is synchronised to its left with the sequen
tialisation operator, and every hard one both to its left and right. This sequentialisation 
is propagated upwards to the level needed to preserve correctness. This introduces some 
unnecessary restrictions to the parallelism available. However, if side-effects appear 
close to the top of the execution tree, this may be quite a good solution. 

5 Achievement of Independent And-Parallelism 

In order to achieve more parallelism than that available by the translations described 
so far one might think of translating CLP into AKL so that every subgoal could run in 
parallel unrestricted. However, this can be very inefficient and would violate the premise 
of preserving the results and complexity of the computation expected by the user. On 
the other hand, and as mentioned before, parallel execution of independent goals, even if 
they are nondeterminate, is an efficient and desirable form of parallelism and its addition 

Report No. CLIP7/95 June 1995 



14 Francisco Bueno and Manuel Hermenegildo 

motivated the development of the EAM, on which the AKL is based. Nevertheless, 
in AKL goals known to be independent have to be explicitly rewritten in order to 
make sure that they will be run in parallel. This is because of the rules that govern 
the (nondeterminate) promotion, that is, the stability condition on nondeterminate 
promotion, which will prevent these goals for being promoted if they try to bind external 
variables for output. Therefore, one important issue is the transformation that is needed 
to avoid suspension of independent goals. Also, independence detection can and will 
be used to reduce stability checking, a potentially expensive operation. 

Clearly, an important issue in this context is how stability/goal independence is 
detected. We have already presented the necessary machinery for this in previous 
chapters. At this point we can regard our translation as a two step process. For 
any CLP clause C the first step yields annotate(C) (see [dlBBH95]), which is then 
transformed as presented below in a second step, while clauses in the same definition 
are transformed as presented in previous sections. The result of annotate(C) is given 
as a CIAO[HtCg94, Bue95, CH95] clause, i.e. the program itself expresses which goals 
are independent and under which conditions. These conditions are expressed in the 
form of if-then-elses (which will then have to be folded out) and parallelism itself is 
made explicit by using the "&" operator to denote parallel conjunction instead of the 
standard sequential conjunction denoted by " , " . 5 For our purposes we can consider 
CIAO restricted to its subset which supports CLP plus the parallel conjunction operator 
"&" and the builtins d e f / 1 and un l inked/2 which are used in conditional parallel 
expressions (see [dlBBH95]). Some new issues are involved in the interaction between 
the conditions of these parallel expressions and other goals run in parallel concurrently, 
as it would be the case in AKL. 

At this point the CIAO conditionals are regarded as input to the translator. As such, 
if-then-elses are pre-processed in the form mentioned in the previous sections and the 
remaining issue is the treatment of the parallelisation operator "&". In implementing 
this operator we will use the AKL property that allows local and unrestricted execution 
of guards, i.e. goals that are encapsulated in a guard can run in parallel with goals in 
other guards even if they are nondeterminate. The transformation that takes advantage 
of this will (1) put goals known to be independent in (different) guards, and (2) extract 
output arguments from the guards, binding them in the body part of the clauses; the 
last step being required so that the execution of these goals is not suspended because 
of their a t tempt to perform output unification, as stability requires. With the guard 
encapsulation we ensure that those predicates will be executed simultaneously and 
independently. The following example illustrates the transformation involved. 

E x a m p l e 4 Encapsulation of independent subgoals 

p ( X ) : - (de f (X) , p ( X ) : - pp(X,Y,Z), s ( Y , Z ) . 
unlinked(Y,Z) -> 

5Note that in AKL these operators have just the opposite meaning! 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 15 

q(X,Y) & r (X,Z) p p ( X , Y , Z ) : - d e f ( X ) , un l inked (Y ,Z) -> 
; q(X,Y) , r (X ,Z) qp(X,Y) , r p ( X , Z ) . 

) , ppCX.Y.Z) : - q (X,Y) , r ( X , Z ) . 
B ( Y , Z ) . 

q p ( X . Y ) : - q(X,Yl) ? Y=Y1. 

r p ( X , Z ) : - r ( X , Z l ) ? Z=Z1. 

When the condition is met, both subgoals will be tried by the reduction rule, then 
both guards will be completely and locally solved, and then, as goals are independent 
(because the condition met) and no output is produced in the guard (because of the 
back-bindings introduced), the choice splitting rule is always applicable and all solu
tions of guards will be tried in the standard Cartesian product way. Thus, parallel 
execution is ensured for those goals that are identified as independent. 

On the other hand, when the condition fails (the goals being dependent) they appear 
together in a body with an empty guard. This means that the guard will be immedi
ately solved, the clause body promoted, and subgoals tried simultaneously. Then the 
standard stability and promotion rules will apply. 

A l g o r i t h m 5 (encapsulated goals) Given a CIAO program, P, its parallel expres
sions are encapsulated in AKL guards by transforming it into a program pl2pp(P). 
The transformation is defined by the mapping pl2pp : CIAO —> AKL as follows: 
pl2pp(C.P) = ppl2ppc(C) .pl2pp(P) 
pl2pp(e) = e 
where 

pl2ppc(-p) = p 
pl2ppc(p:- B) = p : - B'.C if (B', C) = pl2ppb(B) 
and 

pl2ppb(A,B) = {A',B',CA.CB} if(A',CA) = pl2ppb(A) and (B',CB) = pl2ppb(B) 
pl2ppb(AkB) = (A',B',CA.CB) if(A',CA) = encap{A) and (B',CB) =pl2ppb'(B) 
pl2ppb(g) = g 
and 
pl2ppb'(A,B) = encap(A,B) 
pl2ppb'(AhB) =pl2ppb(AkB) 
pl2ppb'(g) = encap(g) 
and 

encap(A,B) = ( p N , W 9 ( p N : - A').C) if (A', C) = pl2ppb(A, B) 
encap{g) = {pN,ppg{-pN:- g)) 
and 
ppg(-p:- B) = p:- L?R if cut2aklc(p:- B, \,true) = p : - L%R for some guard % • 

It should be noted that , as in the case of cut, and in addition to detecting goal 
independence, to be able to perform this transformation it is necessary to have inferred 
mode information regarding the predicate clauses. 

Report No. CLIP7/95 June 1995 



16 Francisco Bueno and Manuel Hermenegildo 

5.1 Cohabitation of Dependent and Independent And-Parallelism and Stability Checks 

When evaluating the conditions of parallel expressions at run- t ime within a parallel 
framework such as that of the AKL, they may not evaluate to the same value than 
during a fork/join execution such as that of CIAO (for the case of the goal-level parallel 
expressions we consider). This is what has been termed in another context the CGE-
condition problem [GSCYH91]6, and may result in a loss (or increase) of parallelism. To 
deal with these issues, different levels of restrictions can be placed on the translation: 

• Disallow any parallel execution except for those goals found to be independent. 

• Allow parallel execution only for goals not binding variables that appear in the 
conditions or CGE (parallel expressions). 

• Allow parallel execution outside a CGE but sequentialise before and after the 
conditional parallel expressions. 

• Allow unrestricted parallel execution unrestricted, i.e. no sequentialisation is to 
be done. 

The first solution can be implemented by translating every conjunction as a sequential 
AKL conjunction, except those joining independent goals. This will lead to a type of 
execution where only goals known to be independent are run in parallel and which 
directly resembles that of CIAO fork/join [HG90]. The same search space as CIAO 
will be explored. Nondeterminate (and determinate) promotion will then be restricted 
to only independent and sequential goals. Thus, one very important advantage of this 
translation is that no checks on stability ever need to be done, as stability is ensured 
for sequential and independent execution. This is an important issue since stability 
checking is a potentially expensive operation (and very closely related to independence 
checking). Thus, in an ideal AKL implementation code translated as above, i.e. free of 
stability checks, should run with comparable efficiency to that of CIAO. On the other 
hand, the transformation loses determinate dependent and-parallelism and its desirable 
effect of co-routining, which could be useful in reducing search space [SCWY90]. 

The second solution at tempts to preserve the environment in which the CGE evalu
ates while allowing co-routining of goals that don't affect CGE conditions and goals. 
Although interesting, this appears quite difficult to implement in practice as it requires 
very sophisticated compile-time analysis and will probably incur in run- t ime overheads 
for checking of the conditions placed in the program. 

The third solution can be viewed as a relaxation of the first one to achieve some co
routining, or as an efficient (and feasible) way of partially implementing the second one. 

6Note that some other problems mentioned in [GSCYH91] regarding the interaction between in
dependent and dependent and-parallelism (in particular, the determinate goal problem) are less of an 
issue in the proposed translation to AKL because independent goals execute in their own environments, 
thanks to the dynamic scoping of AKL guards. In any case, the AKL implementation is assumed to 
cope with all types of goal activations possible within the EAM. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 17 

Goals before and after are allowed to execute in parallel using the Andorra Principle, 
but they are sequentialised just before and after a CGE. In this way CGEs evaluate 
in the same context as in the execution of CIAO and the same level of independent 
and-parallelism is achieved. This translation has the good characteristics regarding 
search space of the previous one. In addition, some reduction of search space due to 
co-routining will be achieved. However, stability checking, although reduced, cannot 
in general be eliminated altogether. 

The fourth solution will allow every goal to run in parallel. The full EAM and AKL 
operational semantics (including stability) has to be preserved. Independence checks 
may fail where they wouldn't in CIAO (therefore losing this parallelism), but also 
succeed where they would fail in CIAO (therefore gaining this parallelism). Also, the 
number of parallel steps will always be equal to or less than in CLP (although different 
than in CIAO). This solution, the first, and the second ones appear as quite reasonable 
compromises and offer different tradeoffs. The current translation approach uses this 
fourth option. 

6 The Role of Program Analysis 

We have mentioned the need for inferring modes of clause variables (i.e. whether 
they are input or output variables) in CLP programs for the type of translation we 
pursue. The main reason for this need is that output variables in a clause have to be 
identified in order to rename them apart and place corresponding bindings for them in 
the body part of the clause. This is needed in the case of pruning clauses, and also in 
the transformed clauses for parallel execution, and it is captured in the definition of the 
mapping cutlaklc in Algorithm 4. We will now discuss the usefulness of the program 
analysis technology for CLP [dlBH93, DJBC93, dlBHB+94], and in particular, that 
discussed in [dlBBH95], in our translation. 

Recall that a program variable (or an argument) is output in a literal if the call 
to the corresponding predicate further constrains this variable, and it is input in a 
literal if its constraint state is going to be checked in the execution of the call for that 
literal. Therefore, in the translation process information on the state of a variable in 
the constraint store is essential for determining input /output arguments. This we can 
show by simply expressing the input /output character of variables in terms of a lattice 
of its possible states. Table 1 shows how the input or output character of variables can 
be decided in a good number of cases based on the information directly available for 
a literal gi from a global analysis over such a lattice. Recall that such global analyses 
are based on a collecting semantics with abstract substitutions A, at program points % 
corresponding to a state prior to the execution of g;b. We denote "Def" the character of 
a variable which is definitely constrained to a unique value. "Unc" denotes a variable 
not constrained by the store, and "Con" a variable whose domain is constrained. 

Arguments of a literal inherit the input /output character of its variables. The rel-

Report No. CLIP7/95 June 1995 



18 Francisco Bueno and Manuel Hermenegildo 

Ai 
def 
unc 

con i 

Aj+i 

(def) 
unc 
con 
def 

con\ 
COU2 

def 

Output? 

no 
no 
yes 
yes 
no 
yes 
yes 

Input? 
* 
* 

no 
no 
* 
? 

? 

Table 1: Input /ou tpu t variables 

evance of an analysis yielding information on unconstrained variables (such as that 
based on the Fr abstract domain of [DJBC93, dlBBH95]) in detecting input /output 
variables is clear. From the table we identify cases in which the variable is known not 
to be an input variable, without any further analysis (i.e. when the variable is uncon
strained). Furthermore, we realize that if a variable is known not to be an output 
variable then it doesn't need to be renamed apart and it is not necessary to determine 
whether it is an input variable or not ("*" cases). Knowing that a variable is definitely 
constrained to a unique value also helps in this. Thus, the benefits of an analysis yield
ing both classes of information is clear. This is the case of the FD abstract domain of 
[dlBHB+94, dlBBH95]. Reducing the situations where knowing if a variable is input 
is quite useful since inferring whether a variable binding is needed or not requires ad
ditional analysis ("?" cases). This analysis seeks to decide if a variable is crucial in 
clause selection or checking. Note that the analysis has to be extended for every child 
procedure of the one being analysed. 

7 Experimental Results 

This section presents some results on the timing of a number of benchmarks using our 
translation in the prototype AKL system. The AKL versions of the programs obtained 
through automatic compile-time translation are compared with versions specifically 
written for AKL. Timings for the sequential versions of the programs are also included 
for comparison and also with the intention of identifying translation paradigms that 
help efficiency. With this aim in mind, the set of benchmarks has been chosen so that 
performance results are obtained for several different programming paradigms, and a 
number of different translation issues are taken into account. The results show that 
translation suffices in most cases, provided state-of-art analysis technology is used. 

Since our translation is parametric on the underlying constraint system of the pro
gram, and our experiments were not to be influenced by this, availability restrictions 
forced us to restrict the experiments to the Herbrand constraint system. Timings have 
been obtained for the sequential program (compiled to native code), the AKL program 
resulting from automatic translation and the "hand-written"-AKL version. SICStus 2.1 
# 9 and a sequential AKL prototype system, AGENTS 1.0, from SICS, have been used. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 19 

Times have been obtained on a SunOS SPARC station, and correspond to execution 
of the program until the first solution is found. They are an average of ten consecutive 
executions done after a first one (not timed) and are given in milliseconds, rounded up 
to tens. 

Benchmark 
Program 

qsort (1st) 
qsort 
mergesort 
money (1st) 
money 
zebra 
scanner 
triangle 

SICStus 

10 
10 
10 

14,950 
11,830 
2,330 

262,550 
990 

AKL 
translated 

10,500 
70 

450 
50,390 
50,340 
10,070 

350 
58,550 

h. written 

80 
80 

500 
540 
540 

1,800 
80 

6,820 

Table 2: Timings for direct translations. 

We briefly introduce the programming paradigms represented by each of the bench
marks used. Qsort has been translated in two ways, one that "folds" pruning definitions, 
and another one that is able to "extend" the cut to all clauses, the latter showing an 
advantage w.r.t. the former. Mergesort illustrates the advantage of being able to detect 
that some cuts are not noisy (as opposed to defaulting to noisy cut in every case). In 
fact, in this case the translated version is slightly faster than the hand-coded one! 

For money we have used two different versions. In the first version of the program 
the problem is solved through extensive backtracking. In the second one the ordering of 
goals is improved in the sequential program. As in zebra the difference with the "hand
written" version is in the use of the arithmetic predicates: addition is programmed in 
the hand-coded AKL version as illustrated by the following sum/3 predicate, in which 
the co-routining effect provides a "constraint solving" behaviour: 

sum(X,Y,Z) : - Z0 i s X+Y | Z = Z0. 
sum(X,Y,Z) : - X0 i s Z-Y | X = X0. 
sum(X,Y,Z) : - X0 i s Z-X | Y = Y0. 

Scanner is a program where AKL can take a large advantage from concurrent exe
cution and the "determinate-first" principle, even without explicit control, and this is 
shown in the good performance of the translated program. The sequential program
ming of this benchmark is clear and straightforward, but is not very efficient executed 
sequentially. On the other hand, in triangle, heavy use of special AKL features has 
been made, through hand-optimisation. 

In matrix, hanoi, query, and maps (and also qsort), encapsulation of different classes 
of goals has been tried. The results show that encapsulating independent goals which 
are determinate provides no improvement, but performance improves when they are 

Report No. CLIP7/95 June 1995 



20 Francisco Bueno and Manuel Hermenegildo 

nondeterminate. Performance also improves in the case of goals which act in a pro
ducer/consumer fashion (maps). These results suggest that AKL control similar to 
that of hand-coded versions can be imposed automatically for situations other than 
independence of goals (such as non-determinate goals or producers of values for vari
ables). 

Benchmark 
Program 

qsort 
matrix 
hanoi 
query 
maps 

SICStus 

10 
30 
10 
10 
30 

AKL translated 
with encap. 

90 
190 
20 

160 
90 

direct 
80 

120 
350 
230 

1,780 

Table 3: Timings for encapsulation of goals. 

The automatic transformation achieves reasonably good results when compared to 
code specifically written for AKL, provided one takes into account that the starting 
point is a sequential program with little specification of control, and it is being compared 
to an AKL program where control has been optimised by the programmer. The exam
ples where the largest differences show are those in which the control imposed by hand 
in the AKL program changes the complexity of the algorithm, generally through smart 
use of suspension (as in the sum/3 predicate), something that the current transforma
tion can not do automatically. However, the results also show that it would obviously 
be desirable to extend the translation algorithms towards implementing some of the 
smart forms of control that can be introduced by a good AKL programmer. 

When comparing with SICStus, the figures show advantage in running the programs 
in AKL. The results show that a variable performance improvement can be obtained 
whenever determinism is significant in the problem (this is quite spectacular in scanner). 
When automatically translating the sequential algorithms, running in AKL incurs in 
a certain overhead. However, the encapsulation transformation can help efficiency in 
some cases. 

8 Conclusions 

The translation scheme presented benefits from the power of a language such as 
AKL, which embeds both the concurrent and search-based programming paradigms, 
as well as from transformation techniques based on independence. On the one hand, 
it allows bridging the differences between CLP and AKL, and also achieving full ex
ploitation of the (and-)parallelism possibilities of the target language, while offering 
the programmer the more familiar semantics of sequential logic programming. On the 
other hand, previous results on goal independence guarantee that program complexity 
can be preserved in the parallel execution of the transformed program. 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 21 

The transformation is relevant even in the case of a sequential AKL implementation 
since the reduction of stability checking which follows from knowledge of goal indepen
dence can already be of significant advantage (if it can be transmitted to the compiler), 
given the expected cost of stability tests. In the case of a parallel AKL implementation 
the transformation amounts to a form of automatic parallelisation and search space 
reducing implementation for CLP programs which exploits the EAM, and imposes a 
particular form of control on it. The advantages of considering independence notions 
to deal with stability in the AKL computation have been further elaborated in [MD94]. 
Our transformation can be viewed as a means of (partially) dealing with this subject 
at compile-time. 

The efficiency results obtained for a sequential implementation of AKL (over the 
Herbrand domain) do not allow us to state the expected efficiency of the translation 
in other situations. Nevertheless, they point out a positive trend in the exploitation of 
independence which could become effective in a parallel implementation of AKL. 

In any case, and regarding automation of the translation, an effective application of 
a translator can be found in a programming environment where the user writes down 
CLP code for problem solving, taking advantage of its declarativeness and its clear 
semantics, and uses AKL where he/she wants to impose particular control or make 
concurrency explicit. The translator will then transparently allow the whole code to 
run on AKL. This is realized in part in the CIAO compiler, which, using techniques such 
as those described herein, can support different programming modes simultaneously via 
program transformation. 

Report No. CLIP7/95 June 1995 



22 Francisco Bueno and Manuel Hermenegildo 

References 

F. Bueno and M. Hermenegildo. An Automatic Translation Scheme from 
Prolog to the Andorra Kernel Language. In Proc. of the 1992 Interna
tional Conference on Fifth Generation Computer Systems, pages 759-769. 
Institute for New Generation Computer Technology (ICOT), June 1992. 

F. Bueno. The CIAO Multiparadigm Compiler: A User's Manual. Tech
nical Report CLIP8/95.0, ACCLAIM Deliverable D3.2/3-A4, Facultad de 
Informatica, UPM, June 1995. 

D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Ex
ecution in the CIAO System. Technical Report CLIP14/95.0, ACCLAIM 
Deliverable D4.3/2-A2, Facultad de Informatica, UPM, June 1995. 

A. Colmerauer. An Introduction to Prolog III. CACM, 28(4):412-418, 
1990. 

D. DeGroot. Restricted AND-Parallelism and Side-Effects. In Interna
tional Symposium on Logic Programming, pages 80-89. San Francisco, 
IEEE Computer Society, August 1987. 

[DJBC93] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness 
Analysis in the Presence of Numerical Constraints. In Tenth International 
Conference on Logic Programming, pages 100-115. MIT Press, June 1993. 

[dlBBH95] M. Garcia de la Banda, F. Bueno, and M. Hermenegildo. Automatic 
Compile-Time Parallelization of CLP Programs by Analysis and Trans
formation to a Concurrent Constraint Language. Technical Report 
CLIP3/95.0, ACCLAIM Deliverable D3.3/3-A1, Facultad de Informatica, 
UPM, June 1995. 

Maria Jose Garcia de la Banda Garcia. Independence, Global Analysis, 
and Parallelism in Dynamically Scheduled Constraint Logic Programming. 
PhD thesis, Universidad Politecnica de Madrid (UPM), July 1994. 

M. Garcia de la Banda and M. Hermenegildo. A Practical Approach to 
the Global Analysis of Constraint Logic Programs. In 1993 International 
Logic Programming Symposium, pages 437-455. MIT Press, Cambridge, 
MA, October 1993. 

[dlBHB+94] M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, 
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Pro
grams. Draft, 1994. 

[BH92] 

[Bue95] 

[CH95] 

[Col90] 

[DeG87] 

[dlBG94] 

[dlBH93] 

June 1995 UPM - Dept. of Computer Science 



An Automatic Translation Scheme from CLP to AKL 23 

[dlBHM94] M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. Search Space 
Preservation in CLP Languages. Technical Report CLIP11/94.0, Univer
sity of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del 
Monte, Madrid-Spain, September 1994. Also provided as attachment of 
deliverable D3.2-3.3/2. 

[Gre85] S. Gregory. Design, Application and Implementation of a Parallel Logic 
Programming Language. PhD thesis, Imperial College of Science and Tech
nology, London, England, 1985. 

[GSCYH91] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: A 
Model Intergrating Dependent-, Independent-, and Or-parallelism. Tech
nical report, University of Bristol, March 1991. 

[Hen89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT 
Press, 1989. 

[HG90] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploit
ing Independent And-Parallelism. In 1990 International Conference on 
Logic Programming, pages 253-268. MIT Press, June 1990. 

[HJ90] S. Haridi and S. Janson. Kernel Andorra Prolog and its Computation 
Model. In Proceedings of the Seventh International Conference on Logic 
Programming, pages 31-46. MIT Press, June 1990. 

[HR95] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time 
Conditions. Journal of Logic Programming, 22(l):l-45, 1995. 

[HtCg94] M. Hermenegildo and the CLIP group. Some Methodological Issues in 
the Design of CIAO - A Generic, Parallel Concurrent Constraint System. 
In Principles and Practice of Constraint Programming, LNCS 874, pages 
123-133. Springer-Verlag, May 1994. 

[Jan94] Sverker Janson. AKL. A Multiparadigm Programming Language. PhD 
thesis, Uppsala University, 1994. 

[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp. 
Principles of Programming Languages, pages 111-119. ACM, 1987. 

[MD94] R. Moolenar and B. Demoen. Full parallel search in AKL. ACCLAIM 
Deliverable D4.1/2-3, Dept. Computer Science, K.U. of Leuven, September 
1994. 

[MH89] K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods 
for Supporting Side Effects in Independent/Restricted And-parallelism. In 
1989 International Conference on Logic Programming, pages 80-101. MIT 
Press, June 1989. 

Report No. CLIP7/95 June 1995 



24 Francisco Bueno and Manuel Hermenegildo 

[Mut91] Kalyan Muthukumar. Compile-time Algorithms for Efficient Parallel Im
plementation of Logic Programs. PhD thesis, University of Texas at Austin, 
August 1991. 

[SCWY90] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel 
Prolog System that Transparently Exploits both And- and Or-parallelism. 
In Proceedings of the 3rd. ACM SIGPLAN Symposium on Principles and 
Practice of Parallel Programming. ACM, April 1990. 

[SCWY91] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preproces
sor: Supporting Full Prolog on the Basic Andorra Model. In 1991 Interna
tional Conference on Logic Programming, pages 443-456. MIT Press, June 
1991. 

[TS84] H. Tamaki and M. Sato. Unfold/Fold Transformations of Logic Programs. 
In Second International Conference on Logic Programming, pages 127-138, 
Uppsala, Sweden, 1984. 

[War90] D.H.D. Warren. The Extended Andorra Model with Implicit Control. In 
Sverker Jansson, editor, Parallel Logic Programming Workshop, Box 1263, 
S-163 13 Spanga, SWEDEN, June 1990. SICS. 

June 1995 UPM - Dept. of Computer Science 


