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This paper presents the application of BIE techniques to elastoplastic 
three-dimensional problems. Along with the general procedures the needed 
¡ntegrations are described ¡n detail and so is the flow chart of the written 
program. 

Introduction 

It is well known that the Boundary Integral Equation 
Method (BIEM) can be based on a reciprocal relationship 
between two elastic states. In our case, we shall take an 
auxiliary one defined by the fields (o,*, Ef¡, uf) and the 
elastic part of the increment of deformation components 
in an elastoplastic system {b¡¡, f;,«,-). 
Thatis: 

or: 

Jaíéf/dK=Jeíá//dF 
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Taking the (*) system as that corresponding to the Kelvin 
solution, that is: 

Fi* = 6(x-x)el 

T? = T,¡e, 

uf = u¡te¡ 

aik ~ ^jikej 

we obtain: 

ú¡(x)+ I TjiúiáS 

dD 

= JF,U¡, dV + I tilín áS + J 2//ftéffc dV (2) 
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which is a representation formula for the incremental 
displacement at an interior pointx. 

By the usual limiting procedure, equation (2) can be 
transformed in: 

c//"/(*) + J Tj¡ú¡ dS 

&,*w -ik 

= I Uji'tidS + i iijiFidV + j 2 / /fc xGdD (3) 

dD 

The first domain integral on the right hand side can be 
expressed as a boundary one for several useful cases (self-
weight, centrifugal forces, thermoelasticity, etc.) in the 
form: 
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with: 

F=V<p 

k0 = V>4> 
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Inside the body under study: 
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where: 

tt..= ti*e + IPP 

Assuming: 

«ÉS* = 0 



we obtain the following material law: 

2Gv 
Oij = p - ^ S ' V < » . + G("U + "Áf) ~ 2Geü ( 6 ) 

After some algebra, the introduction of (2) inside (6) pro­
duces: 
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In tliis expression, it has been necessary to use the principal 
valué of the plástic singular integral developed by Bui and 
Mikhlin/thatis: 
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The discretization of the above written equations can 
easily be obtained when we assume a constant valué of the 
functions on boundary elements as well as inside cells in 
which the whole domain is divided. 
The final results are: 
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Figure 1 Integration f rom points contained ¡n cells where integral 
¡s belng carried. a, boundary equation (3) ABCD = ABOD U ABOC 
U ACOD. b, ¡nternal stress, equation (7) ABCD = OABC U OBCD U 
OACD U OADB 

Plañe r ( a , (5) 

( 7 ) Figure 2 Tetrahaedron, D¡. / , = fo¡^kij d v 

where there is an obvious correspondence among the capitals 
ÍT, 51, «2, D, Jf and the integráis with kernels T, U, 2, D, S 
and where N.EIe. and N.Cel. means 'number of elements' 
and 'number of cells', respectively and: 

N.EIe. 

L = \ 

N.EIe. 

L = l 

*• ' represent the discretization of the (4) expression. 

Computation of the coefficients 

None of the boundary integráis presents any computational 
difficulty and the procedures used in elastic Solutions can 
be utilized without difficulty. This is why we shall concén­
trate on the analysis of the volume integráis corresponding 
to plástic deformation. To compute those coefficients the 
domain D is divided into tetrahaedrical cells in which the 
valué of CP is assumed to be constant. 

There are several cases, among which we shall distinguish 
two groups: when the integration is carried from points 
contained in a cell or when it refers to a point far from the 
cell. 

The first category can be reduced to a simpler problem 
of whether the point is on the cell boundary or inside it 
{Figure 1). Taking the point as a vértex the cell can be sub-
divided into three {Figure la) or four {Figure Ib) sub-
domains in which the common feature is that the integral 
has to be carried from a vértex of a tetrahaedron. 

The second category is generally computed by numerical 
methods, while the first is done by semianalytical methods. 

Let us discuss this later problem. The integration from 
boundary points is: 

I^jz^dV (10) 

Di 

where: 

2fcf/ ~~ 2 fkij 

3C3 
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so that, integrating in D¡ {Figure 2), 

(11) 
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= ~C1 f I [ /W /cos |3 dad/3 (12) 

where r (a , /3) represents the equation of the face opposite 
the vértex from which the integration is done. 

Changing to a system of natural coordinates (Figure 3) 
contained in that face: 

A = surface of 123 

P(Xp;yp;Zp) 

x 

Figure 3 

be utilized without difficulty. This is why we shall concén­
trate on the analysis of the volume integráis correspondong 
to plástic deformation. To compute these coefficients the 
domain D is divided into tetrahaedrical cells in which the 
valué of C is assumed to be constant. 

There are several cases, among which we shall distinguish 
two groups: when the integration is carried from points 
contained in a cell or when it refers to a point far from the 
cell. 

The first category can be reduced to a simpler problem 
of whether the point is on the cell boundary or inside it 
we have: 

dad/3 = 
2/1 

r2 eos /3 

and so: 
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where W¡ are the appropriate weights for a numerical 
Hammer quadrature. 

The other case is the integral needed for the equation (7) 
of internal points. In this case: 

-i I2=\ ZmdV 
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where: 
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Summing up the contributions of the four tetraedra 
confluenting in tliis vértex, the second integral will be 
defined inside a sphere of radius £. 
As: 

(15) 

r,ir,f c o s ^ ^ a ^ = ^Ü ~ W 

•a 0 

we obtain: 

f (g cos/3 da d/3 = 0 

and the integral will be: 

I2 = C f flnrg cos/3 do 
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(16) 

(17) 

a (3 

which is solved numerically in the same way as It. 
In the previously called 'second category', that is, when 

the integration point is far from the cell, the computation 
is done numerically from the beginning. That is: 

/,' = f 2 W / dV~- C, j-AijGVd^ dfc d?3 (18) 
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and: 
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I'i = j ^ijkIdV-cj~g6Vd^d^dh (19) 
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Iterative procedure 

The establishment of equations (9) for as many points as 
elements on the boundary leads to a system: 

H.ú = G.¡ + Í + D<£p (20) 

and for internal cells: 

ó = G'i-II'ii+Í' + (D' + C')ep (21) 

Reordering (20) and (21) according to proper data and 
unknowns of the problem will produce: 



Ax=F+D£p 

ó=Áx+F" +D*-£p 

(22) 

(23) 

H' is the tangent to the curve equivalent stress versus 
equivalent strain. 

or: 
x=A-1F + A-íD€p 

Ó^A'A^F + A'A^DVP+F' +D*€p 

In compact form: 

x=M + k£p 

ó = Ñ + B£p 

As (26) represent incremental valúes, it is possible to 
write, for a step/: 

0 0 0 

o 

?/ = I ó* + á/ = I A \ - + ¿ I eg + A7,-+Bef 
0 0 0 

Program characteristics 
(24) 

The numerical process, presented above, has been developed 
(25) in a FORTRAN V program and implemented in a UNIVAC 

1108. The mean properties of this program are: 
(1) It uses a constant interpolation function for the 
displacements, stresses and plástic strain fields. 

(26) (2) I*u s e s ^ a t triangular elements in order to discretize the 
boundary of the domain. 
(3) It introduces tetraedral cells with flat faces to discretize 
the plástic part of the domain. 
(4) It considers homogeneous and isotropic materials only. 
(5) It is possible to take volume loads into account. 
(6) It is possible to take concentrated loads such as those 
corresponding to prestressing cables into account. 
(7) Materials have been considered for which the incom-
pressibility of plástic strains (metáis, clays) is accepted. 
(8) The strain-hardening model that has been used is the 
isotropic one. 

/ - i 

• \¡N+B £ e£ + e? (27) The main parts of the flow chart of the programe are 
described below: 

or: 
x¡ = XjA/ + *(<£" + A£p) o¡ = hN+B(£p + Afi") 

(28) 

where M and N are elastic boundary and domain solutions 
and X/ the corresponding load factor. The iterative proce-
dure is clearly shown in the flow chart contained in the 
next paragraph, where : 

oe is the equivalent or effective stress (Von Mises criterion). 

ae = - \{ox - oy)1 + (ox - azf + (ay - azf 

Input data 
Print data 

+ 6{Txy + TX2Z + ry2z)] 

a?13" is the máximum valué of ae in the whole domain: 

F'-=E?+ AEP-

e'ij ~ E'ij ~ ~E'kkh¡ 

Eet is the modified equivalent deformation: 

l • • 
et ei¡eij 

A£„ = ?-± 

AEp.-^e'.-

K 
Computation of integral coefficients for elastic case 

Generation of equation system for elastic case 
\ 

Boundary conditions 
I 

Computation of elastic solution 
X = M 

i 
Computation oí A, I,D and K matrices 

I Computation oM'.A'and U matrices 
i 

Vector displacements in internal cells 
for elastic solution 

Print elastic results 
i 

Computation of matrix D and 
B=D*+A'K 

i 
Read o0, WandM 

l 
Iterative process 

Computation of plástic strains 
in internal cells 

Print results u,t, a 
i 

End 

The iterative process is described below with more detail. 
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Appendix 

Tensors 

Here we present the Kelvin solution and the associated 
tensors, which have been used in previous equations. 
If we define: 

x: Point where the concentrated load is applied 

y: Field point 

r: \x-y\ 

we willhave: 

Conclusions 

This paper presents the application of B.I.E.M. to tri­
dimensional plasticity and its implementation on the 
computer. This theme is being developed at present for more 
complicated cases at the Polytechnical University in Madrid 
and the University of Southampton, by the present authors 
and other members of these groups. 
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Notations 
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x 

E^Ef.+EZ 

% E?i 

'/(*) 
Xk 

°ij(x) 
«// 
(*) = A 
/ , / 

domain 
boundary of domain 
interior point JC 
boundary point y 
total strain 
elastic strain 
plástic strain 
component /" of displacement of point x 
component i of stress vector in point x 
volume loads 
stress tensor in an internal point 
Kronecker's delta 
increment of a variable 
derivative of function to component/ 

Figure A1 

xf(y) = Ft* = A(x)e, 

tf(y) = T,l{x,y)ei 

uf(y) = u¡¡(x,y)ei 

oUy) = aiik(x,y)ej 

where: 
1 
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1 
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dr 
Tji = - S-nG(l-v)r2 dn 

+ (l-2v)(rtinJ-n¡ri¡)] 

— ((l-2v)S,í + 3r,irj) 
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