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Introduction 

The numerical analysis of potential and elasticity problems 
has received considerable attention in recent years, due 
mainly to the wide availability of computers. Among the 
methods employed, the Boundary Integral Equation 
Method (BIEM) has become increasingly popular of late. 
As is well known1 the main advantage of BIEM is the 
dimensional reduction of the continuum to be discretized 
because the unknowns are located at the boundary. On the 
other hand, the resultant matrices are full and nonsymmetric 
and this requires careful programming. Several authors1-3 

have presented the details of the method and a short 
account is given in the following section. 

In this paper, we present the possibility of treating the 
singularities that arise when there is a sudden change in 
boundary conditions. 

The natural variable (fluxes, stresses) presents an infinite 
value which cannot be modelled by the computer and the 
results near the singularity are contaminated by that 
inaccuracy. This phenomenon is well known in the Finite 
Element Method and, of course, the first idea with respect 
to its elimination is mesh refinement near the singularity. 
Some results of this procedure when translated to the BIEM 
technique have been discussed elsewhere.4,9 

In the discussion that follows, we will show what 
happens when using one of the following alternatives: 
first the extrapolation of the results obtained near the 
singularity as is usually done when trying to calculate 
intensity factors in fracture mechanics. Second we tried 
to increase the accuracy using a higher order of interpola­
tion, and finally we have developed 'singular elements' in 

which the factor responsible for the singularity has been 
included in the shape functions. 

Another alternative using mixed elements has been 
presented elsewhere.5 

Boundary Integral Equation Methods (BIEM) 

Given the problem: 

Au=f (1) 

where A is a self-adjoint operator, u the field variable and 
/ t he forcing function, it is possible to combine it with 
another one: 

A<p=g (2) 

using a reciprocity relationship of the Green type, obtaining: 

(«, A<p)n = (Eu, N(t>)da - (£-0, Nu)bn + (Au, 0)„ (3) 

where the brackets indicate a cross product, Q. is the domain 
with boundary 3£2, Af represents 'natural' and E 'essential' 
conditions. When/= 0 (Laplace equation or elasticity with­
out body forces): 

(". M)a = (Eu, W)m ~ (E<t>, Nu)bn (4) 

which only involves a domain-extended computation. 
If 0 is chosen as a fundamental solution: 

A<t> = S(x,) (5) 

we can write: 

H(Xi) + (E<}>, Nu)sn = (Eu, N<t>)m (6) 

as a representational formula for u. In 2-D potential theory 
this means: 
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with v' = v and £" = £• in plane deformation conditions 
v' = i»/(l + v), E' = E(l — i /2) in plane stress conditions. 

In order to reduce the equation to values defined at the 
boundary, a limiting process leads to : 

C(xi) u(xt) + (E4>, NU)M = (Eu, vV0)3n (11) 

where C depends on the local boundary geometry. 
The discretization of the previous equations as described 

elsewhere1-3 allows the establishment of a system of linear 
equations whose solution produces the desired results. 

For instance, in potential theory and with an assumed 
linear evolution in £/as well as in bu/bn along the boundary 
(11), can be written as: 
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where N stands for the number of elements into which the 
boundary has been discretized and Ni,N2 are linear 
interpolation (shape) functions. 

Nature o f the difficulty 

Motz6 showed that near a corner of the interior angle a, 
in a boundary where a continuous harmonic function u 
is defined, it is possible to represent it by a series: 

™ • , inO ~ • , iird 
u = u0 + £ atr"!* sin — + £ bti"l* cos — 

1=1 a i=i « 

( 0 < 6 < a ) (13) 

Where r, 6 are the local polar coordinates. When a>ir, the 
derivatives can be infinite when r -* 0. 

In elasticity, the phenomenon is the same, and the 
stressed Oy can be factorized as: 

otj = Go* (14) 

where G is a function containing the singularity and (re­
presents smooth behaviour. 

As is seen, the nature of the singularity in both cases is 
similar. Different solutions have been presented to treat 
them. Jaswon and Symm7 have introduced an auxiliary 
harmonic function; others8 use asymptotic analysis to 
extrapolate experimental results; in other cases the mesh 
refinement is used, etc. 

The following examples show some results when the 
singularity is of the type: 
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which corresponds to a situation like that of Figure la. 
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which derivative tends to infinity when r tends to zero. 
If a node of the discretization is situated on the singu­

larity, the evolution of q near it resembles the curve shown 
in Figure lb. 

The extrapolationprocedure consists of taking the 
smooth function q\/ras defined by values far enough from 
the singularity and their posterior identification with (16) 
in order to obtain the values of the coefficients in (16). 

As an example of this method we present the problem 
(Figure 3) of the seepage under a sheet-pile, where the 
singularity appears at point A. The problem has been 
solved by superimposing a symmetric and a skew symmetric 
situation. Obviously the solution to the first one is a 
constant function; the skew symmetric case presents the 
factor r'1'2 around point A, being zero and the other 
boundary conditions as shown in the figure. 

Figure 4 depicts the discretization used in which a 
progressive mesh refinement near point A can be observed. 
The results are presented in Figure 5, where we have also 
plotted the solution obtained with the program BETIS;1 the 
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Figure 4 Sheet-pile, 33 elements 
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Figure 5 Sheet-pile, 33 elements. ( ) analytical solution; 
(+), asymptotic solution; (o), direct BIEM solution with BETIS 
program' 
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Figure 6 Sheet-pile, 33 elements. ( 
(+), solution with BETIS program1 

curve corresponding to the exact solution for the full half-
space is also plotted. 

The intermediate results of the curve smoothed with y/r 
are shown in Figure 6. Figure 7 gives a table with the 
numerical values. 

The second example of the same procedure is a square 
plate with a crack, supporting a traction of 1000 kg/cm2 

(Figure 8). Due to the symmetry, it is only necessary to 
analyse a quarter of the plate under the conditions shown 
in Figure 8. The discretization can be seen in Figure 9, and 
in Figure 11 we have plotted the direct solution obrained 
using program SERBA2,3 with a full line as well as that 
obtained extrapolating the original function smoothed by 
\Jr. This regularized function has been represented in 
Figure 10, where it can be seen that the intensification 
factor is Fc = 3587.09, which is only 0.91% in error with 
respect to the true solution. 

Higher order interpolations 

The variation of the functions along the elements has been 
assumed as linear, that is, the value on an element can be 
written as: 



Figure 7 Sheet-pile, 33 elements, comparative flux volume 

Node F Asymptotic Error F Analytical Error F BETIS 

16 
15 
14 
13 
12 
11 
10 

9 

14.9000 
14.7000 
14.4500 
13.9500 
13.2000 
13.0000 
10.4000 

7.8000 

0.1000 
0.3000 
0.5500 
1.0500 
1.8000 
2.0000 
4.6000 
7.2000 

-127.9580 
-72.5464 
-52.3985 
-36.3260 
-26.1192 
-24.4054 
-13.7464 
-10.1580 

P = 1000 k/cm2 

0.0006 
0.0027 
0.0055 
0.0117 
0.0213 
0.0238 
0.0401 
0.0097 

-128 .0369 
-72 .7393 
-52 .6863 
-36 .7545 
-26 .6880 
-25 .0000 
-14 .3208 
-10 .2576 

0.6196 
-0.0671 

0.0598 
0.0288 
0.0190 
0.0430 
0.0321 

-0 .0195 

-48 .7099 
-77 .6166 
-49 .5344 
-35 .6948 
-26 .1819 
-23 .9252 
-13 .8606 
-10 .4574 
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The use of higher order functions allows a better inter­
polation near the singular point. 

Using, for instance, the functions of Figure 12 and with 
the discretization shown in Figure 13, the results for the 
sheet-pile problem are as seen in Figure 14. There, the full 
line represents the theoretical solution; the direct solution 
was obtained again with the program BETIS and the crosses 
represent the results obtained with a program called BESIN 
which includes those shape functions. Although the prob­
lems are obviously similar to those of the previous section 
of this paper, it can be seen (Figure 14) that the results 
have improved going from 72% of the BETIS to 28% at the 
worst point. 
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Figure 13 Sheet-pile, 50 elements ( ), analytical solution; 
(o), direct BIEM solution with BETIS program1; (+), special 
function shapes (BESIN program) 

This experiment encouraged us to implement singular 
elements, as can be seen in the following section. 

Singular elements 

As was said before, there exists the possibility of factorizing 
the natural variable in two parts: one with a smooth varia­
tion and the other responsible for the infinite values near 
the singularity. If the last one is incorporated into the shape 
functions, the first will take on a finite value (the intensifi­
cation factor) which can be perfectly managed by the 
computer. The idea then is nothing more than to interpolate 
qy/rin place of q near the singularity (Figure 16). Maintain­
ing, for instance, the linear interpolation for q' = q\/r, it is 
possible to write: 

q'Dk = (NhN2)\ , 
Wfc+i 

or 

but 
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and then: 
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Figure 15 Sheet-pile, 50 elements 

which is the new interpolation rule for the singular 
element by the singularity. 

It is clear that this idea can be used with every kind of 
interpolation and every order of the singularity. For 
instance, in the parabolic case: 

«Ok=»?J^ *$J^ "J/VP-
Qk 

Qk+\ 

Vq'k 

(21) 

where N* are the current second degree shape functions 
with the midsize node. 

According to Figure 16, the integrals to be evaluated are: 

* - J £ h (llripcy))^ 

Dk 

B2= f — In (llr(x,y))N2 — dsk (22) 
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There are two cases that can appear depending on the 
relative position (inside or outside) of the singular element 
and the point from which the integration is done. The most 
important singularities are collected in the Appendix. 

Taking the program BETIS1 as a basis, we have produced 
a new one, BENUM, which collects the singular elements. 
In Figures 16 and 17, some of the results comparing both 
solutions with the analytical one are given. As can be seen, 
the results are encouraging. 

Figure 14 Sheet-pile, 50 elements, comparative flux value 

Node 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 

Y 

14.9000 
14.8000 
14.7000 
14.6000 
14.5000 
14.4000 
14.3000 
14.2000 
14.1000 
14.0000 
13.9000 

R 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
1.0000 
1.1000 

F BESIN 

- 9 1 . 4 9 5 6 
-110 .4963 

- 7 3 . 8 8 6 7 
- 6 4 . 5 5 6 2 
- 5 6 . 5 8 9 6 
- 5 1 . 0 8 5 2 
- 4 6 . 7 9 1 8 
- 4 3 . 3 4 9 9 
- 4 0 . 5 0 1 3 
- 3 8 . 0 9 1 3 
- 3 6 . 0 1 5 3 

Error 

0.2854 
- 0 . 2 3 0 4 
- 0 . 0 1 5 8 
- 0 . 0 3 2 9 
- 0 . 0 2 0 2 
- 0 . 0 1 6 6 
- 0 . 0 1 3 3 
- 0 . 0 1 1 1 
- 0 . 0 0 9 3 
- 0 . 0 0 7 8 
- 0 . 0 0 6 5 

F Analyt. 

- 1 2 8 . 0 3 6 9 
- 8 9 . 8 0 2 7 
-72 .7393 
- 6 2 . 5 0 0 0 
- 5 5 . 4 7 0 0 
- 5 0 . 2 5 1 9 
- 4 6 . 1 7 5 7 
- 4 2 . 8 7 4 6 
- 4 0 . 1 2 8 6 
- 3 7 . 7 9 6 4 
- 3 5 . 7 8 2 8 

Error 

0.7201 
- 0 . 0 3 4 6 

0.0691 
0.0302 
0.0264 
0.0208 
0.0175 
0.01 51 
0.0134 
0.0122 

- 0 . 0 4 3 4 

F BETIS 

- 3 5 . 8 3 9 4 
-92 .9101 
- 6 7 . 7 1 2 1 
- 6 0 . 6 1 2 1 
- 5 4 . 0 0 4 3 
- 4 9 . 2 0 9 0 
- 4 5 . 3 6 6 6 
- 4 2 . 2 2 5 5 
- 3 9 . 5 8 9 7 
- 3 7 . 3 3 6 6 
- 3 7 . 3 3 6 6 
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Figure 16 Sheet-pile, 50 elements. ( ), analytical solution; 
(o), direct BIEM solution with BETIS program' 

Conclusions 

The possibility of modelling the singular behaviour of the 
natural variables in plane problems by using special shape 
interpolation functions has been analysed. 

The procedure can be implemented in elasticity as well 
as in potential theory and in every desired degree of 
accuracy with respect to the smooth part of the curve. 
Here we have presented the computations related to poten­
tial theory with a linear -singular interpolation; a similar 
approach can be studied,7 in which the singularity has been 
incorporated into a constant element discretization for a 
plane elastodynamic steady-state case. 

Appendix 

The integrations which must be performed for the most 
representative cases in the section on singular elements are 
detailed below. 

The singularity and the point where the integral 
equations is applied are on the same element 

Two cases can be distinguished: 

(1) The singularity and the integration point do not 
coincide {Figure A1) 

The expressions to be integrated and the results that can be 
obtained are: 

Bi= J . V ( i n — )Ldr) 
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It should be noted that when making the change 1 — TJ = t1, 
we first check that this change of variable is correct. 
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= 4/3 

Therefore: 

B2 = - y/Z [i In L - 0.370132] 

(2) The singularity and the integration point coincide 
(Figure A2) 
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Figure 17 Sheet-pile, 50 elements, comparative flux value 

Node F B E N U M Error F Analyt. Error F BETIS 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 

14.9000 
14.8000 
14.7000 
14.6000 
14.5000 
14.4000 
14.3000 
14.2000 
14.1000 
14.0000 
13.9000 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
1.0000 
1.1000 

-135 .6670 
-87 .7211 
- 7 2 . 8 3 5 5 
- 6 2 . 3 8 5 6 
- 5 5 . 4 1 0 2 
- 5 0 . 2 5 1 9 
- 4 6 . 1 0 9 0 
- 4 2 . 8 0 3 6 
- 4 0 . 0 5 2 3 
- 3 7 . 7 9 6 4 
- 3 5 . 6 9 2 7 

- 0 . 0 5 9 6 
0.0232 

- 0 . 0 0 1 3 
0.0018 
0.0011 

- 0 . 0 0 0 0 
0.0014 
0.0017 
0.0019 
0.0000 
0.0025 

- 1 2 8 . 0 3 6 9 
- 8 9 . 8 0 2 7 
- 7 2 . 7 3 9 3 
- 6 2 . 5 0 0 0 
- 5 5 . 4 7 0 0 
- 5 0 . 2 5 1 9 
- 4 6 . 1 7 5 7 
- 4 2 . 8 7 4 6 
-40 .1286 
- 3 7 . 7 9 6 4 
- 3 5 . 7 8 2 8 

0.7201 
- 0 . 0 3 4 6 

0.0691 
0.0302 
0.0264 
1.9792 
0.0175 
0.0151 
0.0134 
0.0122 
0.0113 

- 3 5 . 8 3 9 4 
-92 .9101 
- 6 7 . 7 1 2 1 
- 6 0 . 6 1 2 1 
-54 .0043 

49.2090 
-45 .3666 
- 4 2 . 2 2 5 5 
-39 .5897 
- 3 7 . 3 3 6 6 
- 3 5 . 3 7 9 6 



This integral can be expressed as: 
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We can fine a primitive function of: 
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integrating by parts: 
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Vv 
In 77 dr? 

= (Ir?*2 - 2r?I/2) ln(Z,r?) - (|r?3'2 - 4r?1/2) 

Consdering that: 

lim (ln/,T?)[|r?3/2-2T?1/2] = 0 
r)-*0 

which can easily be proved, as it can be written as °°/°° and 
therefore L'Hopital can be applied. 

Therefore: 

B^-y/LQkiL-%) 

Calculation of B2: 

1 
T? 1 

•Ldrj 
s/Lr\ Lrt 

0 

1 
C v 1 

B2=\ —=ln—, 
J \fLr\ IT? 

Proceeding in an analogous way to the calculation of B u we 
obtain: 

52 = -v£(f lnZ,- i ) 

The singularity and the integration point are not on 
the same element 

(1) The singularity lies to the left of the integration point. 

r l \L 

- 1 

ngulanty 

/• 1 1 -$ \L 

% 2 rl 
-ijl> 

r~ 1 

where: 

r=sjn- /,•£>(!+ £) ta n 0,+ L 
1 + S 

and therefore : 

dr Ls/r2-D2 

d£ 2r 

Integrating by parts: 

_ _ 1 

- 1 

-/a-
i_r>2 

] 
- 1 

#1 can be computed numerically through the following 
expression: 
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Calculation of B2~-

1 

n 

- 1 

V 2 J VT1 7! 2 \ r/2 
- 1 

integrating by parts: 
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Figure A3 Integration point 
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Computing Z?2 numerically: 

5 2 = f (l-*)1 /2G,-£(l-$)1 /2(l + »ffi 
< = 1 1 = 1 

(2) The singularity lies to the right of the integration 
point (Figure A4) 

r 1 \L 
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J y/r r 2 
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2 J N/T+1 2 r 
- l 

Integrating by parts and computing numerically: 
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Calculation o f 5 2 : 
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Computing this numerically: 
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