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Abstract 

The physical model based on moving constant loads is widely used for the analysis of railway bridges. Nevertheless, 
the moving loads model is not well suited for the study of short bridges (L < 20-25 m) since the results it produces 
(displacements and accelerations) are much greater than those obtained from more sophisticated ones. In this paper two 
factors are analysed which are believed to have an influence in the dynamic behaviour of short bridges. These two 
factors are not accounted for by the moving loads model and are the following: the distribution of the loads due to the 
presence of the sleepers and ballast layer, and the train-bridge interaction. In order to decide on their influence several 
numerical simulations have been performed. The results are presented and discussed herein. 
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1. Introduction 

The dynamic behaviour of railway bridges has been a 
subject of research for many scientists and engineers 
since the first accidents occurred in metal bridges during 
the past century. Some of the most remarkable works on 
this subject are those by Stokes [19], Bresse [4], Willis 
[22], Bleich [3], Inglis [13], Timoshenko [21] and Fryba 
[10,11], among others. 

From these works it can be observed that the physical 
model most frequently used for the dynamic analysis of 
railway bridges is the so-called moving loads model. This 
model does not take into account the inertial effects of 
the train masses, and therefore the train is modelled as a 
series of concentrated, constant-valued loads travelling 

at speed V (see Fig. 1). For this model closed-form so
lutions of the equations of motion can be obtained in a 
very simple manner [2,10,18,21]. 

The response computed with the moving loads model 
at non-resonance speeds is in good agreement with ex
periments as shown in [9,12]. Nevertheless, at resonance 
speeds bridge displacements and accelerations can be 
significantly magnified leading to dangerous situations. 

The temporary closure of the TGV line from Paris to 
Lyon is a good example of the problems that may arise 
in high-speed lines. In that case, excessively high accel
erations were detected in several bridges that lead to 
ballast liquefaction and, as a consequence, danger of 
derailment [14,17]. In November 1995, the European 
Rail Research Institute (ERRI), located in the Nether
lands, decided to create a committee of experts (ERRI 
D-214) in charge of the study of such problems. In one 
of the works by the ERRI D-214 committee [7] it can be 
observed that for the short spans the vertical accelera
tions of the deck predicted by the moving loads model 
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Fig. 1. Moving loads model. 

reach very high values. These values are much greater 
than the limit acceleration related to the appearance of 
ballast liquefaction, which is about 7 m/s2 « 0.7 g, i.e. 
70% of the acceleration of gravity (see Fig. 2). 

Unfortunately, as the ERRI D-214 points out in its 
Final Report [9], there is a lack of experimental data 
recorded at resonance speeds that precludes the possi
bility of comparing predicted values with real ones. In 
Spain tests at resonance speeds have been conducted in 
several bridges [1] but no comparison with theoretical 
values has been performed; moreover, the numerical 
simulations presented by the authors of [1] were pointing 
to adjust mechanical properties of the model in order to 
fit with experimental results, rather than comparing 
predicted and measured values. 

At non-resonance speeds, bridge response predicted 
by more sophisticated models including train-bridge 
interaction is very similar to the one obtained from 
moving loads models. Conversely, train-bridge interac
tion significantly reduces displacements and accelera

tions at resonance, which could be of great interest from 
an economic point of view. As shown in [8], the effects of 
train-bridge interaction are indeed noticeable for short 
bridges, which are most likely to undergo excessive 
resonant vibration. Even if an extensive comparison 
with experiments is still required for resonance situa
tions, simplified procedures enabling civil engineers to 
account for train-bridge interaction in short bridges are 
most desirable, since values predicted by moving loads 
models (as the ones in Fig. 2) are too high and have 
never been observed in real tests. 

In this paper the influence of two factors not ac
counted for by the moving loads model is analysed: the 
first one is the distribution of the loads through the 
sleepers and ballast layer; the second one is the train-
bridge interaction. Other factors that are believed to 
play an important role in the dynamics of short bridges 
are the following: 

• Values of damping during the passage of the train 
greater than the ones computed from the logarithmic 
decrement of the free oscillation. 

• Boundary restrictions exerted by the rail in the tran
sitions over the abutments. 

• Vibration of the ballast layer. 

Finally, another factor that is central to the dynamics 
of railway bridges is the excitation due to track irregu
larities and wheel flats. As it is well known, the peak 
response of high-speed railway bridges is obtained in 
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Fig. 2. Maximum accelerations in a bridge of span L = 10 m, n0 = 8 Hz. Mass per unit length = 10,000 kg/m. 



correspondence of the resonance speeds in most cases. 
Although the effects of track irregularities and wheel 
flats are of considerable importance for non-resonance 
speeds, they have not been taken into account in this 
study, which is focus sed mainly on the behaviour of 
bridges at resonance. The influence of such factors in 
resonance situations is presently being investigated by 
other authors [6]. 

2. Numerical modelling 

In order to compute the deflections and accelerations 
three computer programs have been developed. The 
mathematical bases of the different models can be re
viewed in the works by several authors [2,10,18,21]. The 
two first programs are based on the physical model of a 
simply supported beam crossed by a series of concen
trated or distributed loads, respectively. According to 
this model, the dynamic behaviour of the bridge is 
governed by the well-known partial differential equa
tion: 

d2
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where y(x, t) is the vertical deflection of the beam at 
point x and time t; m, the constant mass of the beam per 
unit length; E, the modulus of elasticity; /, the constant 
moment of inertia of the cross-section of the beam; and 
q(x, t), the load acting per unit length at point x and time 
t. In both cases, for concentrated (i.e., represented by 
means of Dirac delta functions) as well as distributed 
loads, a closed-form solution for Eq. (1) can be obtained 
and no numerical integration is required. 

The third program, on the contrary, is able to analyse 
continuous girders crossed by a train of sprung and 
semi-sprung masses, and therefore can be used to treat 
the train-bridge interaction problem. This program uses 
two-dimensional Bernoulli beam elements in order to 
represent the behaviour of the bridge, and a set of 
concentrated masses, linear springs and dampers to ac
count for the characteristics of the train (Fig. 3). 

The integration is carried out by means of a modified 
Newmark-/? method [20]. The mass, damping and stiff
ness matrices of the whole system are updated at every 
time step, and the displacements of the axles, as well as 
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the train-bridge interaction forces, are interpolated by 
means of the usual cubic Hermitian polynomials. The 
chosen time step is at least one one hundredth the time 
required by any of the train axles to cross the bridge's 
span. If this condition is satisfied the behaviour of the 
system can be considered linear within the step and no 
iterative procedures are required; using a longer time 
step has proved sometimes inaccurate for the computa
tion of the maximum displacements and accelerations. 
In order to ensure the desired accuracy, two additional 
restrictions are considered in the selection of the time 
step: it has to be shorter than 0.05 times the period of the 
third mode of the bridge, and also shorter than 0.05 
times the period of the higher mode of the train. The 
results obtained with the third program have been 
checked against those presented by the ERRI D-214 
committee in the Train-Bridge Interaction report [8] and 
the ones available in Ref. [23]. 

3. Distribution of the loads through the sleepers and 
ballast layer 

In order to analyse the effects of the distribution of 
the loads beneath the sleepers and ballast layer (Fig. 4), 
the similarity formulae proposed by ERRI [7,16] are 
taken as a departure point. These formulae are valid for 
the responses computed by the concentrated and dis
tributed loads models and are as follows: 
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In these formulae 0 is the impact coefficient, i.e., the 
relation between dynamic and static deflections at mid-
span; / and / ' are the maximum vertical deflections at 
mid-span of two bridges of the same length (henceforth 

Fig. 3. Train-bridge model. 
Fig. 4. Distribution of the axle loads through the sleepers and 
ballast layer. 



called first and second bridges); /LM7I and /LM71 are the 
static deflections at mid-span of the two bridges due to 
the Load Model 71; amxx and a!rmx are the maximum 
vertical accelerations at mid-span; L is the length or 
span of the bridges and ( is the damping ratio. The 
variables that define the dynamic behaviour of the 
bridges are m and m', which are the mass of the bridges 
per unit length, as well as n0 and n'0, which are the 
fundamental frequencies. Finally, V is the speed of the 
train passing over the first bridge (mass m, frequency n0) 
and V' is the speed of the train passing over the second 
bridge (mass m', frequency n'0). 

The Load Model 71 is a static load pattern proposed 
by the Eurocode-1 [5] for the design of railway bridges. 
For computing the static deflection /LM7I a classification 
factor a — 1.21 has been used. This is permitted by the 
Eurocode-1 and is also imposed by the new Spanish 
Code of Actions in Railway Bridges [15]. 

It should be emphasised that the similarity formulae 
are valid provided that the wavelength I has the same 
value for both bridges: 

V V 
n0 n'0 

(3) 

As can be observed from Eq. (2a), the value of the im
pact coefficient computed with the moving loads model 
is equal for all the bridges of the same length and 
damping ratio provided that the wavelengths are the 
same. 

Now the reductions of the displacements (R) and 
accelerations (Rr) due to the load distribution through 
the sleepers and ballast are defined as follows: 

R 

R' = 

<2>c - < 2 > d 

<2>c 

^max,c 

X 100 

^max,d x 100 

(4a) 

(4b) 

In Eqs. (4a) and (4b), subscripts "c" and "d" stand for 
"concentrated loads" and "distributed loads" respec
tively. The analysis with the distributed loads model has 
been performed assuming that each of the axle loads acts 
uniformly over a length of 1 m (approximately). This 
value is found by averaging the ones that would be 
obtained if the scheme of distribution suggested by Eu
rocode-1 were applied to the two extreme situations, i.e. 
the axle load acting directly over one of the sleepers and 
the axle lying in the middle point between two adjacent 
sleepers. A 25-cm-thick ballast layer has been considered 
for these computations. 

Since the value of the impact coefficient is the same 
for all the bridges of the same length and damping, the 
same holds for the reduction of displacements R. Be
sides, considering Eq. (4b), the same property is found 
to be valid for the reduction of the accelerations R'. 

Therefore the reductions defined in Eqs. (4a) and (4b) 
have been evaluated for nine reference bridges of spans 
ranging from 4 to 15 m with a damping ratio ( — 0.01. 
Realistic values of the damping ratio are usually greater 
for the shortest bridges, where the energy dissipated by 
the continuous rail and ballast layer is of greater im
portance. Nevertheless, a constant value of 1% has been 
selected so as to suppress the influence of damping in the 
reductions R and R, which therefore depend solely on 
the value of the wavelength. The results, as stated be
fore, are valid for any bridge having a span length equal 
to the length of any of the reference bridges. Figs. 5 and 
6 show the maximum accelerations predicted by the 
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Fig. 5. Maximum accelerations in a bridge of span L = 5 m. 
Five European high-speed trains considered. 

V/no(m) 

Fig. 6. Maximum accelerations in a bridge of span L = 10 m. 
Five European high-speed trains considered. 



concentrated and distributed loads models for the ref
erence bridges of span length 5 and 10 m. The results are 
plotted as a function of the wavelength I — V/n0. Five 
European high-speed trains have been considered in the 
analysis, including the Spanish TALGO, the French 
THALY'S, the German ICE-2, the Italian ETR-Y and 
the EUROSTAR. 

As can be observed from Figs. 5 and 6, while the 
reductions are negligible for the 10 m bridges, they 
should not be disregarded in the 5 m ones (especially for 
the low speeds). In general, it is found that the shorter 
the value of the wavelength, the greater the reduction 
of the accelerations. Conversely, for the longer wave
lengths (i.e., for bridges with a lower fundamental fre
quency, or traversed by trains travelling at higher 
speeds) the reductions decrease monotonically. 

This conclusion is shown in Fig. 7, where the re
duction R' is presented as a function of the wavelength 
for the bridges of 6, 7 and 8 m of span length. The re
duction R' appears as a very irregular function, charac
terised by sharp variations for small increments of l. 
Nevertheless, a lower bound for the reduction can be 
proposed (as shown in Fig. 7) which represents a safe 
choice for the engineer in charge of the dynamic analysis 
of any simply supported bridge. 

However, if the reduction R! is evaluated only for the 
resonance wavelengths (i.e., those related to a resonance 
phenomenon, as I — 4.4 or 6.6 m in Fig. 5) it is found 
that the values do not correspond to any of the peaks 
above of below the lower bound in Fig. 7. Indeed, the 
values are somewhat greater than the lower bound in 
most cases. This is shown in Fig. 8, where the reduction 
R' has been evaluated for all the resonance wavelengths 
that can be found in the bridges of 4, 5, 7 and 9 m of 
span length. Bridges of 6 and 8 m are not included for 
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Fig. 7. Reduction of the accelerations (Rr) as a function of the 
wavelength. 
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Fig. 8. Reduction of the accelerations (Rr) computed for the 
resonance wavelengths. 

the sake of clarity, and bridges longer than 9 m show 
negligible reductions for the usual range of speeds. As 
can be seen, a lower bound is also included that is 
slightly different from the one in Fig. 7. The analytical 
expressions for both limits are 

R' = 127.35/T1'9 

for the lower bound in Fig. 7, and 

R> = 104.43/T1'6 

(5) 

(6) 

for the one in Fig. 8. Eq. (6) is a good approximation for 
the reduction of accelerations, especially for the values 
I < 4-5 m. There are some points in Fig. 8 that lie below 
the lower bound, but this is of little importance since the 
differences are small (a more conservative expression for 
Eq. (6) could also be adopted). Finally, in Fig. 9 both 
lower bounds for R' (Eqs. (5) and (6)) are represented in 
logarithmic scale. 

In this paper attention has been focussed on the ac
celerations since they are of major importance for short 
bridges, but similar developments can be done in a 
straightforward manner in order to obtain an approxi
mation for the reduction of the impact coefficients. 

4. Train-bridge interaction 

4.1. Introduction 

Train-bridge interaction is a phenomenon that takes 
place when the bridge oscillations or the rail-surface 
roughness excite the motion of the vehicle sprung mas
ses. As a result, the value of the axle forces becomes time 
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Fig. 9. Lower bounds of the reduction of the accelerations. 

dependent and, therefore, it is no longer equal to the 
static axle load. In this paper the train-bridge interac
tion is investigated without considering the second of the 
aforementioned factors; this implies, as stated before, 
that solely the bridge vertical vibrations cause the mo
tion of the sprung masses. 

The D-214 committee of the ERRI showed that 
train-bridge interaction has a considerable influence in 
the dynamic behaviour of bridges having span lengths 
shorter than 15-20 m [8]. This fact was also confirmed 
by the authors in previous works [16], where reductions 
of the displacements and accelerations about 25% were 
found when comparing the moving loads and the in
teraction models. Moreover, it can be shown that the 
maximum reductions of the bridge response take place 
at the resonance speeds (or wavelengths), thus making 
the moving loads model excessively conservative for the 
design of short, simply supported bridges. In Fig. 10 the 
impact coefficients at the resonance wavelength I — 
8.8 m for three bridges of L — 10 m can be seen. All the 
calculations in Section 4 have been performed consid
ering the ICE-2 as the only excitation. 

In principle, evaluating the reduction of the response 
due to the train-bridge interaction is not a simple mat
ter. As shown in Fig. 10, the main difficulty stems from 
the fact that, unlike the reduction due to the load dis
tribution through sleepers and ballast, the train-bridge 
interaction effects are not the same for all bridges of the 
same length. Therefore, a complete dynamic analysis in 
the time domain is required that most of the commercial 
finite element codes are not able to perform. 

Considering that the length and damping ratio of the 
bridge will be kept to a constant value (10 m and 1%, 
respectively), the reductions of the displacements and 
accelerations can be defined as follows: 
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Fig. 10. Impact coefficients for three bridges of span L = 10 m. 
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In Eqs. (7a) and (7b), $c and ac are the impact coefficient 
and maximum acceleration computed with the moving 
loads model, while, <£, and a, are the ones computed 
taking into account the train-bridge interaction; I and 
«o are the usual wavelength and the natural frequency of 
the bridge, and / is the moment of inertia of the cross-
section of the beam. 

From Eqs. (7a) and (7b) it can be seen that the re
ductions R and R' depend, for a given wavelength, on 
the fundamental frequency of the bridge as well as on 
the bridge static stiffness (i.e., on the moment of inertia 
/, provided the material is given). In Ref. [16] it was 
shown by the authors that this was true for the reduction 
of the impact coefficients. In order to investigate the 
dependence of R and R' on such variables, a parametric 
study has been conducted in which the behaviour of 
several bridges of 10 m of span length has been studied. 
Five different values of the fundamental frequency, 
ranging from the lower to the upper limits recommended 
by Eurocode-1, have been selected: «0i = 8 Hz (lower 
limit), «02 = 10.23 Hz, n03 = 12.46 Hz, «04 = 14.7 Hz 
and «05 — 16.93 Hz (upper limit). As can be seen, the five 
values of frequency are equally spaced. 

Then, for every value n0i, five bridges with different 
moments of inertia have been selected. Young's modulus 
has been taken equal to 36 GPa, and the values of the 
mass per unit length and moment of inertia have been 
computed on the basis of two realistic requirements. 



First, the static deflection 5 of the bridge due to its own 
weight and the Load Model 71 [5] acting simultaneously 
must lie between the following values: 500 ^L/S < 3000. 
Since the deflection due to self-weight is included, these 
limit values have been taken broader than the usual ones 
in the design of railway bridges, but this is a desirable 
feature for a parametric analysis as the one presented in 
this section. A classification factor a— 1.21 has been 
applied to the Load Model 71, as imposed by the 
Spanish Code of Actions. Second, the mass of the bridge 
per unit length must be (approx.) greater than 3000 kg/ 
m, a value which is found in some light metal bridges, 
and smaller than 20,000 kg/m, which is considered an 
upper limit for simply supported bridges of length 
L= 10 m. 

This makes a total amount of 25 bridges analysed, 
each of them for 85 values of speed ranging from 100 to 
400 km/h (i.e., from 28 to 112 m/s, with a step of 1 m/s). 
The mechanical properties of the bridges are shown in 
Table 1. Bridges are referenced by means of an abbre
viation By, where subscript i indicates the value of the 
natural frequency and subscript j indicates the value of 
the moment of inertia (or mass, since both are related to 
the frequency, as it is well known). Following this no
tation, bridge B21 has a natural frequency n02 and the 
lowest value of inertia of the second column of the table, 
and bridge B45 has natural frequency «04 and the highest 
value of inertia of the fourth column of the table. 

4.2. Approximation of the impact coefficient and maxi
mum acceleration 

Fig. 11 shows the reduction R of the impact coeffi
cients for bridges Bl l , B12 and B15 as a function of the 

wavelength. In this figure it can be observed that the 
reductions are nearly proportional to each other. Simi
larly, in Fig. 12 the reduction R' of the maximum ac
celeration for bridges B31, B33 and B35 is presented. 
Again, it seems that any of the curves in this figure can 
be obtained from any other multiplying by an appro
priate factor. Thus, taking bridge Bll as the reference 
bridge, an approximation for the reductions is given by 

R(X,n0,I)^y(n0,I)Rrt[(X) (8a) 

R(l,n0,I)^y'(n0,I)R[Jl) (8b) 
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Fig. 11. Reduction of the impact coefficients for bridges Bl l , 
B12 and B15. 

Table 1 
Natural 

«01 = 

Bll 

B12 

B13 

B14 

B15 

frequencies and mechanical properties of the 25 bridges analysed in the 

8 Hz 

L/S = 500 
m = 5836 
/ = 0.042045 

L/S = 637.5 
m = 8175 
/ = 0.058899 

L/S = 775 
m = 11026 
/ = 0.079443 

L/S = 912.5 
m = 14579 
7 = 0.105041 

L/S = 1050 
m = 19128 
7 = 0.137816 

«02 = 

B21 

B22 

B23 

B24 

B25 

10.23 Hz 

L/S = 500 
m = 3165 
7 = 0.037308 

L/S = 812.5 
m = 5784 
7 = 0.068175 

L/S = 1125 
m = 9148 
7 = 0.107824 

L/S = 1437.5 
m = 13627 
7 = 0.160623 

L/S = 1750 
m = 19888 
7 = 0.234414 

«03 = 

B31 

B32 

B33 

B34 

B35 

12.46 Hz 

L/S = 700 
m = 2957 
7 = 0.051713 

L/S= 1175 
m = 5591 
7 = 0.097787 

L/S = 1650 
m = 8988 
7 = 0.157207 

L/S = 2125 
m = 13536 
7 = 0.236756 

L/S = 2600 
m = 19939 
7 = 0.348748 

parametric study 

«04 = 

B41 

B42 

B43 

B44 

B45 

14.7 Hz 

L/S = 1000 
m = 3052 
7 = 0.074215 

L/S = 1500 
m = 5006 
7 = 0.121720 

L/S = 2000 
m = 7362 
7 = 0.179014 

L/S = 2500 
m = 10260 
7 = 0.249470 

L/S = 3000 
m = 13909 
7 = 0.338211 

«05 = 

B51 

B52 

B53 

B54 

B55 

16.93 Hz 

L/S = 1300 
m = 2980 
7 = 0.096147 

L/S = 1725 
m = 4182 
7 = 0.134938 

7/<S = 2150 
m = 5532 
7 = 0.178479 

L/S = 2575 
m = 7058 
7 = 0.227698 

L/S = 3000 
m = 8796 
7 = 0.283784 

Masses per unit length are given in kilograms per meter. Moments of inertia are given in m4. 
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Fig. 12. Reduction of the maximum accelerations for bridges 
B31, B33 and B35. 

where i?ref (1) and R're[(X) a r e t n e reductions for bridge 
Bll and y(ng,I), y'(no,I) are the intensities of reduction 
for a bridge with natural frequency n0 and moment of 
inertia I. RKi(X) and R'K[ (X) are shown in Figs. 13 and 14 
as a function of the wavelength. The values of the in
tensities of reduction are shown in Table 2 for the 25 
bridges. 

Substituting the values given by Eqs. (8a) and (8b) in 
Eqs. (7a) and (7b) an approximation to the impact co
efficient $1 can be obtained as follows: 

<2>i,app(̂ «0,/) = <2>cM 1 -y{n0,I) 
Rref W 

100 
(9) 

2 3 4 5 6 7 8 9 10 11 12 13 H 

V/n0 (m) 

Fig. 13. Reduction of the impact coefficient for bridge Bll 
(«ref). 

V/Mm) 

Fig. 14. Reduction of the maximum accelerations for bridge 
Bll (*[*). 

Proceeding in an analogous way, an approximated value 
of the acceleration can be found, but in this case the first 
factor depends on the frequency and inertia of the 
bridge: 

,(l,n0,I) =ac(l,n0,I) l - / ( « o , / ) 100 
(10) 

Nevertheless, Eq. (10) can be modified taking into ac
count the similarity formula (2b) to give 

fli,app(^,«0,-0 — « c , r e f W 
W r e f 

i -y ' (»o , / ) 100 
(11) 

where mref is the mass per unit length of bridge Bl 1, m is 
the mass per unit length of the bridge with frequency n0 

and moment of inertia / ; ava(X) is the maximum ac
celeration of bridge Bll obtained from the moving loads 
model. 

In Eqs. (9) and (11), approximations for the impact 
coefficient and maximum acceleration are given in such a 
way that the dependence on the wavelength is concen
trated on &C(X), ava(A), RK[(X) and i?J.ef(/l). The values 
of these factors are the same for all bridges of length 
L — 10 m and damping ratio ( — 1%. As stated before, 
damping ratio is usually higher for short bridges (ERRI 
recommends using 1.7% for 10 m RC or steel bridges 
[9]); however, bridge response is characterized by shar
per peaks if lighter damping is assumed, and therefore 
1% damping has been selected as these puts a tougher 
test for the approximated method presented herein. 

Eqs. (9) and (11) take into account the train-bridge 
interaction and are easy to apply: <PC(2) and acm[(X) can 
be computed using the moving loads model; i?ref (1) and 
KaW a r e s n o w n in Figs. 13 and 14; finally, the inten
sities of reduction can be obtained from Table 2. The 



Table 2 
Intensities of reduction for the impact coefficients and maximum accelerations 

Hz 10.23 Hz 12.46 Hz 14.7 Hz 16.93 Hz 

Bll 

B12 

B13 

B14 

B15 

: 1.0 
= 1.0 

.0.74 
= 0.80 

.0.57 
= 0.65 

.0.44 
= 0.52 

.0.34 
= 0.43 

B21 

B22 

B23 

B24 

B25 

y = 1.33 
/ = 1.20 

y = 0.80 
y' = 0.80 

y = 0.53 
y' = 0.57 

y = 0.37 
/ = 0.42 

y = 0.26 
/ = 0.31 

B31 

B32 

B33 

B34 

B35 

y= 1.17 
/ = 1.03 

y = 0,67 
/ = 0.67 

y = 0.44 
/ = 0.47 

y = 0.31 
/ = 0.34 

y = 0.21 
/ = 0.25 

B41 

B42 

B43 

B44 

B45 

y = 0.97 
/ = 0.86 

y = 0.63 
/ = 0.6 

y = 0.44 
/ = 0.45 

y = 0.33 
/ = 0.35 

y = 0.25 
/ = 0.27 

B51 

B52 

B53 

B54 

B55 

y = 0.87 
y' = 0.74 

y = 0, 63 
y' = 0.58 

y = 0.49 
/ = 0.47 

y = 0.39 
y' = 0.39 

y = 0.33 
/ = 0.34 

values of y(n0,I) and y'(n0,I) corresponding to bridges 
different from the ones analysed in this study can be 
computed by linear interpolation. 

4.3. Approximate formulas for the intensities of reduction 

A final improvement is presented in this section that 
simplifies the computat ion of the impact coefficient and 
maximum acceleration for any bridge of 10 m of span 
length and damping ratio ( — 1%. 

If the values of the intensities of reduction shown in 
Table 2 are represented as a function of the moment of 
inertia using logarithmic scales, Figs. 15 and 16 are 
obtained. As can be seen, the values of y and y' lie on 
nearly straight lines, each of them corresponding to a 
different value of the fundamental frequency. 
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Fig. 16. Intensities of reduction for the maximum accelerations 

( / ) • 

This suggests that the intensities can be approxi
mated by expressions such as 

y(no,I)=K(n0)I
N 

y'(no,I)=K'(n0)I» 

(12a) 

(12b) 

The exponents iV — —0.93 and N' — —0.74 produce the 
best fitting for the straight lines in Figs. 15 and 16. In 
addition, if the values of the coefficients K(n0) and 
K'(n0) are investigated, they are found to be almost 
linearly dependent on the value of the frequency. 
Straightforward calculations allow expressing them as 

o.oi 0.1 /(m4) 
K(n0) = 0.0143 + 0.00498«0 (13a) 

Fig. 15. Intensities of reduction for the impact coefficients (y). K'(n0) = 0.0715 + 0.00353«0 (13b) 



If these values are substituted into Eqs. (12a) and (12b), 
two approximate expressions for the intensities of re
duction are obtained: 

y(n0,I) = (0.0143 + 0.00498%)/" 

y'(n0,I) = (0.0715 + 0.00353 • n0)r 

(14a) 

(14b) 

where the natural frequency is to be expressed in Hz, 
and the moment of inertia in m4. 

Using Eqs. (14a) and (14b) in Eqs. (9) and (11) pro
duces approximate values of the impact coefficients and 
maximum accelerations that are in very good agreement 
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Fig. 17. Impact coefficients for bridge B13. 

12 14 

with those obtained from the train-bridge interaction 
model. The comparison is highly satisfactory for all the 
25 bridges analysed in the parametric study: in only four 
of them the peak values are underestimated by <10%, 
while in the rest the approximated values are slightly 
greater than the exact ones, or in many cases they are 
almost identical. 

Figs. 17-22 show the comparison between the ap
proximated values and the ones obtained from the in
teraction model. The impact coefficients and maximum 
accelerations computed with the moving loads model are 
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Fig. 19. Impact coefficients for bridge B31. 
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Fig. 22. Maximum accelerations for bridge B52. 

also included in order to give an idea of the degree of 
precision of the approximation proposed in this section. 

5. Conclusions 

The effects of the load distribution through the 
sleepers and ballast layer have been analysed. It has been 
shown that the maximum accelerations of the deck are 
not significantly affected by this factor except for the 
shorter values of the wavelength (1 — V/n0 < 4-5 m). 
The calculations have been performed considering 

that each axle load is distributed uniformly over a length 
of 1 m. 

The train-bridge interaction causes reductions of 
considerable importance in the maximum displacements 
and accelerations of short bridges. The effects of the 
ICE-2 train on 25 simply supported bridges of 10 m of 
span length have been investigated, and it has been 
found that the reductions obtained in bridges with dif
ferent natural frequency and moment of inertia are 
nearly proportional to each other. The coefficients of 
proportionality, called intensities of reduction, have been 
computed for displacements and accelerations. 

The intensities of reduction can be very accurately 
approximated using numerical expressions. The com
parison of the impact coefficients and maximum accel
erations obtained from the interaction model with those 
obtained from the approximated method proposed 
herein is highly satisfactory. Nevertheless, further study 
is required in order to prove the validity of the proce
dure for different trains and span lengths; investigation 
on this subject is being carried out at the moment and 
the results will be presented in future publications. 
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