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This paper presents the application of BIE techniques to elastoplastic
three-dimensional problems. Along with the general procedures the needed
integrations are described in detail and so is the flow chart of the written

program,

Introduction

It is well known that the Boundary Integral Equation
Method (BIEM) can be based on a reciprocal relationship
between two elastic states. In our case, we shall take an
auxiliary one defined by the fields (o}, Ef}, 1) and the
elastic part of the increment of deformation components
in an elastoplastic system (G55, §, :)-
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Taking the (¥*) system as that corresponding to the Kelvin
solution, that is:
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which is a representation formula for the incremental
displacement at an interior point x.

By the usual limiting procedure, equation (2) can be
transformed in:
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The first domain integral on the right hand side can be
expressed as a boundary one for several useful cases (self-
weight, centrifugal forces, thermoelasticity, etc.) in the
form:
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Inside the body under study:
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we obtain the following material law:
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After some algebra, the introduction of (2) inside (6) pro-
duces:
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In this expression, it has been necessary to use the principal
value of the plastic singular integral developed by Bui and
Mikhlin,! that is:
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The discretization of the above written equations can
easily be obtained when we assume a constant value of the
functions on boundary elements as well as inside cells in
which the whole domain is divided.

The final results are:
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Figure 1 Integration from points contained in cells where integral
is being carried. a, boundary equation (3) ABCD = ABOD U ABOC
U ACOD. b, internal stress, equation (7) ABCD = OABC U OBCD U

OACD U OADB

Plane r (a, B)

Figure 2 Tetrahaedron, Dj. I, = [p;ZkijdV

where there is an obvious correspondence among the capitals
T, W,¢,ND, ¥ and the integrals with kernels T, U, £, D, §
and where N.Ele. and N.Cel. means ‘number of elements’
and ‘number of cells’, respectively and:
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Y Ip Y Iip
L=1 L=1

represent the discretization of the (4) expression.

Computation of the coefficients

None of the boundary integrals presents any computational
difficulty and the procedures used in elastic solutions can
be utilized without difficulty. This is why we shall concen-
trate on the analysis of the volume integrals corresponding
to plastic deformation. To compute those coefficienis the
domain D is divided into tetrahaedrical cells in which the
value of €7 is assumed to be constant.

There are several cases, among which we shall distinguish
two groups: when the integration is carried from points
contained in a cell or when it refers to a point far from the
cell,

The first category can be reduced to a simpler problem
of whether the point is on the cell boundary or inside it
(Figure 1). Taking the point as a vertex the cell can be sub-
divided into three (Figure 1a) or four (Figure 1b) sub-
domains in which the common feature is that the integral
has to be carried from a vertex of a tetrahaedron.

The second category is generally computed by numerical
methods, while the first is done by semianalytical methods.

Let us discuss this later problem. The integration from
boundary points is:
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where r(«, f§) represents the equation of the face opposite
the vertex from which the integration is done.

Changing to a system of natural coordinates (Figure 3)
contained in that face:
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be utilized without difficulty. This is why we shall concen-
trate on the analysis of the volume integrals correspondong
to plastic deformation. To compute these coefficients the
domain D is divided into tetrahaedrical cells in which the
value of €7 is assumed to be constant.

There are several cases, among which we shall distinguish
two groups: when the integration is carried from points
contained in a cell or when it refers to a point far from the
cell.

The first category can be reduced to a simpler problem
of whether the point is on the cell boundary or inside it
we have:
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where I¥; are the appropriate weights for a numerical
Hammer quadrature.

The other case is the integral needed for the equation (7)
of internal points. In this case:
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Summing up the contributions of the four tetraedra
confluenting in this vertex, the second integral will be
defined inside a sphere of radius £.

As
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and the integral will be:
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which is solved numerically in the same way as /.

In the previously called ‘second category’, that is, when
the integration point is far from the cell, the computation
is done numerically from the beginning. That is:
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Iterative procedure

The establishment of equations (9) for as many points as
elements on the boundary leads to a system:

H-i=G.f+I+D¢eP (20)
and for internal cells:
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Reordering (20) and (21) according to proper data and
unknowns of the problem will produce:
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In compact form:
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As (26) represent incremental values, it is possible to
write, for a step I:
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or:
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where M and N are elastic boundary and domain solutions
and }; the corresponding load factor. The iterative proce-

dure is clearly shown in the flow chart contained in the
next paragraph, where:
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H'is the tangent to the curve equivalent stress versus
equivalent strain.

Program characteristics

The numerical process, presented above, has been developed
in a FORTRAN V program and implemented in a UNIVAC
1108. The mean properties of this program are:

(1) Tt uses a constant interpolation function for the
displacements, stresses and plastic strain fields.

(2) Tt uses flat triangular elements in order to discretize the
boundary of the domain.

(3) It introduces tetraedral cells with flat faces to discretize
the plastic part of the domain.

(4) It considers homogeneous and isotropic materials only.
(5) It is possible to take volume loads into account.

(6) 1t is possible to take concentrated loads such as those
corresponding to prestressing cables into account.

(7) Materials have been considered for which the incom-
pressibility of plastic strains (metals, clays) is accepted.

(8) The strain-hardening model that has been used is the
isotropic one.

The main parts of the flow chart of the programe are
described below:

Input data
Print data

4
Computation of integral coefficients for elastic case
Generation of equation system for elastic case
)
Boundary conditions
i
Computation of elastic solution
X=M
{
Computation of 4, 1, D and K matrices
4
Computation of A', N and U matrices
}
Vector displacements in internal cells
for elastic solution

d

Print elastic results
{

Computation of matrix D and
B=D* +AK

1

Read oy, IV and M
)

Iterative process
Computation of plastic strains
in internal cells
\

Print resultsu, ¢, ¢

4

End

The iterative process is described below with more detail.



Iterative process

Initialization of plastic strains

P.:0 and incrementals AP -0
17 /]
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For each T
cell
Computes 7o and H*

AEij =0
®—
-
Computation of
eij. Eer . BEp , DEf;

£ .

Comparison between

: #
N <chst value of AE,"}- and previous one

Conclusions

T‘his paper presents the application of B.I.LE.M. to tri-
dimensional plasticity and its implementation on the
computer. This theme is being developed at present for more
complicated cases at the Polytechnical University in Madrid

and t

he University of Southampton, by the present authors

and other members of these groups.

Notations
domain
b boundary of domain
x interior point x
y boundary point y
Ey=E;+EE  total strain
Ef elastic strain
Ef plastic strain
u(x) component i of displacement of point x
1;(x) component [ of stress vector in point x
Xk volume loads
Uij(x) stress tensor in an internal point
&;j Kronecker’s delta
(=4 increment of a variable
fii derivative of function to component j
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Appendix

Tensors

Here we present the Kelvin solution and the associated
tensors, which have been used in previous equations.
If we define:

x: Point where the concentrated load is applied
¥ Field point
r:[x—y|

we will have:

A (x)
ey

Figure A1
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