
The Ciao Preprocessor
A Program Analysis, Verification, Debugging, and Optimization Tool

REFERENCE MANUAL
The Ciao Documentation Series

http://ciao-lang.org/

Generated/Printed on: 27 March 2013
Technical Report CLIP 1/06 (first version 8/95).

Edited by:
Francisco Bueno
Manuel Hermenegildo
Pedro Lopez
German Puebla

The Computational logic, Languages,
Implementation, and Parallelism (CLIP) Lab
http://www.cliplab.org/

webmasterOclip.dia.fi.upm.es

School of CS, T. U. of Madrid (UPM)
IMDEA Software Institute

http://ciao-lang.org/
http://www.cliplab.org/
http://dia.fi

Copyright © 1996-2011 Francisco Bueno, Manuel Hermenegildo, Pedro Lopez, and German
Puebla.
This document may be freely read, stored, reproduced, disseminated, translated or quoted by
any means and on any medium provided the following conditions are met:

1. Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

2. No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

3. Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

4. Translations, comments and other additions or modifications must be dated and their au­
thor^) must be identifiable (possibly via an alias).

5. This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

6. Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

7. In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

8. Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

9. Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re­
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con­
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

Table of Contents

Summary 1

1 Introduction 3
1.1 How to use this manual 3
1.2 Note 3
1.3 Installation (ciaopp) 3
1.4 Software Requirements (ciaode) 4
1.5 Obtaining the Sources (ciaode) 5
1.6 Quick Installation from Source (ciaode) 5
1.7 Custom Installations (ciaode) 5
1.8 Getting started 6
1.9 CiaoPP interfaces 7

PART I - Using CiaoPP 9

2 The CiaoPP user menu interface 11
2.1 Usage and interface (auto_interf ace) 12
2.2 Documentation on exports (auto_interf ace) 12

auto_analyze/l (pred) 12
auto_optimize/l (pred) 12
auto_check_assert/l (pred) 12
auto_analyze/2 (pred) 13
auto_optimize/2 (pred) 13
auto_check_assert/2 (pred) 13
customize/0 (pred) 13
customize/1 (pred) 13
customize_and_preprocess/0 (pred) 13
customize_and_preprocess/l (pred) 13
customize_but_dont_save/l (pred) 14
again/0 (pred) 14
clean_aux_files/l (pred) 14
select_modules/1 (pred) 14
customize_java/l (pred) 14
customize_and_preprocess_java/l (pred) 14
get_menu_configs/l (pred) 14
save_menu_config/l (pred) 14
remove_menu_config/l (pred) 15
restore_menu_config/l (pred) 15
show_menu_configs/0 (pred) 15
show_menu_config/l (pred) 15
get_menu_flag/3 (udreexp) 15
get_menu_flag/3 (udreexp) 15
set_menu_flag/3 (udreexp) 15
set_menu_flag/3 (udreexp) 16
menu_branch/4 (udreexp) 16
menu_branch/3 (udreexp) 16
true/2 (udreexp) 16
true/1 (udreexp) 16

ii The Ciao Preprocessor

functorl/2 (udreexp) 16
2.3 Documentation on multifiles (auto_interf ace) 16

hook_menu_flag_values/3 (pred) 16
hook_menu_check_flag_value/3 (pred) 16
hook_menu_flag_help/3 (pred) 16
hook_menu_default_option/3 (pred) 16

2.4 Known bugs and planned improvements (auto_interface) 17

3 The CiaoPP low-level programming interface . . 19
3.1 Usage and interface (ciaopp) 19
3.2 Documentation on exports (ciaopp) 19

current_pp_flag/2 (pred) 19
set_pp_flag/2 (pred) 19
push_pp_fiag/2 (pred) 20
pop_pp_flag/l (pred) 20
pp_flag/l (pred) 20
flag_value/l (regtype) 21
valid_flag_value/2 (prop) 21
ctcheck_sum/l (udreexp) 22
transform/1 (pred) 22
module/1 (pred) 22
acheck_summary/l (udreexp) 22
acheck/0 (pred) 22
analyze/1 (pred) 22
menu_branch/4 (udreexp) 23
menu_branch/3 (udreexp) 23
true/2 (udreexp) 23
true/1 (udreexp) 23
functorl/2 (udreexp) 23
output/2 (udreexp) 23
output/1 (pred) 23
output/0 (pred) 23
menu_branch/4 (udreexp) 24
menu_branch/3 (udreexp) 24
true/2 (udreexp) 24
true/1 (udreexp) 24
functorl/2 (udreexp) 24
customize_and_preprocess_java/l (udreexp) 24
customize_java/l (udreexp) 24
select_modules/1 (udreexp) 24
clean_aux_files/l (udreexp) 24
customize_and_preprocess/0 (udreexp) 24
customize/0 (udreexp) 24
help/0 (pred) 24

3.3 Documentation on internals (ciaopp) 25
analysis/1 (prop) 25
transformation/1 (prop) 27

3.4 Other information (ciaopp) 30
3.4.1 Analysis with PLAI 30
3.4.2 Inter-modular analysis 30
3.4.3 Abstract partial deduction 32

3.5 Known bugs and planned improvements (ciaopp) 32

iii

4 The CiaoPP command-line interface 33
4.1 Command-line options 33
4.2 Description of the execution examples 34

PART II - The Assertion Language and Its U s e . . . 35

5 Using assertions for preprocessing programs . . . 37
5.1 Assertions 37

5.1.1 Properties of success states 37
5.1.2 Restricting assertions to a subset of calls 38
5.1.3 Properties of call states 38
5.1.4 Properties of the computation 38
5.1.5 Compound assertions 38
5.1.6 Examples of compound assertions 39

5.2 Properties 39
5.3 Preprocessing units 40
5.4 Foreign code 41

5.4.1 Examples of trust assertions 42
5.5 Dynamic predicates 42
5.6 Entry points 43

5.6.1 Examples of entry declarations 44
5.7 Modules 44
5.8 Dynamic calls 45

5.8.1 Examples of dynamic calls 45
5.9 An overview 46

6 The Ciao assertion package 47
6.1 More info 47
6.2 Some attention points 47
6.3 Usage and interface (assertions_doc) 48
6.4 Documentation on new declarations (assertions_doc) 48

(pred)/l (decl) 48
(pred)/2 (decl) 49
(texec)/l (decl) 49
(texec)/2 (decl) 49
(calls)/l (decl) 49
(calls)/2 (decl) 50
(success)/l (decl) 50
(success)/2 (decl) 50
(test)/l (decl) 50
(test)/2 (decl) 50
(comp)/l (decl) 51
(comp)/2 (decl) 51
(prop)/l (decl) 51
(prop)/2 (decl) 52
(entry)/l (decl) 52
(exit)/l (decl) 52
(exit)/2 (decl) 53
(modedef)/l (decl) 53
(decl)/l (decl) 53
(decl)/2 (decl) 53
doc/2 (decl) 53
comment/2 (decl) 54

6.5 Documentation on exports (assertions_doc) 54

iv The Ciao Preprocessor

check/1 (pred) 54
trust/1 (pred) 54
true/1 (pred) 55
false/1 (pred) 55

7 Types and properties related to assertions 57
7.1 Usage and interface (assertions_props) 57
7.2 Documentation on exports (assertions_props) 57

assrt_body/l (regtype) 57
head_pattern/l (prop) 58
complex_arg_property/l (regtype) 59
property_conjunction/l (regtype) 59
property_starterm/l (regtype) 59
complex_goal_property/l (regtype) 59
nabody/1 (prop) 60
dictionary/1 (regtype) 60
c_assrt_body/l (regtype) 60
s_assrt_body/l (regtype) 60
g_assrt_body/l (regtype) 61
assrt_status/l (regtype) 61
assrt_type/l (regtype) 62
predfunctor/1 (regtype) 62
propfunctor/1 (regtype) 62
docstring/1 (prop) 62

8 Declaring regular types 63
8.1 Defining properties 63
8.2 Usage and interface (regtypes_doc) 66
8.3 Documentation on new declarations (regtypes_doc) 66

(regtype)/l (decl) 66
(regtype)/2 (decl) 67

9 Basic data types and properties 69
9.1 Usage and interface (basic_props) 69
9.2 Documentation on exports (basic_props) 69

term/1 (regtype) 69
int/1 (regtype) 70
nnegint/1 (regtype) 70
fit/1 (regtype) 71
num/1 (regtype) 72
atm/1 (regtype) 72
struct/1 (regtype) 73
gnd/1 (regtype) 73
gndstr/1 (regtype) 74
constant/1 (regtype) 74
callable/1 (regtype) 75
operator_specifier/l (regtype) 75
list/1 (regtype) 76
list/2 (regtype) 76
nlist/2 (regtype) 77
member/2 (prop) 77
sequence/2 (regtype) 78
sequence_or_list/2 (regtype) 78
character_code/l (regtype) 79
string/1 (regtype) 79

num_code/l (regtype) 80
predname/1 (regtype) 80
atm_or_atm_list/l (regtype) 80
compat/2 (prop) 81
inst/2 (prop) 81
iso/1 (prop) 81
deprecated/1 (prop) 82
not_further_inst/2 (prop) 82
sideff/2 (prop) 82
(regtype)/l (prop) 83
native/1 (prop) 83
native/2 (prop) 83
rtcheck/1 (prop) 83
rtcheck/2 (prop) 84
no_rtcheck/l (prop) 84
eval/1 (prop) 85
equiv/2 (prop) 85
bind_ins/l (prop) 85
error_free/l (prop) 85
memo/1 (prop) 85
filter/2 (prop) 85
flag_values/l (regtype) 85
pe_type/l (prop) 85

9.3 Known bugs and planned improvements (basic_props) 86

Properties which are native to analyzers 87
10.1 Usage and interface (native_props) 87
10.2 Documentation on exports (native_props) 87

clique/1 (prop) 87
clique_l/l (prop) 88
compat/1 (prop) 88
constraint/1 (prop) 88
covered/1 (prop) 88
covered/2 (prop) 89
exception/1 (prop) 89
exception/2 (prop) 89
fails/1 (prop) 89
finite_solutions/l (prop) 89
have_choicepoints/l (prop) 89
indep/1 (prop) 90
indep/2 (prop) 90
instance/1 (prop) 90
is_det/l (prop) 90
linear/1 (prop) 90
mshare/1 (prop) 91
mut_exclusive/l (prop) 91
no_choicepoints/l (prop) 91
no_exception/l (prop) 92
no_exception/2 (prop) 92
no_signal/l (prop) 92
no_signal/2 (prop) 92
non_det/l (prop) 92
nonground/1 (prop) 92
not_covered/l (prop) 92
not_fails/l (prop) 93
not_mut_exclusive/l (prop) 93

VI The Ciao Preprocessor

num_solutions/2 (prop) 93
solutions/2 (prop) 93
possibly_fails/l (prop) 93
possibly_nondet/l (prop) 94
relations/2 (prop) 94
sideff_hard/l (prop) 94
sideff_pure/l (prop) 94
sideff_soft/l (prop) 95
signal/1 (prop) 95
signal/2 (prop) 95
signals/2 (prop) 95
size/2 (prop) 95
size/3 (prop) 96
size_lb/2 (prop) 96
size_o/2 (prop) 96
size_ub/2 (prop) 96
size_metric/3 (prop) 96
size_metric/4 (prop) 97
succeeds/1 (prop) 97
steps/2 (prop) 97
steps_lb/2 (prop) 97
steps_o/2 (prop) 97
steps_ub/2 (prop) 98
tau/1 (prop) 98
terminates/1 (prop) 98
test_type/2 (prop) 98
throws/2 (prop) 99
user_output/2 (prop) 99
instance/2 (prop) 99

10.3 Known bugs and planned improvements (native_props) 99

11 Run-time checking of assertions 101
11.1 Usage and interface (rtchecks_doc) 102

PART III - Extending CiaoPP 103

12 Adding a new analysis domain to CiaoPP . . . 105

13 Plug-in points for abstract domains 107
13.1 Usage and interface (domains) 108
13.2 Documentation on exports (domains) 108

init_abstract_domain/2 (pred) 108
amgu/5 (pred) 108
call_to_entry/9 (pred) 109
exit_to_prime/8 (pred) 109
project/5 (pred) 109
extend/5 (pred) 109
widen/4 (pred) 109
widencall/4 (pred) 109
normalize_asub/3 (pred) 110
compute_lub/3 (pred) 110
glb/4 (pred) 110
less_or_equal/3 (pred) 110
less_or_equal_proj/5 (pred) 110

identical_abstract/3 (pred) 110
identical_proj/5 (pred) 110
identical_proj_l/7 (pred) 110
abs_sort/3 (pred) 110
augment_asub/4 (pred) I l l
augment_two_asub/4 (pred) I l l
abs_subset/3 (pred) I l l
eliminate_equivalent/3 (pred) I l l
call_to_success_fact/9 (pred) I l l
body_succ_builtin/9 (pred) I l l
special_builtin/6 (pred) I l l
concrete/4 (pred) 112
part_conc/5 (pred) 112
multi_part_conc/4 (pred) 112
obtain_info/5 (pred) 112
info_to_asub/5 (pred) 112
full_info_to_asub/4 (pred) 112
asub_to_info/5 (pred) 112
asub_to_native/5 (pred) 112
unknown_call/5 (pred) 113
unknown_call/4 (pred) 113
unknown_entry/4 (pred) 113
unknown_entry/3 (pred) 113
empty_entry/3 (pred) 113
collect_types_in_abs/4 (pred) 113
rename_types_in_abs/4 (pred) 113
dom_statistics/2 (pred) 114
abstract_instance/5 (pred) 114
contains_parameters/2 (pred) 114

13.3 Documentation on multifiles (domains) 114
aidomain/1 (pred) 114

13.4 Documentation on internals (domains) 114
success_builtin/7 (pred) 114
call_to_success_builtin/7 (pred) 114
input_interface/5 (pred) 114
input_user_interface/4 (pred) 115

13.5 Known bugs and planned improvements (domains) 115

Simple groundness abstract domain 117
14.1 Usage and interface (gr) 117
14.2 Documentation on exports (gr) 117

gr_call_to_entry/8 (pred) 117
gr_exit_to_prime/7 (pred) 118
gr_project/3 (pred) 119
gr_extend/4 (pred) 119
gr_compute_lub/2 (pred) 120
gr_glb/3 (pred) 120
gr_less_or_equal/2 (pred) 120
gr_sort/2 (pred) 120
gr_call_to_success_fact/8 (pred) 121
gr_special_builtin/4 (pred) 121
gr_success_builtin/5 (pred) 122
gr_call_to_success_builtin/6 (pred) 122
gr_input_interface/4 (pred) 123
gr_input_user_interface/3 (pred) 123
gr_asub_to_native/3 (pred) 123

viii The Ciao Preprocessor

gr_unknown_call/3 (pred) 124
gr_unknown_entry/2 (pred) 124
gr_empty_entry/2 (pred) 124
extrainfo/1 (regtype) 125

14.3 Documentation on internals (gr) 125
absu/1 (regtype) 125
absu_elem/l (regtype) 125
gr_mode/l (regtype) 125
binds/1 (regtype) 125
binding/1 (regtype) 125

References 127

Library/Module Index 131

Predicate/Method Index 133

Property Index 135

Regular Type Index 137

Declaration Index 139

Concept Index 141

Author Index 143

Global Index 145

Summary 1

Summary
CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm program

development environment. CiaoPP can perform a number of program debugging, analysis, and
source-to-source transformation tasks on (Ciao) Prolog programs. These tasks include:

• Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

• Certain kinds of static debugging and verification, finding errors before running the program.
This includes checking how programs call system library predicates and also checking the
assertions present in the program or in other modules used by the program. Such assertions
represent essentially partial specifications of the program.

• Several kinds of source to source program transformations such as program specialization,
slicing, partial evaluation of a program, program parallelization (taking granularity control
into account), inclusion of run-time tests for assertions which cannot be checked completely
at compile-time, etc.

• The abstract model of the program inferred by the analyzers is used in the system to certify
that an untrusted mobile code is safe w.r.t. the given policy (i.e., an abstraction-carrying
code approach to mobile code safety).

The information generated by analysis, the assertions in the system specifications are all writ­
ten in the same assertion language, which is in turn also used by the Ciao system documentation
generator, lpdoc.

CiaoPP is distributed under the GNU general public license.

2 The Ciao Preprocessor

Chapter 1: Introduction 3

1 Introduction
CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm program

development environment. CiaoPP can perform a number of program debugging, analysis, and
source-to-source transformation tasks on (Ciao) Prolog programs. These tasks include:

• Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

• Certain kinds of static debugging and verification, finding errors before running the program.
This includes checking how programs call system library predicates and also checking the
assertions present in the program or in other modules used by the program. Such assertions
represent essentially partial specifications of the program.

• Several kinds of source to source program transformations such as program specialization,
slicing, partial evaluation of a program, program parallelization (taking granularity control
into account), inclusion of run-time tests for assertions which cannot be checked completely
at compile-time, etc.

• The abstract model of the program inferred by the analyzers is used in the system to certify
that an untrusted mobile code is safe w.r.t. the given policy (i.e., an abstraction-carrying
code approach to mobile code safety).

The information generated by analysis, the assertions in the system specifications are all writ­
ten in the same assertion language, which is in turn also used by the Ciao system documentation
generator, lpdoc.

CiaoPP is distributed under the GNU general public license.

1.1 How to use this manual

This is a reference manual. You can use it to look up in it descriptions for the commands,
flags, and options that can be used with CiaoPP. The Predicate/Method Definition Index may
help you in locating commands. The Regular Type Definition Index may help in locating the
definitions of the types associated to the arguments of commands. The Concept Definition Index
may help in locating the part of the manual where a particular feature of CiaoPP is described.
The Global Index includes all of the above plus references to pages where the command, type,
or concept is used (not necessarily defined).

This chapter gives a brief overview of CiaoPP and its capabilities. It assumes some familiarity
with the techniques that implement such functionalities. However, references are included to
technical papers that explain in detail such techniques. An overview of the functionalities
available is given in [BLGPH06] in the form of a tutorial on CiaoPP.

1.2 Note

We are in the process of merging all CiaoPP functionality into the 1.2 version. In the
meantime, the current distribution is marked as alpha and you may find that some functionality
documented in this manual is not available or not working properly. Please bear with us in the
meantime. Sorry for any inconvenience.

1.3 Installation (ciaopp)

Currently there are two Ciao distributions, one which includes CiaoPP, and another one
which does not. For installing the Ciao distributions which include CiaoPP, it is sufficient to
follow the instructions enclosed in the Ciao distribution itself. This describes the installation

4 The Ciao Preprocessor

procedure for the Ciao Development Environment, including libraries and manuals, from a source
distribution. This applies primarily to Unix-type systems (Linux, Mac OS X, Solaris, SunOS,
etc.), and with some limitations to Windows (using the Cygnus Win32 development libraries).

It is recommended that you read the INSTALLATION file that comes with each component of
CiaoDE. However, in many cases it suffices to follow this summary:

1.4 Software Requirements (ciaode)

For users of Linux distributions, you should install some software packages required by Ciao
that do not come installed by default. Using the corresponding automatic software management
tool, those are:

Debian/Ubuntu:
sudo apt-get i n s t a l l emacs b u i l d - e s s e n t i a l \

texi2html t ex l i ve texinfo imagemagick
Fedora:

su
yum i n s t a l l gcc kernel-headers kernel-devel emacs texi2html \
texinfo ImageMagick

Some advanced libraries and components, like the cost analysis, require an additional set of
software packages:

Debian/Ubuntu:
sudo apt-get i n s t a l l l ibgslO-dev l ibgslOldbl ant an t -opt ional \

sun-java6-jdk g++
sudo upda te - j ava -a l t e rna t ives —set java-6-sun

Fedora:
su
yum i n s t a l l gs l gs l -devel ant gnu-g++

Debian/Ubuntu users for 64-bit systems would also need libraries for 32-bit compatibility:
sudo apt-get i n s t a l l gcc-mul t i l ib I ibc6-i386 \

I ibc6-dev-i386 i a32- l ib s
Optionally, for the Parma Polyhedra Library
sudo apt-get i n s t a l l g++-multi l ib

To install Java JDK on Fedora, please visit
Sun Java website (ht tp: / / java.sun.com/javase/downloads/ index. jsp) and follow the in­
stallation instructions there.

If you are a Ciao developer, it is highly recommended to install Subversion to access the
latest source code in our repositories:

Debian/Ubuntu:
sudo apt-get i n s t a l l subversion
Fedora:
su
yum i n s t a l l subversion

Users of other Linux variants or operating systems should use similar tools to add the required
software packages. In Windows, doing a full installation of CygWin ensures that you have all
the required packages.

Note that the GNU implementation of the make Un*x command is (still) internally used
during the installation process. It is available in many systems (including all Linux systems and
Mac OS X) simply as make. If any of the installation steps stop right away with make error
messages, you probably need to install gmake.

http://java.sun.com/javase/downloads/index.jsp

Chapter 1: Introduction 5

1.5 Obtaining the Sources (ciaode)
1. If you have obtained your copy of Ciao from a compressed source package, uncompress and

unpackage it (using gunzip or bzip2 and tar -xpf). This will put everything in a new
directory whose name reflects the Ciao version.

2. Other method to get the sources is from the subversion repository (available for ciao devel­
opers).

1.6 Quick Installation from Source (ciaode)

The main command to build and install CiaoDE, located at the root of the source tree, is
called ciaosetup. It provides useful commands to do quick installations from the sources with
just one line:

1. System-wide installation (e.g. as administrator or root user):
. /ciaosetup system-install

2. User-local installation (that will be accessible just for your user)
. /ciaosetup user - ins ta l l

If you need a more advanced control of configuration read the following section.

1.7 Custom Installations (ciaode)

Advanced uses of CiaoDE would require the customization of the default build and installa­
tion options. In that case, the installation process usually follows the following steps:

1. From the directory where the sources are stored, run:
. /ciaosetup configure

It will perform a default configuration, where the system will be configured to be installed
as the system administrator (root) in a standard directory available for all users in the
machine (e.g., /usr / local) .
The additional options —instype=local will prepare CiaoDE to run from the sources
directly, and configured in the user's home directory (recommended for CiaoDE developers).
In case you want to install elsewhere, or change any of the installation options, you can
use a customized configuration procedure. The configure command accepts several options.
You can see a brief description of them with:

. /ciaosetup configure —help
Use the —menu option to select configuration options interactively. You must follow the
instructions that appear on it. When asked for the configuration level, if you are happy
with the default options, select the first option and no questions will be made. If you need
a higher level of customization, select the last option.

2. Once the configuration process has finished, run:
. /ciaosetup build

This will build executables and compile libraries.
3. If you have obtained the CiaoDE source from the SVN repository, you need to generate the

documentation. This can be done using:
./ciaosetup docs

4. After the compilation completes successfully, run:
. /ciaosetup i n s t a l l

This will install everything in the specified directories.

If you want to see the other available commands, run . /ciaosetup help.

6 The Ciao Preprocessor

1.8 Getting started
A CiaoPP session consists in the preprocessing of a file. The session is governed by a menu,

where you can choose the kind of preprocessing you want to be done to your file among several

analyses and program transformations available. Clicking on the icon © in the buffer containing
the file to be preprocessed displays the menu, which will look (depending on the options available
in the current CiaoPP version) something like the "Preprocessor Option Browser" shown in the
following figure:

r | app.pl

File Edit Options Buffers Tools CiaoSys CiaoDbg CiaoPP LPdoc CiaoOpts CiaoHelp Help

e j ^ ^ a ^ ^ ^ - ^ & COL*> 6 € ^ # 6] 0 C 0 ©
® C © © H <*? ^ ^ ^
P2j :- module(app, [app/3], [assertions]) .

- entry app(A,B,C) : (list(fl), list(B), var(C)),

app([],Y,Y).
app([X|Xs],Ys,[X|Zs]):

app(Xs,Ys,Zs).
app.pl (Ciao)--L3--Top

ff>H^ Preprocessor Option Browser ^ f

Use Saved Menu Configuration:
Select Menu Level:

Select fiction Group:
Perforin Non-Failure Analysis:
Select aliasing-Mode analysis:

Select Shape-Type Analysis:
Select Type Output:

Select Numeric analysis:
Select Cost analysis:

Perform Determinism analysis:
Print Program Point Info:

Collapse ai Info-:
Menu Configuration Name:

none
naive

analyze
none
shfr

eterms
all
none
none
none
off

on
none

CiaoPP Interface* (Fundamental)--L14--all

Except for the first and last lines, which refer to loading or saving a menu configuration (a pre­
determined set of selected values for the different menu options), each line corresponds to an op­
tion you can select, each having several possible values. You can select either analysis (analyze)
or assertion checking (check_assertions) or certificate checking (check_certif icate) or pro­
gram optimization (optimize), and you can later combine the four kinds of preprocessing. The
relevant options for the act ion group selected are then shown, together with the relevant flags.
A description of the values for each option will be given as it is used in the corresponding section
of this manual.

CiaoPP can help you to analyze your program, in order to infer properties of the predicates
and literals in your program (which might be useful in the subsequent steps during the same
session). You can use Cost Analysis to infer both lower and upper bounds on the computational
time cost and sizes of terms of procedures in a program. Mode Analyses obtain at compile-time
accurate variable groundness and sharing information and other variable instantiation properties.
Type Analysis infers regular types. Regular types are explained in detail in Chapter 8 [Declaring
regular types], page 63. Non-failure and Determinacy Analyses detect procedures and goals that
can be guaranteed to not fail and/or to be deterministic.

http://app.pl
http://app.pl

Chapter 1: Introduction 7

CiaoPP also can help to optimize your program (by means of source-to-source program trans­
formations), using program specialization, partial evaluation, program parallelization and gran­
ularity control, and other program transformations. Specialization can help to simplify your
program w.r.t. the analysis information (eliminating dead code, predicates that are guaranteed
to either succeed or fail, etc.), specialize it and then simplify it, or just specialize it, i.e., to
unfold all versions of the predicates in your program. CiaoPP can also perform automatic par­
allelization of your source program during precompilation using several annotation algorithms,
and granularity control on parallel programs, transforming the program in order to perform
run-time granularity control, i.e., deciding parallel or sequential execution of goals depending
on the estimated amount of work under them (estimated by cost analysis).

CiaoPP also helps in debugging your programs. It makes possible to perform static debugging,
i.e., finding errors at compile-time, before running the program, and also dynamic debugging,
in the sense of including run-time tests that will perform the checking for errors at run-time.
Static debugging is performed by assertion checking. This includes checking the ways in which
programs call the system library predicates and also checking the assertions present in the
program or in other modules used by the program. Such assertions essentially represent partial
specifications of the program. For dynamic checking, CiaoPP will include run-time tests for the
parts of assertions which cannot be checked completely at compile-time.

Chapter 5 [Using assertions for preprocessing programs], page 37, gives an overview on the
use of the assertion language in CiaoPP. In that chapter and the following ones, several existing
properties that can be used in assertions are described. Programmers can also define their own
properties (see the abovementioned chapters).

1.9 CiaoPP interfaces

There are three main levels of interaction with CiaoPP. There is a graphical menu interface,
based on the emacs editor, that allows the selection of configuration options and the use of
the different features of CiaoPP. If emacs is not available, this menu interface can be used as a
text-based menu interface. There are several supplementary predicates for assisting the user and
providing a kind of scripting language (based on the Ciao language). This interface is described
in Chapter 2 [The CiaoPP user menu interface], page 11.

The second level of interaction with CiaoPP is the low-level interface, detailed in Chapter 3
[The CiaoPP low-level programming interface], page 19. This interface is intended for advanced
developers, and contains the primitives used by the abovementioned menu-based interface for
implementing the main features of the system.

And finally, the command-line interface allows the use of CiaoPP without direct interaction
of the user. With this feature, the CiaoPP system can be integrated into other systems (as for
example interactive web sites) by means of batch commands. It is described in Chapter 4 [The
CiaoPP command-line interface], page 33.

8 The Ciao Preprocessor

PART I - Using CiaoPP 9

PART I - Using CiaoPP

f

Author(s): The CLIP Group.

V

\

/

10 The Ciao Preprocessor

Chapter 2: The CiaoPP user menu interface 11

2 The CiaoPP user menu interface
Author(s): David Trallero Mena.
This module defines a simplified user-level interface for CiaoPP. It complements the more

expert-oriented interface defined in Chapter 3 [The CiaoPP low-level programming interface],
page 19. This is also the interface called by the shortcuts available in menus and toolbars in the
emacs mode.

The idea of this interface is to make it easy to perform some fundamental, prepackaged tasks,
such as checking assertions in programs (i.e., types, modes, determinacy, non-failure, cost, etc.),
performing optimizations such as specialization and parallelization, and performing several types
of analysis of the program. The results can be observed as new or transformed assertions and
predicates in a new version of the program.

In order to use CiaoPP, the user must provide two kinds of information: first, a number
of preprocessing options must be set if necessary in order to configure the system; and then,
the action that has to be done must be selected (analysis, assertion checking, optimization).
Those options are controlled by a set of so-called flags. By default, all flags are initialized to the
appropriate values in most of the cases. If the value of any of the flags has to be changed by the
user, the flag must be changed before performing the corresponding action. There are two ways
to change the flag values. The most usual way consists in calling customize_and_preprocess/l
from the CiaoPP top-level shell with the file name as argument. In the emacs environment this
can be done most easily by clicking on the options button in the toolbar or in the CiaoPP menus.
It will prompt (with help) for the value of the different options and flags.

The second way to change flag values consist in executing in the CiaoPP top-level shell a
number of calls to set_menu_f l ag /3 with the right values, and then calling one of the following
predicates:

• auto_check_assert / l with the file name as argument to check a program.
• auto_optimize/l with the file name as argument to optimize (transform) a program.
• auto_analyze/l with the file name as argument to analyze a program.

In the emacs environement these actions can be performed most easily by clicking on the
corresponding button in the toolbar or in the CiaoPP menus.

The customization menus can be made to show more or less detail depending on the level of
expertise of the user. This can be configured in the customization menu itself.

12 The Ciao Preprocessor

2.1 Usage and interface (auto_interface)

• Library usage:

:- use_module(library(auto_interface)).

• Exports:

— Predicates:

auto_analyze/l, auto_optimize/l, auto_check_assert/l, auto_analyze/2,
auto_optimize/2, auto_check_assert/2, customize/0, customize/1, customize.
and_preprocess/0, customize_and_preprocess/l, customize_but_dont_save/l,
again/0, clean_aux_files/1, select_modules/l, customize_java/l, customize.
and_preprocess_java/l.

— Multifiles:
hook_menu_flag_values/3, hook_menu_check_flag_value/3, hook_menu_flag_
help/3, hook_menu_default_option/3.

• Imports:

— Application modules:

ciaopp(driver), ciaopp(printer),
ciaopp(preprocess_flags), ciaopp(p_unit(p_dump)), ciaopp(plai(fixpo_ops)),
plai(acc_ops), auto_interface(optim_comp), plai(intermod), infer(infer_
db), program(assrt_db), program(p_unit), program(itf_db), program(aux_
filenames), infer(infer_dom).

— System library modules:

menu/menu_generator, menu/menu_rt, l i s t s , aggregates , prolog_sys , system,
messages, prompt, f i lenames.

— Internal (engine) modules:

term_basic, ar i thmet ic , atomic_basic, basic_props, b a s i c c o n t r o l , data_fac t s ,
except ions , io_aux, i o_bas ic , pro log_ f lags , streams_basic , system_info, term_
compare, term_typing, h iord_rt , debugger_support.

— Packages:

prelude, nonpure, assertions, api(api_menu), menu/menu, argnames, fsyntax.

2.2 Documentation on exports (auto_interf ace)

a u t o _ a n a l y z e / l : PREDICATE
Usage: auto_analyze(F)

Analyze the module F with the current analysis options (use customize (analyze) to
change these options).

a u t o _ o p t i m i z e / l : PREDICATE
Usage: auto_optimize(F)

Optimize file F with the current options (use customize (opt imize) to change these op­
tions).

Chapter 2: The CiaoPP user menu interface 13

auto_check_assert / l : PREDICATE
Usage: auto_check_assert(F)
Check the assertions in file F, with the current options, giving errors if assertions are
violated (use customize(check_assertions) to change these options).

auto_ana lyze /2 : PREDICATE
Usage: auto_analyze(F,OFile)
Same as auto_analyze/l but the output file will be OFile.

a u t o _ o p t i m i z e / 2 : PREDICATE
Usage: auto_optimize(F,OFile)
Same as auto_optimize/l but the output file will be OFile.

auto_check_assert /2: PREDICATE
Usage: auto_check_assert(F,OFile)
Same as auto_check_assr t / l but the output file will be OFile.

customize /O: PREDICATE
Usage:
Enter an interactive menu to select the preprocessing action (analysis / assertion checking
/ transformation / optimization / ...) to be performed by deafult and the different options
(i.e., setting the preprocessor flags).

c u s t o m i z e / 1 : PREDICATE
Usage: customize(X)
Customize is used for changing the values of a set of flags. These flags are grouped
into analyze, check assertions and optimize. X should take the values: analyze, check_
asse r t ions or optimize.

cus tomize_and_preprocess /0 : PREDICATE
Usage:
Select options using customize/0, and then call auto_analyze/l , auto_optimize/l , or
auto_check_assert / l (as determined by the selected options) on the default file. If no
default file is defined, prompt for the name of to be processed, which becomes from now
on the default file.

cus tomize_and_preprocess / l : PREDICATE
Usage: customize_and_preprocess(File)
Select options using customize/0, and then call auto_analyze/l , auto_optimize/l , or
auto_check_assert / l (as determined by the selected options) with F i l e as argument.
F i l e is from now on the default file.

14 The Ciao Preprocessor

cus tomize_but_dont_save / l : PREDICATE
Usage: customize_but_dont_save(Option)
Same as customize(Option), but menu flags will not be modified.

a g a i n / 0 : PREDICATE
Usage:
Performs the last actions done by customize_and_preprocess/l, on the last file previ­
ously analyzed, checked, or optimized

clean_aux_f i les / l : PREDICATE
Usage: c lean_aux_fi les(Fi le)
Deletes any auxiliary file regarding F i le or its related files (e.g., imported modules in a
modular program).

— The following properties should hold at call time:
Fi le is currently instantiated to an atom. (atom/1)

s e l e c t _ m o d u l e s / l : PREDICATE
Usage:
Launch a menu to select module dependencies.

cus tomize_ java / l : PREDICATE
Usage: customize_java(X)
Customize is used for change the values of a set of flags in case of Java analysis. So far,
the value of X is only ' a l l ' .

customize_and_preprocess_java/ l : PREDICATE
Usage: customize_and_preprocess_java(File)
It is like doing customize_java(al l) , and then calling with F i le as argument.

get_menu_conf igs / l : PREDICATE
Usage: get_menu_configs(X)
Returns a list of atoms in X with the name of stored configurations.

— The following properties should hold at call time:
X is a free variable. (va r / l)

— The following properties should hold upon exit:
X is a list of atoms. (l i s t / 2)

Chapter 2: The CiaoPP user menu interface 15

save_menu_conf ig / l : PREDICATE
Usage: save_menu_config(Name)
Save the current flags configuration under the Name key.

— The following properties should hold at call time:
Name is an atom. (atm/l)

remove_menu_conf ig / l : PREDICATE
Usage: remove_menu_config(Name)
Remove the configuration stored with the Name key (the same provided in save_menu_
conf i g / l) .

— The following properties should hold at call time:
Name is an atom. (atm/l)

restore_menu_conf ig / l : PREDICATE
Usage: restore_menu_config(Name)
Restore the configuration saved with the Name key (the same provided in save_menu_
conf i g / l) .

— The following properties should hold at call time:
Name is an atom. (atm/l)

show_menu_conf igs /0: PREDICATE
Usage:
Show all stored configurations.

show_menu_conf ig / l : PREDICATE
Usage: show_menu_config(C)
Show specific configuration values pointed by C key (the same provided in save_menu_
conf i g / l) .

— The following properties should hold at call time:
C is an atom. (atm/l)

get_menu_f lag/3: (UNDOC_REEXPORT)
Imported from menu_generator (see the corresponding documentation for details).

get_menu_f lag/3: (UNDOC_REEXPORT)
Imported from menu_generator (see the corresponding documentation for details).

set_menu_flag/3: (UNDOC_REEXPORT)
Imported from menu_generator (see the corresponding documentation for details).

16 The Ciao Preprocessor

set_menu_flag/3: (UNDOC_REEXPORT)
Imported from menu_generator (see the corresponding documentation for details).

menu_branch /4 : (UNDOC_REEXPORT)
Imported from menu_rt (see the corresponding documentation for details).

menu_branch /3 : (UNDOC_REEXPORT)
Imported from menu_rt (see the corresponding documentation for details).

t r u e / 2 : (UNDOC_REEXPORT)
Imported from menu_rt (see the corresponding documentation for details).

t r u e / 1 : (UNDOC_REEXPORT)
Imported from menu_rt (see the corresponding documentation for details).

f u n c t o r l / 2 : (UNDOC_REEXPORT)
Imported from menu_rt (see the corresponding documentation for details).

2.3 Documentation on multifiles (auto_interf ace)

hook_menu_flag_values/3: PREDICATE
Usage: hook_menu_flag_values(Menu,Flag,Values)

Menu hook that determines the possible Values that a Flag can have in menu Menu.

The predicate is multifile.

hook_menu_check_flag_value/3: PREDICATE
Usage: hook_menu_check_flag_value(Menu,Flag,Value)

Menu hook that checks if Value is a correct option for Flag in menu Menu.

The predicate is multifile.

hook_menu_flag_help/3: PREDICATE
Usage: hook_menu_flag_help(Menu,Flag,Values)

Menu hook that determines the Help text for a Flag in menu Menu.

The predicate is multifile.

hook_menu_defaul t_opt ion/3: PREDICATE
Usage: hook_menu_default_option(Menu,Flag,DOpt)

Menu hook that determines the default option DOpt for the Flag in menu Menu.

The predicate is multifile.

Chapter 2: The CiaoPP user menu interface 17

2.4 Known bugs and planned improvements (auto_interface)
• 1 commented out the question for error file since we are generating it in any case (not yet

implemented)
• 2 when auto.cthecks has the value 'on' (instead of 'auto'), the result of compile_time checking

is not fully handled yet
• needed_to_prove/3 is a weird predicate, it must be more easy to read. -EMM.

18 The Ciao Preprocessor

Chapter 3: The CiaoPP low-level programming interface 19

3 The CiaoPP low-level programming interface
Author(s): The CLIP Group.

This module includes low-level primitives for interacting with CiaoPP. The exported predi­
cates of this module are intended for developers only.

3.1 Usage and interface (ciaopp)

r •

• Library usage:

:- use_module(library(ciaopp)).

• Exports:

— Predicates:

h e l p / 0 .

• Imports:

— Application modules:

c i a o p p (d r i v e r) , c i a o p p (r e s o u r c e s (r e s o u r c e s _ r e g i s t e r)) ,
c i a o p p (i n f e r c o s t (i n f e r c o s t _ r e g i s t e r)) ,
c i a o p p (p r e p r o c e s s _ f l a g s) , c i a o p p (p r i n t e r) , a u t o _ i n t e r f a c e (a u t o _ i n t e r f a c e) ,
a u t o _ i n t e r f a c e (a u t o _ h e l p) , t y p e s l i b (t y p e s l i b) , p r o g r a m (p _ a s r) .

— System library modules:

messages, system.

— Internal (engine) modules:

t e rm_bas i c , a r i t h m e t i c , a tomic_bas i c , b a s i c _ p r o p s , b a s i c c o n t r o l , d a t a _ f a c t s ,
e x c e p t i o n s , io_aux, i o _ b a s i c , p r o l o g _ f l a g s , s t r e a m s _ b a s i c , sys tem_info , term_
compare, t e rm_typ ing , h i o r d _ r t , debugger_suppor t .

— Packages:

p r e l u d e , nonpure, condcomp, a s s e r t i o n s , c i a o p p _ o p t i o n s .

3.2 Documentation on exports (ciaopp)

c u r r e n t _ p p _ f l a g / 2 : PREDICATE

Usage: cur ren t_pp_f lag(Name,Value)

Preprocess flag Name has the value Value.

— The following properties should hold at call time:

Name is a valid preprocessor flag. (pp_f l a g / 1)

— The following properties should hold upon exit:

Value is a valid value for preprocessor flag Name. (v a l i d _ f l a g _ v a l u e / 2)

s e t _ p p _ f l a g / 2 : PREDICATE
Usage: se t_pp_f lag(Name,Value)

Sets Value for preprocessor flag Name.

20 The Ciao Preprocessor

The following properties should hold at call time:
Name is a valid preprocessor flag. (pp_f lag/1)
Value is a valid value for preprocessor flag Name. (valid_f lag_value/2)

push_pp_flag/2: PREDICATE
(True) Usage: push_pp_flag(Flag,Value)
Sets Value for preprocessor flag Flag, storing the current value to restore it with pop_
pp_f lag/ l .

— The following properties should hold at call time:
Flag is a valid preprocessor flag. (pp_f lag/1)
Value is a valid value for preprocessor flag Flag. (valid_f lag_value/2)

pop_pp_f lag / l : PREDICATE
(True) Usage: pop_pp_flag(Flag)
Restores the value of the preprocessor flag Flag previous to the last non-canceled push_
pp_flag/2 on it.

— The following properties should hold at call time:
Flag is a valid preprocessor flag. (pp_f lag/1)

pp_f lag / l : PREDICATE
Valid flags:

• for the output:
• analysis_info (off, on) Whether to output the results of analysis.
• point_inf o (off, on) Whether to output analysis information for program points

within clauses.
• col lapse_ai_vers (off, on) to output all the versions of call/success patterns

inferred by analysis or just one version (summing-up all of them).
• type_output (defined, a l l) to output the types inferred for predicates in terms

only of types defined by the user or including types inferred anew.
• for analysis:

• f ixpoint (p l a i , dd, d i , check_di, check_di2, check_di3, check_di4) The
kind of fixpoint computation used.

• multi_success (off, on) Whether to allow success multivariance.
• widen (off, on) Whether to perform widening.
• intermod (off, on, auto) The policy for inter-modular analysis.
• success_policy (best , f i r s t , a l l , t op , b o t f i r s t , bo tbes t , b o t a l l ,

bottom) The policy for obtaining success information for imported predicates
during inter-modular analysis.

• entry_policy (a l l , top_ leve l , force , force_assr t) The policy for obtain­
ing entry call patterns for exported predicates during inter-modular analysis.

• p roces s_ l ib ra r i e s (on, off, no_engine) Whether to perform the analysis of
Ciao system libraries when a modular user program is analyzed.

Chapter 3: The CiaoPP low-level programming interface 21

• i n i t i a l _ g u e s s (b o t f i r s t , b o t b e s t , b o t a l l , bottom) The policy for obtain­
ing initial guess when computing the analysis of a predicate from the current
module.

• use_check_assrt (of f , on) Whether to use check assertions for imported pred­
icates as if they were trust assertions.

• depth (a non-negative integer) The maximum depth of abstractions in analyses
based on term depth.

• type_eval (on, off) Whether to at tempt concrete evaluation of types being
inferred.

• t y p e _ p r e c i s i o n (def ined, a l l) to use during type analysis only types defined
by the user or also types inferred anew.

• for partial evaluation:

• g l o b a l _ c o n t r o l (off , i d , i n s t , hom_emb) The abstraction function to use to
control the creation of new patterns to analyze as a result of unfolding.

• comp_rule (l e f t m o s t , s a f e _ j b , b ind_ ins_jb , no_sideff_
j b , jump_bui l t in , e v a l _ b u i l t i n , local_emb) The computation rule for the
selection of atoms in a goal.

• l o c a l _ c o n t r o l (off , o r i g , i n s t , d e t , d e t _ l a , depth, f i r s t _ s o l , f i r s t _
s o l _ d , a l l _ s o l , hom_emb, hom_emb_anc, hom_emb_as, df_hom_emb_
a s , df_tree_hom_emb, df_hom_emb) The unfolding rule to use during partial
evaluation.

• unf _depth (a non-negative integer) The depth limit for unfolding.

• rem_use_cls (off , pre , p o s t , both) Whether to remove useless clauses.

• abs_spec_defs (off , rem, exec , a l l) Whether to exploit abstract substitu­
tions while obtaining specialized definitions on unfolding.

• f i l ter_nums (off , on) Whether to filter away numbers in partial evaluation.

• exec_unif (of f , on) Whether to execute unifications during specialization time
or not.

• p r e s _ i n f _ f a i l (off , on) Whether infinite failure should be preserved in the
specialized program.

• part_concrete (off , mono, mult i) The kind of partial concretization to be
performed.

• for parallelization and granularity control:

• granu lar i ty_ thresho ld (a non-negative integer) The threshold on computa­
tional cost at which parallel execution pays off.

flag_value/l: REGTYPE
Usage: f lag_value(V)

V is a value for a flag.

v a l i d _ f l a g _ v a l u e / 2 : PROPERTY
Usage: val id_f lag_value(Name,Value)
Value is a valid value for preprocessor flag Name.

— If the following properties should hold at call time:

Name is a valid preprocessor flag. (pp_f l a g / 1)
Value is a value for a flag. (f l a g _ v a l u e / l)

22 The Ciao Preprocessor

c t c h e c k _ s u m / l : (UNDOC_REEXPORT)
Imported from d r i v e r (see the corresponding documentation for details).

t r a n s f o r m / 1 : PREDICATE

Usage 1: t r a n s f o r m (T r a n s)

Returns on backtracking all available program transformation identifiers.

— The following properties should hold at call time:

Trans is a free variable. (v a r / l)

— The following properties should hold upon exit:

Trans is a valid transformation identifier. (t r a n s f o r m a t i o n / 1)

Usage 2: t r a n s f o r m (T r a n s)

Performs transformation Trans on the current module.

— The following properties should hold at call time:

Trans is currently a term which is not a free variable. (n o n v a r / l)

Trans is a valid transformation identifier. (t r a n s f o r m a t i o n / 1)

m o d u l e / 1 : PREDICATE

Usage 1: module(FileName)

Reads the code of FileName and its preprocessing unit, and sets it as the current module.

— The following properties should hold at call time:

FileName is currently a term which is not a free variable. (n o n v a r / l)

FileName is a source name. (sourcename/ l)

Usage 2: module(Fi leNameLis t)

Reads the code of the list of file names Fi leNameList (and their preprocessing units), and
sets them as the current modules.

— The following properties should hold at call time:

FileNameLis t is currently a term which is not a free variable. (n o n v a r / l)

Fi leNameLis t is a list of atms. (l i s t / 2)

a c h e c k _ s u m m a r y / l : (UNDOC_REEXPORT)
Imported from d r i v e r (see the corresponding documentation for details).

a c h e c k / O : PREDICATE
Usage:

Checks assertions w.r.t. analysis information.

a n a l y z e / 1 : PREDICATE
Usage 1: a n a l y z e (A n a l y s i s)

Returns on backtracking all available analyses.

Chapter 3: The CiaoPP low-level programming interface 23

— The following properties should hold at call time:
Analysis is a free variable. (va r / l)

— The following properties should hold upon exit:
Analysis is a valid analysis identifier. (analysis /1)

Usage 2: analyze(Analysis)
Analyzes the current module with Analysis.

— The following properties should hold at call time:
Analysis is currently a term which is not a free variable. (nonvar/l)
Analysis is a valid analysis identifier. (analysis /1)

— The following properties should hold globally:
All the calls of the form analyze (Analysis) do not fail. (not_f a i l s / 1)
A call to analyze (Analysis) does not create choicepoints. (no_choicepoints/ l)

menu_branch /4 : (UNDOC_REEXPORT)
Imported from auto_interf ace (see the corresponding documentation for details).

menu_branch /3 : (UNDOC_REEXPORT)
Imported from auto_interf ace (see the corresponding documentation for details).

t r u e / 2 : (UNDOC_REEXPORT)
Imported from auto_interf ace (see the corresponding documentation for details).

t r u e / 1 : (UNDOC_REEXPORT)
Imported from auto_interf ace (see the corresponding documentation for details).

f u n c t o r l / 2 : (UNDOC_REEXPORT)
Imported from auto_interf ace (see the corresponding documentation for details).

o u t p u t / 2 : (UNDOC_REEXPORT)
Imported from p r i n t e r (see the corresponding documentation for details).

o u t p u t / 1 : PREDICATE
Usage: output(Output)
Outputs the current module preprocessing state to a file Output.

— The following properties should hold at call time:
Output is currently a term which is not a free variable. (nonvar/l)

24 The Ciao Preprocessor

o u t p u t / 0 : PREDICATE
Usage:
Outputs the current Module preprocessing state to a file named Module_opt.pl, where
Module is the current module.

menu_branch /4 : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

menu_branch /3 : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

t r u e / 2 : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

t r u e / 1 : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

f u n c t o r l / 2 : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

customize_and_preprocess_java/ l : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

cus tomize_ java / l : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

s e l e c t _ m o d u l e s / l : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

c l e a n _ a u x J i l e s / l : (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

customize_and_preprocess /0 : (UNDOCJIEEXPORT)
Imported from auto_interface (see the corresponding documentation for details).

customize /O: (UNDOCJIEEXPORT)
Imported from a_to_interf ace (see the corresponding documentation for details).

h e l p / 0 : PREDICATE

http://Module_opt.pl

Chapter 3: The CiaoPP low-level programming interface 25

3.3 Documentation on internals (ciaopp)

analysis/1: PROPERTY
Analyses can be integrated in CiaoPP in an ad-hoc way (see the Internals manual), in
which the CiaoPP menu would not be aware of them. The current analyses supported in
the menu are:

• for groundness and sharing:
• gr tracks groundness in a very simple way.
• def tracks groundness dependencies, which improves the accuracy in inferring

groundness.
• share tracks sharing among (sets of) variables [MH92], which gives a very accu­

rate groundness inference, plus information on dependencies caused by unifica­
tion.

• son tracks sharing among pairs of variables, plus variables which are linear (see
[Son86]).

• shareson is a combination of the above two [CMB93], which may improve on
the accuracy of any of them alone.

• shfr tracks sharing and variables which are free (see [MH91]).
• shfrson is a combination of shfr and son.
• shfrnv augments shfr with knowledge on variables which are not free nor

ground.
• for term structure:

• depth tracks the structure of the terms bound to the program variables during
execution, up to a certain depth; the depth is fixed with the depth flag.

• path tracks sharing among variables which occur within the terms bound to the
program variables during execution; the occurrence of run-time variables within
terms is tracked up to a certain depth, fixed with the depth flag.

• aeq tracks the structure of the terms bound to the program variables during
execution plus the sharing among the run-time variables occurring in such terms,
plus freeness and linearity. The depth of terms being tracked is set with the depth
flag. Sharing can be selected between set-sharing or pair-sharing.

• for types:
Type analysis supports different degrees of precision. For example, with the flag
type_precis ion with value defined, the analysis restricts the types to the finite
domain of predefined types, i.e., the types defined by the user or in libraries, without
generating new types. Another alternative is to use the normal analysis, i.e., creating
new type definitions, but having only predefined types in the output. This is handled
through the type_output flag.

• eterms performs structural widening (see [VB02]).
Greater precision can be obtained evaluating builtins like i s / 2 abstractly:
eterms includes a variant which allows evaluation of the types, which is gov­
erned by the type_eval flag.

• ptypes uses the topological clash widening operator (see [VHCL95]).
• svterms implements the rigid types domain of [JB92].
• terms uses shortening as the widening operator (see [GdW94]), in several fash­

ions, which are selected via the depth flag; depth 0 meaning the use of restricted
shortening [SG94].

26 The Ciao Preprocessor

• for partial evaluation:
Partial evaluation is performed during analysis when the loca l _con t ro l flag is set
to other than off. Flag fixpoint must be set to di. Unfolding will take place while
analyzing the program, therefore creating new patterns to analyze. The unfolding
rule is governed by flag local_control (see transformation(codegen)).
For partial evaluation to take place, an analysis domain capable of tracking term
structure should be used (e.g., eterms, pd, etc.). In particular:

• pd allows to perform traditional partial evaluation but using instead abstract
interpretation with specialized definitions [PAH04].

• pdb improves the precision of pd by detecting calls which cannot succeed, i.e.,
either loop or fail.

Note that these two analyses will not infer useful information on the program. They
are intended only to enable (classical) partial evaluation.

• for constraint domains:
• fr [Dum94] determines variables which are not constraint to particular values

in the constraint store in which they occur, and also keeps track of possible
dependencies between program variables.

• frdef is a combination of fr and def, determining at the same time variables
which are not constraint to particular values and variables which are constraint
to a definite value.

• l s ign [MS94] infers the signs of variables involved in linear constraints (and the
possible number and form of such constraints).

• diff l s ign is a simplified variant of l s ign.
• for properties of the computation:

• det detects procedures and goals that are deterministic (i.e. that produce at
most one solution), or predicates whose clause tests are mutually exclusive (which
implies that at most one of their clauses will succeed) even if they are not de­
terministic (because they call other predicates that can produce more than one
solution).

• nf g detects procedures that can be guaranteed not to fail (i.e., to produce at least
one solution or not to terminate). It is a mono-variant non-failure analysis, in the
sense that it infers non-failure information for only a call pattern per predicate
[DLGH97].

• nf detects procedures and goals that can be guaranteed not to fail and is able to
infer separate non-failure information for different call patterns [BLGH04].

• seff marks predicates as having side-effects or not.
• for size of terms:

Size analysis yields functions which give bounds on the size of output data of proce­
dures as a function of the size of the input data. The size can be expressed in various
measures, e.g., term-size, term-depth, list-length, integer-value, etc.

• size_ub infers upper bounds on the size of terms.
• s i ze _ lb infers lower bounds on the size of terms.
• s ize_ualb infers both upper and lower bounds on the size of terms.
• s ize_o gives (worst case) complexity orders for term size functions (i.e. big O).

• for the number of resolution steps of the computation:
Cost (steps) analysis yields functions which give bounds on the cost (expressed in the
number of resolution steps) of procedures as a function of the size of their input data.

Chapter 3: The CiaoPP low-level programming interface 27

• steps_ub infers upper bounds on the number of resolution steps. Incorporates
a modified version of the CASLOG [DL93] system, so that CiaoPP analyzers
are used to supply automatically the information about modes, types, and size
measures needed by the CASLOG system.

• s teps_lb infers lower bounds on the number of resolution steps. Implements
the analysis described in [DLGHL97].

• steps_ualb infers both upper and lower bounds on the number of resolution
steps.

• s teps_o gives (worst case) complexity orders for cost functions (i.e. big O).
• for the execution time of the computation:

• time_ap yields functions which give approximations on the execution time (ex­
pressed in milliseconds) of procedures as a function of the size of their input
data.

Usage: analysis(Analysis)
Analysis is a valid analysis identifier.

t r a n s f o r m a t i o n / 1 : PROPERTY
Transformations can be integrated in CiaoPP in an ad-hoc way (see the Internals manual),
in which the CiaoPP menu would not be aware of them. The current transformations
supported in the menu are:

• for program specialization:
• simp This transformation tries to explote analysis information in order to simplify

the program as much as possible. It includes optimizations such as abstract
executability of literals, removal of useless clauses, and unfolding of literals for
predicates which are defined by just a fact or a single clause with just one literal
in its body (a bridge). It also propagates failure backwards in a clause as long
as such propagation is safe.

• spec This transformation performs the same optimizations as simp but it also
performs multiple specialization when this improves the possibilities of optimiza­
tion. The starting point for this transformation is not a program annotated with
analysis information, as in the case above, but rather an expanded program which
corresponds to the analysis graph computed by multi-variant abstract interpre­
tation. A minimization algorithm is used in order to guarantee that the resulting
program is minimal in the sense that further collapsing versions would represent
losing opportunities for optimization.

• vers This transformation has in common with spec that it takes as starting
point the expanded program which corresponds to the analysis graph computed by
abstract interpretation. However, this transformation performs no optimizations
and does not minimize the program. As a result, it generates the expanded
program.

• for partial evaluation:
• codegen This generates the specialized program resulting from partial evaluation,

obtained by unfolding goals during analysis. The kind of unfolding performed is
governed by the comp_rule flag, as follows:

• leftmost unfolds the leftmost clause literal;
• eval _bui l t in selects for unfolding first builtins which can be evaluated;
• local_emb tries to select first atoms which do not endanger the embedding

ordering or evaluable builtins whenever possible;

The Ciao Preprocessor

• jump_buil t in selects the leftmost goal but can 'jump' over (ignore) builtins
when they are not evaluable. A main difference with the other computation
rules is that unfolding is performed 'in situ', i.e., without reordering the
atoms in the clause.

• saf e_jb same as jump_buil t in with the difference that it only jumps over
a call to a builtin iff the call is safe [APG06] (i.e., it is error free, binding
insensitive and side effect free).

• b ind_ins _ jb same as safe_jb with the difference that it only jumps
over a call to a builtin iff the call is binding insensitive and side effect free.

• no_sideff _jb same as b ind_ins _ jb with the difference that it only
jumps over a call to a builtin iff it is side effect free.

Unfolding is performed continuously on the already unfolded clauses, until a
condition for stopping the process is satisfied. This condition is stablished by the
local control policy, governed by the loca l _con t ro l flag, as follows:

• i n s t allows goal instantiation but no actual unfolding is performed.
• or ig returns the clauses in the original program for the corresponding pred­

icate.
• det allows unfolding while derivations are deterministic and stops them when

a non-deterministic branch is required. Note that this may not be terminat­
ing.

• de t _ l a same as det, but with look-ahead. It can perform a number of non-
deterministic steps in the hope that the computation will turn deterministic.
This number is determined by flag unf _depth.

• depth always performs the same number of unfolding steps for every call
pattern. The number is determined by flag unf _depth.

• f i r s t \ _ s o l explores the SLD tree width-first and keeps on unfolding until
a first solution is found. It can be non-terminating.

• f i r s t \ _ s o l \ _ d same as above, but allows terminating when a given depth
bound is reached without obtaining any solution. The bound is determined
by unf_depth.

• a l l \ _ s o l tries to generate all solutions by exploring the whole SLD tree.
This strategy only terminates if the SLD is finite.

• hom_emb keeps on unfolding until the selected atom is homeomorphically
embedded in an atom previously selected for unfolding.

• hom_emb_anc same as before, but only takes into account previously se­
lected atoms which are ancestors of the currently selected atom.

• hom_emb_as same as before, but efficiently implemented by using a stack
to store ancestors.

• df _hom_emb_as same as before, but traverses the SLD tree on a depth-
first fashion (all strategies above use wide-first search). This allows better
performance.

• df_tree_hom_emb same as above, but does not use the efficient stack-
based implementation for ancestors.

• df_hom_emb same as above, but compares with all previously selected
atoms, and not only ancestors. It is like hom_emb but with depth-first
traversal.

• g lobal _cont ro l In order to guarantee termination of the partial evaluation
process, it is often required to abstract away information before unfolding. This
is usually known as global control. This flag can have the following values:

file:///_depth
file:///_depth
file:///_depth
file:///_hom/_emb/_as

Chapter 3: The CiaoPP low-level programming interface 29

• off unfolds always;
• id unfolds patterns which are not equal (modulo renaming) to a formerly

analyzed pattern.
• i n s t unfolds patterns which are not an instance of a previous pattern.
• hom_emb unfolds patterns which are not covered under the homeomorphic

embedding ordering [Leu98].
• hom_emb_num same as hom_emb, but also considers that any number em­

beds any other number.

Only hom_emb guarantees termination. However, id and ins t are more efficient,
and terminating in many practical cases.

• arg_f i l t e r i n g This transformation removes from program literals static values
which are not needed any longer in the resulting program. This is typically the
case when some information is known at compile-time about the run-time values
of arguments.

• codegen_af This performs codegen and arg_f i l t e r i n g in a single traversal
of the code. Good for efficiency.

• for code size reduction:
• s l i c i n g This transformation is very useful for debugging programs since it iso­

lates those predicates that are reachable from a given goal. The goals used
are those exported by the module. The 'slice' being obtained is controlled by
the following local control policies (described above): df_hom_emb_as, df_
hom_emb, df_tree_hom_emb. It is also necessary to analyze the program
with any of the currently available analyses for partial evaluation. Slicing is also
very useful in order to perform other software engineering tasks, such as program
understanding, maintenance, specialization, code reuse, etc.

• for program parallelization:
Parallelization is performed by considering goals the execution of which can be deemed
as independent [HR95,GHM00] under certain conditions. Parallel expressions (possi­
bly conditional) are built from such goals, in the following fashions:

• mel exploits parallel expressions which preserve the ordering of literals in the
clauses;

• cdg tries to exploit every possible parallel expression, without preserving the
initial ordering;

• udg is as above, but only exploits unconditional parallel expressions [MBdlBH99];
• u r lp exploits unconditional parallel expressions for NSIAP with a posteriori con­

ditions [CH94].
• c r ip exploits conditional parallel expressions for NSIAP with a posteriori con­

ditions.
• granul This transformation allows to perform run-time task granularity control

of parallelized code (see [LGHD96a]), so that the program will decide at run-time
whether to run parallel expressions or not. The decision is based on the value of
flag granular i ty _ threshold .

• for instrumenting the code for run-time assertion checking:

• r tchecks Transforms the program so that it will check the predicate-level asser­
tions at run-time.

Usage: transformation(Transformation)
Transformation is a valid transformation identifier.

30 The Ciao Preprocessor

3.4 Other information (ciaopp)
In this section the flags related with program analysis are explained in some detail. In

particular, special attention is given to inter-modular program analysis and partial deduction
(performed in CiaoPP during analysis).

3 . 4 . 1 A n a l y s i s w i t h P L A I

Most of the analyses of CiaoPP are performed with the PLAI (Programming in Logic with
Abstract Interpretation) framework [BGH94]. This framework is based on the computation of
a fixed point for the information being inferred. Such a fixed point computation is governed by
flag f ixpoint, whose values are:

• p l a i for the classical fixed point computation [MH89a];
• dd for an incremental fixed point computation [HPMS00];
• di for the depth independent fixed point algorithm of [HPMS00];
• check_di .

3 . 4 . 2 I n t e r - m o d u l a r a n a l y s i s

In inter-modular analysis CiaoPP takes into account the results of analyzing a module when
other modules in the same program are analyzed. Thus, it collects analysis results (success
patterns) for calls to predicates in other modules to improve the analysis of a given module.
It also collects calls (call patterns) that are issued by the given module to other modules to
reconsider them during analysis of such other modules.

Such flow of analysis information between modules while being analyzed can be performed
when analyzing one single module. The information flow then affects only the modules imported
by it. New call patterns will be taken into account when/if it is the turn for such imported
modules to be analyzed. Improved success patterns will only be reused when/if the importing
module is reanalyzed. However, CiaoPP can also iterate continuously over the set of modules of
a given program, transferring the information from one module to others, and deciding which
modules to analyze at which moment. This will be done until an inter-modular fixed point is
reached in the analysis of the whole program (whereas analysis is performed one-module-at-a-
time, anyway).

Inter-modular analysis is enabled with flag intermod. During inter-modular analysis there
are several possible choices for selecting success patterns and call patterns. For example, when
a success pattern is required for a given call pattern to an imported predicate, and there exist
several that could be used, but none of them fit exactly with the given call pattern. Also, if,
in that same case, there are no success patterns that fit (in which case CiaoPP has to make
an initial guess). Finally, when there are new call patterns to a given module obtained during
analysis of the modules that import it, which of them to use as entry points should be decided.
All these features are governed by the following flags:

• intermod to activate inter-modular analysis.
• off disables inter-modular analysis. This is the default value.
• on enables inter-modular analysis.
• auto allows the analysis of a modular program, using intermod:auto_analyze/2-3

with the main module of the program, iterating through the module graph until an
inter-modular fixed point is reached. This value is set automatically by CiaoPP, and
it should not be set by the user.

• success_policy to obtain success information for given call patterns to imported predi­
cates.

Chapter 3: The CiaoPP low-level programming interface 31

• best selects the success pattern which corresponds to the best over-approximation of
the sought call pattern; if there are several non-comparable best over-approximations,
one of them is chosen randomly.

• f i r s t selects the first success pattern which corresponds to a call pattern which is an
over-approximation of the sought call pattern.

• a l l computes the greatest lower bound of the success patterns that correspond to
over-approximating call patterns.

• top selects Top (no information) as answer pattern for any call pattern.
• botf i r s t selects the first success pattern which corresponds to a call pattern which is

an under-approximation of the sought call pattern.
• botbest selects the success pattern which corresponds to the best under-approximation

of the sought call pattern; if there are several non-comparable best under-
approximations, one of them is chosen randomly.

• b o t a l l computes the least upper bound of the success patterns that correspond to
under-approximating call patterns.

• bottom selects Bottom (failure) as answer pattern for any call pattern.
• i n i t i a l \ _ g u e s s to obtain an initial guess for the success pattern corresponding to a call

pattern to an imported predicate when there is none that fully matches.
• botf i r s t selects the success pattern already computed corresponding to the first call

pattern which is an under-approximation of the given call pattern.
• botbest selects the success pattern corresponding to the call pattern which best under-

approximates the given call pattern (if there are several, non-comparable call patterns,
one of them is selected randomly).

• b o t a l l computes the least upper bound of the success patterns that correspond to
under-approximating call patterns.

• bottom selects Bottom as initial guess for any call pattern.
• entry_pol icy to obtain entry call patterns for exported predicates.

• a l l selects all entry call patterns for the current module which have not been analyzed
yet, either from entry assertions found in the source code, or from the analysis of other
modules that import the current module.

• top _ leve l is only meaningful during auto inter-modular analysis, and it is set auto­
matically by CiaoPP. If the current module is the top-level module (the main module
of the modular program being analyzed), the entry policy behaves like a l l . In any
other case, it selects entry call patterns for the current module from the analysis of
other modules that import it, ignoring entry assertions found in the source code.

• force forces the analysis of all entries of the module (from both the module source
code and calling modules), even if they have been already analyzed.

• f o rce _ass r t forces the analysis of all entries coming from the module source code, but
does not analyze entries relative to calling modules, even if they need to be (re)analyzed.

• p r o c e s s \ _ l i b r a r i e s to indicate that Ciao system libraries must also be analyzed when a
modular user program is analyzed.

• off disables the analysis of any Ciao system library.
• on enables the analysis of all Ciao system libraries.
• no_engine enables the analysis of Ciao system libraries which are not engine libraries.

• use_check_assr t to indicate that check assertions for imported predicates will be used
as trust assertions. This is specially interesting when performing intermodular compile-time
checking.

• off disables the use of check assertions as trust assertions for imported predicates.
• on enables the use of check assertions as trust assertions.

32 The Ciao Preprocessor

3.4.3 Abstract partial deduction

Partial deduction (or partial evaluation) is a program transformation technique which spe­
cializes the program w.r.t. information known at compile-time. In CiaoPP this is performed
during analysis of the program, so that not only concrete information but also abstract informa­
tion (from the analysis) can be used for specialization. With analysis domain pd (and pdb) only
concrete values will be used; with other analysis domains the domain abstract values inferred
will also be used. This feature is governed by the following flags:

• abs_spec_def s to exploit abstract substitutions in order to:
• rem try to eliminate clauses which are incompatible with the inferred substitution at

each unfolding step;

• exec perform abstract executability of atoms;
• a l l do both.

• par t _concre te to try to convert abstract information into concrete information if possible,
so that:

• mono one concrete atom is obtained;
• mult i multiple atoms are allowed when the information in the abstract substitution is

disjunctive.
• rem_use_cls to identify clauses which are incompatible with the abstract call substitution

and remove them:
• pre prior to performing any unfolding steps;
• post after performing unfolding steps;
• both both before and after performing unfolding steps.

• f i l ter _nums to filter away during partial evaluation numbers which:

• safe are not safe, i.e., do not appear in the original program, or
• on all numbers.

3.5 Known bugs and planned improvements (ciaopp)

• 1 The ciaopp version number is now hardwired instead of being automatically updated

Chapter 4: The CiaoPP command-line interface

4 The CiaoPP command-line interface
Author(s): The CLIP Group.

The command-line interface of CiaoPP allows the use of the system in batch mode,
command-line arguments for setting preprocessor flags and performing actions.

4.1 Command-line options

This interface can be used by means of the following command-line options:

Usage 1: (batch mode)
ciaoppcl [-o OutFile] Option Filename [FlagsValues]

Where:
-o OutFile after processing Filename, the resulting source

code is written to OutFile. If this option is
omitted, the output is written to a file
automatically named depending on the actions
performed.

Option must be one of the following:
-Q runs the interactive (text-based) menu for

preprocessing Filename.
-A analyzes Filename with the default options

except the flag values set with -f at the
command line.

-0 optimizes Filename with the default options
except the flag values set with -f at the
command line.

-V verifies the assertions of Filename with
the default options except the flag values set
with -f at the command line.

-U Config processes Filename with the
options set in the CiaoPP configuration Config.

FlagsValues is a list of options -fFlagName=FlagValue
separated by blank spaces, where FlagName is a valid
CiaoPP flag name. This list is optional, and does not need
to include all flags applicable to the action to be performed:
the flags not included in this list will be assumed to take
their default value. Examples:

-flocal_control=on where local_control is expected to be
a CiaoPP flag;

-f local_control=on same as above, with additional blank spaces

Internal flags can also be changed using -pIntFlagName=Value.

Usage 2: (top-level mode)
ciaoppcl -T

-T option starts a CiaoPP top-level shell. Any of the predicates

34 The Ciao Preprocessor

described in the Section CiaoPP User Menu Interface of the CiaoPP
Reference Manual can be used in this top-level.

Execution Examples:

ciaoppcl -Q myfile.pl
ciaoppcl -o myfile_checked.pl -V myfile.pl
ciaoppcl -0 myfile.pl
ciaoppcl -A myfile.pl -ftypes=terms -f modes=pd
ciaoppcl -T

4.2 Description of the execution examples
• The following command will prompt the user with the options needed to preprocess

myfile.pl:
ciaoppcl -Q myfile.pl

• If we want to verify the assertions of myfile.pl, and generate the resulting source code
that will the new status of the assertions (either checked, if CiaoPP has proved that the
assertion holds, or fa l se if it has falsified the assertion), the command line is as follows:
ciaoppcl -o myfile_checked.pl -V myfile.pl

• To optimize myfile.pl, and write the optimize code in a file named automatically (e.g.,
myfile_pd_codegen_af_co.pl), the following command line must be used:
ciaoppcl -0 myfile.pl

• If the default flag values need to be changed, the -f option can be used. For example, in
order to analyze myfile.pl to change the types analysis domain to terms instead of the
default one, and the mode-aliasing domain to pd, the command line to use should be:
ciaoppcl -A myfile.pl -ftypes=terms -f modes=pd

• Finally, the following command line can be used to start a top-level CiaoPP shell:
ciaoppcl -T

http://myfile.pl
http://myfile_checked.pl
http://myfile.pl
http://myfile.pl
http://myfile.pl
http://myfile.pl
http://myfile.pl
http://myfile.pl
http://myfile_checked.pl
http://myfile.pl
http://myfile.pl
http://myfile_pd_codegen_af_co.pl
http://myfile.pl
http://myfile.pl
http://myfile.pl

PART II - The Assertion Language and Its Use 35

PART II - The Assertion Language and Its Use

f

Author(s): The CLIP Group.

V

\

/

36 The Ciao Preprocessor

Chapter 5: Using assertions for preprocessing programs 37

5 Using assertions for preprocessing programs
Author(s): Francisco Bueno.
This chapter explains the use of assertions to specify a program behaviour and properties

expected to hold of the program. It also clarifies the role of assertion-related declarations so
that a program can be statically preprocessed with CiaoPP.

CiaoPP starts a preprocessing session from a piece of code, annotated with assertions. The
code can be either a complete self-contained program or part of a larger program (e.g., a module,
or a user file which is only partial). The assertions annotating the code describe some properties
which the programmer requires to hold of the program. Assertions are used also to describe to
the static analyzer some properties of the interface of the code being preprocessed at a given
session with other parts of the program that code belongs to. In addition, assertions can be
used to provide information to the static analyzer, in order to guide it, and also to control
specialization and other program transformations.

This chapter explains the use of assertions in describing to CiaoPP: (1) the program specifi­
cation, (2) the program interface, and (3) additional information that might help static prepro­
cessing of the program.

In the following, the Ciao assertion language is briefly described and heavily used. In Chap­
ter 6 [The Ciao assertion package], page 47, a complete reference description of assertions is
provided. More detailed explanations of the language can be found in [PBHOO].

This chapter also introduces and uses properties, and among them (regular) types. See
Chapter 9 [Basic data types and properties], page 69, for a concrete reference of (some of) the
Ciao properties. See Chapter 8 [Declaring regular types], page 63, for a presentation of the Ciao
type language and an explanation on how you can write your own properties and types.

Most of the predicates used below which are not defined belong to the ISO-Prolog standard
[DEDC96]. The builtin (or primitive) constraints used have also become more or less de-facto
standard. For detailed descriptions of particular constraint logic programming builtins refer for
example to the CHIP [COS96], ProloglV [PRO], and Ciao [BCC04] manuals.

5.1 Assertions

Predicate assertions can be used to declare properties of the execution states at the time of
calling a predicate and upon predicate success. Also, properties of the computation of the calls
to a predicate can be declared.

Assertions may be qualified by keywords check or trust. Assertions qualified with the
former—or not qualifed—are known as check assertions; those qualified with the latter are known
as trust assertions. Check assertions state the programmer's intention about the program and
are used by the debugger to check for program inconsistencies. On the contrary, trust assertions
are "trusted" by CiaoPP tools.

• The specification of a program is made of all check assertions for the program predicates.
v)

5.1.1 Propert ies of success s tates

They are similar in nature to the postconditions used in program verification. They can be
expressed in our assertion language using the basic assertion:

: - success Goal => Postcond.
This assertion should be interpreted as, "for any call of the form Goal which succeeds, on

success Postcond should also hold" .
Note that, in contrast to other programming paradigms, calls to a predicate may either suc­

ceed or fail. The postcondition stated in a success assertion only refers to successful executions.

38 The Ciao Preprocessor

5.1.2 Restr ict ing assertions to a subset of calls

Sometimes we are interested in properties which refer not to all invocations of a predicate,
but rather to a subset of them. With this aim we allow the addition of preconditions (Precond)
to predicate assertions as follows: 'Goal : Precond'.

For example, success assertions can be restricted and we obtain an assertion of the form:
: - success Goal : Precond => Postcond.

which should be interpreted as, "for any call of the form Goal for which Precond holds, if
the call succeeds then on success Postcond should also hold".

5.1.3 Propert ies of call s tates

It is also possible to use assertions to describe properties about the calls for a predicate which
may appear at run-time. An assertion of the form:

: - c a l l s Goal : Cond.
must be interpreted as, "all calls of the form Goal should satisfy Cond".

5.1.4 Propert ies of the computat ion

Many other properties which refer to the computation of the predicate (rather than the input-
output behaviour) are not easily expressible using c a l l s and success predicate assertions only.
Examples of properties of the computation which we may be interested in are: non-failure,
termination, determinacy, non-suspension, etc.

This sort of properties are expressed by an assertion of the form:
: - comp Goal : Precond + Comp-prop.

which must be interpreted as, "for any call of the form Goal for which Precond holds, Comp-
prop should also hold for the computation of Goal". Again, the field ' : Precond' is optional.

5.1.5 C o m p o u n d assertions

In order to facilitate the writing of assertions, a compound predicate assertion can be used as
syntactic sugar for the above mentioned basic assertions. Each compound assertion is translated
into one or several basic assertions, depending on how many of the fields in the compound
assertion are given. The compound assertion is as follows.

: - pred Pred : Precond => Postcond + Comp-prop.
Each such compound assertion corresponds to: a success assertion of the form:

: - success Pred : Precond => Postcond.
if the pred assertion has a => field (and a : field). It also corresponds to a comp assertion of

the form:
: - comp Pred : Precond + Comp-prop.

if the pred assertion has a + field (and a : field).
All compound assertions given for the same predicate correspond to a single c a l l s assertion.

This c a l l s assertion states as properties of the calls to the predicate a disjunction of the
properties stated by the different compound assertions in their : field. Thus, it is of the form:

: - c a l l s Pred : (Precondl ; . . . ; Precondn) .
for all the Precondi in the : fields of (all) the different pred assertions.
Note that when compound assertions are used, c a l l s assertions are always implicitly gen­

erated. If you do not want the c a l l s assertion to be generated (for example because the set
of assertions available does not cover all possible uses of the predicate) basic success or comp
assertions rather than compound (pred) assertions should be used.

Chapter 5: Using assertions for preprocessing programs 39

5.1.6 Examples of c o m p o u n d assertions

Consider the classical qsort program for sorting lists. We can use the following assertion in
order to require that the output of procedure qsort be a list:

: - success qsort(A,B) => l i s t (B) .
Alternatively, we may require that if qsort is called with a list in the first argument position

and the call succeeds, then on success the second argument position should also be a list. This
is declared as follows:

: - success qsort(A,B) : l i s t (A) => l i s t (B) .

The difference with respect to the previous assertion is that B is only expected to be a list
on success of predicate qsor t /2 if A was a list at the call.

In addition, we may also require that in all calls to predicate qsort the first argument should
be a list. The following assertion will do:

: - c a l l s qsort(A,B) : l i s t (A) .
The qsort procedure should be able to sort all lists. Thus, we also require that all calls to

it that have a list in the first argument and a variable in the second argument do not fail:
: - comp qsort(A,B) : (l i s t (A) , var(B)) + does_not_fai l .

Instead of the above basic assertions, the following compound one could be given:

: - pred qsort(A,B) : (l i s t (A) , var(B)) => l i s t (B) + does_not_fai l .
which will be equivalent to:

: - c a l l s qsort(A,B) : (l i s t (A) , var (B)) .
: - success qsort(A,B) : (l i s t (A) , var(B)) => l i s t (B) .
: - comp qsort(A,B) : (l i s t (A) , var(B)) + does_not_fai l .

This will not allow to call qsort with anything else than a variable as second argument. If
this use of qsort is expected, one should have added the assertion:

: - pred qsort(A,B) : l i s t (A) => l i s t (B) .
which, together with the above one, will imply:

: - c a l l s qsort(A,B) : ((l i s t (A) , var(B)) ; l i s t (A)) .
Then it is only required that A be a list.

5.2 Properties

Whereas each kind of assertion indicates when, i.e., in which states or sequences of states, to
check the given properties, the properties themselves define what to check. Properties are used
to say things such as "X is a list of integers," "Y is ground," "p(X) does not fail," etc. and in
Ciao they are logic predicates, in the sense that the evaluation of each property either succeeds
or fails. The failure or success of properties typically needs to be determined at the time when
the assertions in which they appear are checked. Assertions can be checked both at compile-time
by CiaoPP and at run-time by Ciao itself (after the instrumentation of the program by CiaoPP).
In this section we will concentrate exclusively on run-time checking.

A property may be a predefined predicate in the language (such as integer(X)) or con­
straint (such as X>5). Properties may include extra-logical predicates such as var(X)). Also,
expressions built using conjunctions of properties,1 or, in principle, any predicate defined by the
user, using the full underlying (C)LP language. As an example, consider defining the predicate
sorted(B) and using it as a postcondition to check that a more involved sorting algorithm such
as qsort (A,B) produces correct results.

1 Although disjunctions are also supported, we restrict our attention to only conjunctions.

40 The Ciao Preprocessor

While user-defined properties allow for properties that are as general as allowed by the full
source language syntax, some limitations are useful in practice. Essentially, the behaviour of
the program should not change in a fundamental way depending on whether the run-time tests
are being performed or not. For example, turning on run-time checking should not introduce
non-termination in a program which terminates without run-time checking. To this end, it is
required that the user ensure that the execution of properties terminate for any possible initial
state. Also, checking a property should not change the answers computed by the program or
produce unexpected side-effects. Regarding computed answers, in principle properties are not
allowed to further instantiate their arguments or add new constraints. Regarding side-effects,
it is required that the code defining the property does not perform input/output, add/delete
clauses, etc. which may interfere with the program behaviour. It is the user's responsibility to
only use predicates meeting these conditions as properties. The user is required to identify in a
special way the predicates which he or she has determined to be legal properties. This is done
by means of a declaration of the form

: - prop Spec.
where Spec is a predicate specification in the form PredName/Arity.
Given the classes of assertions presented previously, there are two fundamental classes of

properties. The properties used in the Cond of calls assertions, Postcond of success assertions,
and Precond of success and comp assertions refer to a particular execution state and we refer
to them as properties of execution states. The properties used in the Comp-prop part of comp
assertions refer to a sequence of states and we refer to them as properties of computations.

Basic properties, including instantiation and compatibility state properties, types, and prop­
erties of computations (all discussed in Chapter 8 [Declaring regular types], page 63) are docu­
mented in Chapter 9 [Basic data types and properties], page 69.

5.3 Preprocessing units

The preprocessing unit is the piece of code that is made available to CiaoPP at a given
preprocessing session. Normally, this is a file, but not all the code of a program is necessarily
contained in one single file: in order to statically manipulate the code in a file, CiaoPP needs
to know the interactions of this code with other pieces of the program—probably scattered over
other files—, as well as what the user's interaction with the code will be upon execution. This
is also done through the use of assertions.

If the preprocessing unit is self-contained the only interaction of its code (apart from calling
the builtin predicates of the language) is with the user. The user's interaction with the program
consists in querying the program. The predicates that may be directly queried by the user are
entry points to the preprocessing unit.

Entry points can be declared in two ways: using a module declaration specifying the entry
points, or using one entry declaration for each entry point. If entry declarations are used, instead
of, or in addition to, the module declaration, they can also state properties which will hold at
the time the predicate is called.

However, if the preprocessing unit is not self-contained, but only part of a larger program,
then other interactions may occur. The interactions of the preprocessing unit include: the user's
queries, calls from other parts of the program to the unit code, calls to the unit code from unit
code which does not appear explicitely in the unit text, and calls from the unit code to other
parts of the program.

First, other parts of the program can call predicates defined in the preprocessing unit. CiaoPP
needs to know this information. It must be declared by specifying additional entry points,
together with those corresponding to the user's queries.

Second, the preprocessing unit itself may contain meta-calls which may call any unspecified
predicate. All predicates that may be called in such a way should be declared also as entry points.

Chapter 5: Using assertions for preprocessing programs 41

Additional entry points also occur when there are predicates defined in the preprocessing unit
which can be dynamically modified. In this case the code dynamically added can contain new
predicate calls. These calls should be declared also as entry points.

Note that all entry points to the preprocessing unit should be declared: entry points including
query calls that the user may issue to the program, or another part of the program can issue to
the unit, but also dynamic calls: goals that may be run within the unit which do not appear
explicitely in the unit text, i.e., from meta-predicates or from dynamic clauses which may be
asserted during execution. In all cases, entry declarations are used to declare entry points.2

Third, the unit code may call predicates defined in other parts of the program. The code
defining such predicates is termed foreign code, since it is foreign to the preprocessing unit. It is
important that CiaoPP knows information about how calls to foreign code will succeed (if they
succeed), in order to improve its accuracy. This can be done using trust declarations.

Also, trust declarations can be used to provide the preprocessor with extra information. They
can be used to describe calls to predicates defined within the preprocessing unit, in addition to
those describing foreign code. This can improve the information available to the preprocessor
and thus help it in its task. Trust declarations state properties that the programmer knows to
hold of the program.

The builtin predicates is one particular case of predicates the definitions of which are never
contained in the program itself. Therefore, preprocessing units never contain code to define the
builtins that they use. However, the Ciao Program Precompiler makes no assumptions on the
underlying language (except that it is constraint logic programming). Thus, all information on
the behaviour of the language builtins should be made available to it by means of assertions
(although this does not concern the application programmer who is going to preprocess a unit,
rather it concerns the system programmer when installing the Ciao Program Precompiler).

The rest of this document summarizes how assertions can be used to declare the preprocessing
unit interactions. It shows the use of entry and trust declarations in preprocessing programs
with CiaoPP.3

5.4 Foreign code

A program preprocessing unit may make use of predicates defined in other parts of the
program. Such predicates are foreign to the preprocessing unit, i.e., their code is not in the unit
itself. In this case, CiaoPP needs to know which is the effect that such predicates may cause
on the execution of the predicates defined in the unit. For this purpose, trust declarations are
used.

Foreign code includes predicates defined in other modules which are used by the preprocessing
unit, predicates defined in other files which do not form part of the preprocessing unit but which
are called by it, builtin predicates4 used by the code in the preprocessing unit, and code written
in a foreign language which will be linked with the program. All foreign calls (except to builtin
predicates) need to be declared.5

2 When the language supports a module system, entry points are implicitely declared by the
exported predicates. In this case entry declarations are only used for local predicates if there
are dynamic calls.

3 This manual concentrates on one particular use of the declarations for solving problems
related to compile-time program analysis. However, there are other possible solutions. For a
complete discussion of these see [BCHP96].

4 However, builtin predicates are usually taken care of by the system programmer, and the
preprocessor, once installed, already "knows" them.

5 However, if the language supports a module system, and the preprocessor is used in modular
analysis operation mode, trust declarations are imported from other modules and do not
need to be declared in the preprocessing unit.

42 The Ciao Preprocessor

/

V

• The effect of calls to foreign
predicates.

predicates may be declared by using trust declarations
\

for such

/

Trust declarations have the following form:
: - t r u s t success Goal : (Prop, . . . , Prop)

=> (Prop, . . . , Prop) .
where Goal is an atom of the foreign predicate, with all arguments single distinct variables,

and Prop is an atom which declares a property of one (or several) of the goal variables.
The first list of properties states the information at the time of calling the goal and the second

one at the time of success of the goal. Thus, such a trust assertion declares that for any call to
the predicate where the properties in the first list hold, those of the second will also hold upon
success of the call.

Simplified versions of trust assertions can also be used, much the same as with entry decla­
rations. See Section 5.1 [Assertions], page 37.

Trust declarations are a means to provide the preprocessor with extra information about the
program states. This information is guaranteed to hold, and for this reason the preprocessor
trusts it. Therefore, it should be used with great care, since if it is wrong the precompilation of
your program will possibly be wrong.

5.4.1 Examples of trust assertions

The following annotations describe the behavior of the predicate p/2 for two possible call
patterns:

: - t r u s t success p/2 : def * free => def * def.
: - t r u s t success p/2 : free * def => free * def.

This would allow performing the analysis even if the code for p/2 is not present. In that
case the corresponding success information in the annotation can be used ("trusted") as success
substitution.

In addition, trust declarations can be used to improve the results of compile-time program
analysis when they are imprecise. This may improve the accuracy of the debugging, possibly
allowing it to find more bugs.

5.5 Dynamic predicates

Predicate definitions can be augmented, reduced, and modified during program execution.
This is done through the database manipulation builtins, which include asser t , r e t r a c t ,
abolish, and clause. These builtins (with the exception of clause) dynamically manipu­
late the program itself by adding to or removing clauses from it. Predicates that can be affected
by such builtins are called dynamic predicates.

There are at least two possible classes of dynamic predicates which behave differently from
the point of view of static manipulation. First, clauses can be asserted and/or retracted to
maintain an information database that the program uses. In this case, usually only facts are
asserted. Second, full clauses can be asserted for predicates which are also called within the
program.

The first class of dynamic predicates are declared by data declarations. The second class by
dynamic declarations. The form of both declarations is as follows:

: - data Spec, . . . , Spec.
: - dynamic Spec, . . . , Spec,

where Spec is a predicate specification in the form PredName/Arity.

Chapter 5: Using assertions for preprocessing programs 43

r
Dynamic predicates which are called must be declared by using a dynamic declaration.

Of course, the preprocessor cannot know of the effect that dynamic clauses added to the
definition of a predicate may cause in the execution of that predicate. However, this effect can
be described to the preprocessor by adding trust declarations for the dynamic predicates.

The effect of calls to predicates which are dynamically modified may be declared by using
trust declarations for such predicates.

5.6 Entry points

In a preprocessing session (at least) one entry point to the preprocessing unit is required. It
plays a role during preprocessing similar to that of the query that is given to the program to
run. Several entry points may be given. Entry points are given to the preprocessor by means of
entry or module declarations.

If the preprocessing unit is a module, only the exported predicates can be queried. If the
preprocessing unit is not a module, all of its predicates can be queried: all the unit predicates
may be entry points to it. Entry declarations can then be used by the programmer to specify
additional information about the properties that hold of the arguments of a predicate call when
that predicate is queried.

Note that if the unit is not a module all of its predicates are considered entry points to the
preprocessor. However, if the unit incorporates some entry declarations the preprocessor will
act as if the predicates declared were the only entry points (the preprocessing session being valid
for a particular use of the unit code—that specified by the entry declarations given).

• All predicates that can be queried by the user and all predicates that can be called from
parts of the program which do not explicitely appear in the preprocessing unit should (but
need not) be declared as entry points by using entry declarations.

The entry declaration has the following form:

: - entry Goal : (Prop, . . . , Prop) .
where Goal is an atom of the predicate that may be called, with all arguments single distinct

variables, and Prop is an atom which declares a property of one (or several) of the goal variables.
The list of properties is optional.

There are alternative formats in which the properties can be given: as the arguments of Goal
itself, or as keywords of the declaration. For a complete reference of the syntax of assertions,
see Section 5.1 [Assertions], page 37.

5.6.1 Examples of entry declarations

Consider the following program:

append ([] , L, L) .
append([H|T], L, [H|R]) : - append(T, L, R).

It may be called in a classical way with the first two arguments bound to lists, and the third
argument a free variable. This can be annotated in any of the following three ways:

:- entry append(X,Y,Z) : (l i s t (X) , l i s t (Y) , var(Z)) .
:- entry append/3 : l i s t * l i s t * var .
:- entry a p p e n d (l i s t , l i s t , v a r) .

Assume you have the following program:

44 The Ciao Preprocessor

p(X,Y):- q(X,Y,Z).
q(X,Y,Z):- X = f(Y,Z), Y + Z = 3 .

Assume that p/2 is the only entry point. If you include the following declaration:
: - entry p / 2 .

or, equivalently,
: - entry p(X,Y).

the code will be preprocessed as if goal p(X,Y) was called with the most general call pattern
(i.e., as if X and Y may have any two values, or no value at all—the variables being free).

However, if you know that p/2 will always be called with the first argument uniquely defined
and the second unconstrained, you can then provide more accurate information by introducing
one of the following declarations:

: - entry p(X,Y) : (def(X), free(Y)) .
: - entry p (d e f , f r e e) .

Now assume that p/2 will always be called with the first argument bound to the compound
term f (A,B) where A is definite and B is unconstrained, and the second argument of p/2 is
unconstrained. The entry declaration for this call pattern is:

: - entry p(X,Y) : (X=f(A,B), def(A), f ree(B) , free(Y)) .
If both call patterns are possible, the most accurate approach is to include both entry dec­

larations in the preprocessing unit. The preprocessor will then analyze the program for each
declaration. Another alternative is to include an entry declaration which approximates both call
patterns, such as one of the following two:

: - entry p(X,Y) : free(Y).
: - entry p(X, f ree) .

which state that Y is known to be free, but nothing is known of X (since it may or may not
be definite).

5.7 Modules

Modules provide for encapsulation of code, in such a way that (some) predicates defined
in a module can be used by other parts of the program (possibly other modules), but other
(auxiliary) predicates can not. The predicates that can be used are exported by the module
defining them and imported by the module(s) which use(s) them. Thus, modules provide for a
natural declaration of the allowed entry points to a piece of a program.

A module is identified by a module declaration at the beginning of the file defining that
module. The module declaration has the following form:

: - module(Name, [Spec , . . . ,Spec]) .
where the module is named Name and it exports the predicates in the different Spec's.
Note that such a module declaration is equivalent, for the purpose of static preprocessing, to

as many entry declarations of the form:

: - entry Spec.
as there are exported Spec's.

Chapter 5: Using assertions for preprocessing programs 45

5.8 Dynamic calls
In addition to entry points there are other calls that may occur from within a piece of code

which do not explicitely appear in the code itself. Among these are metacalls, callbacks, and
calls from clauses which are asserted during program execution.

Metacalls are literals which call one of their arguments at run-time, converting at the time of
the call a term into a goal. Predicates in this class are not only ca l l , but also bagof, f inda l l ,
setof, negation by failure, and once (single solution).

Metacalls may be static, and this kind of calls need not be declared. A static metacall is, for
example, once(p(X)), where the predicate being called is statically identifiable (since it appears
in the code). On the other hand, metacalls of the form call(Y) are dynamic, since the predicate
being called will only be determined at runtime.6

Callbacks are also metacalls. A callback occurs when a piece of a program uses a different
program module (or object) in such a way that it provides to that module the call that it should
issue upon return. Callbacks, much the same as metacalls, can be either dynamic or static. Only
the predicates of the preprocessing unit which can be dynamically called-back need be declared.

Clauses that are asserted during program execution correspond to code which is dynamically
created; thus, the preprocessor cannot be aware of such code during a (compile-time) preprocess­
ing session. The calls that may appear from the body of a clause which is dynamically created
and asserted are also dynamic calls.

• All dynamic calls must be declared by using entry declarations for the predicates that can
be called in a dynamic way.

v)

5.8.1 Examples of dynamic calls

Consider a program where you use the bagof predicate to collect all solutions to a goal, and
the program call looks like:

p (X , . . .) : - . . . , bagof(P,X,L), . . .
However, you know that, upon execution, only the predicates p/2 and q/3 will be called by

bagof, i.e., X will only be bound to terms with functors p/2 and q/3. Moreover, such terms will
have all of their arguments constrained to definite values. This information should be given to
the preprocessor using the declarations:

: - entry p (de f ,de f) .
: - entry q (de f ,de f ,de f) .

Assume you have a graphics library predicate menu_create/5 which creates a graphic menu.
The call must specify, among other things, the name of the menu, the menu items, and the
menu handler, i.e., a predicate which should be called upon the selection of a menu item. The
predicate is used as:

top : - . . . , menu_create(Menu,0,Items,Callback,[]) , . . .
but the program is coded so that there are only two menu handlers: app_menu/2 and edit_

menu/2. The first one handles menu items of the type app_item and the second one items of
the type edit_item. This should be declared with:

: - entry app_menu(gnd,app_item).
: - entry edit_menu(gnd,edit_item).

6 However, sometimes analysis techniques can be used to transform dynamic metacalls into
static ones.

46 The Ciao Preprocessor

Let a program have a dynamic predicate dyn_calls / l to which the program asserts clauses,
such that these clauses do only have in their bodies calls to predicates p/2 and q/3. This should
be declared with:

: - entry p/2 .
:- entry q/3.

Moreover, if the programmer knows that every call to dyn_calls/ l which can appear in the
program is such that upon its execution the calls to p/2 and q/3 have all of their arguments
constrained to definite values, then the two entry declarations at the beginning of the examples
may be used.

5.9 An overview

To process programs with the Ciao Program Precompiler the following guidelines might be
useful:

1. Add
: - use_package(assertions) .

to your program.
2. Declare your specification of the program using calls, success, comp, or pred assertions.
3. Use entry declarations to declare all entry points to your program.
4. The preprocessor will notify you during the session of certain program points where a meta-

call appears that may call unknown (at compile-time) predicates.
Add entry declarations for all the predicates that may be dynamically called at such program
points.

5. Use data or dynamic declarations to declare all predicates that may be dynamically modi­
fied.

6. Add entry declarations for the dynamic calls that may occur from the code that the program
may dynamically assert.

7. Optionally, you can interact with the preprocessor using trust assertions.
For example, the preprocessor will notify you during the session of certain program points
where a call appears to an unknown (at compile-time) predicate.
Add trust declarations for such predicates.

Chapter 6: The Ciao assertion package 47

6 The Ciao assertion package
Author(s): Manuel Hermenegildo, Francisco Bueno, German Puebla.
The asse r t ions package adds a number of new declaration definitions and new operator

definitions which allow including program assertions in user programs. Such assertions can
be used to describe predicates, properties, modules, applications, etc. These descriptions can
contain formal specifications (such as sets of preconditions, post-conditions, or descriptions of
computations) as well as machine-readable textual comments.

This module is part of the a s se r t ions library. It defines the basic code-related assertions,
i.e., those intended to be used mainly by compilation-related tools, such as the static analyzer
or the run-time test generator.

Giving specifications for predicates and other program elements is the main functionality
documented here. The exact syntax of comments is described in the autodocumenter (lpdoc
[Knu84,Her99]) manual, although some support for adding machine-readable comments in as­
sertions is also mentioned here.

There are two kinds of assertions: predicate assertions and program point assertions. All
predicate assertions are currently placed as directives in the source code, i.e., preceded by ":-" .
Program point assertions are placed as goals in clause bodies.

6.1 More info

The facilities provided by the library are documented in the description of its component
modules. This documentation is intended to provide information only at a "reference man­
ual" level. For a more tutorial introduction to the subject and some more examples please
see [PBHOO]. The assertion language implemented in this library is modeled after this design
document, although, due to implementation issues, it may differ in some details. The purpose
of this manual is to document precisely what the implementation of the library supports at any
given point in time.

6.2 Some attention points

• Formatting commands within text strings: many of the predicates defined in these mod­
ules include arguments intended for providing textual information. This includes titles,
descriptions, comments, etc. The type of this argument is a character string. In order for
the automatic generation of documentation to work correctly, this character string should
adhere to certain conventions. See the description of the docs t r ing /1 type/grammar for
details.

• Referring to variables: In order for the automatic documentation system to work correctly,
variable names (for example, when referring to arguments in the head patterns of pred dec­
larations) must be surrounded by an @var command. For example, @var{VariableName}
should be used for referring to the variable "VariableName", which will appear then for­
matted as follows: VariableName. See the description of the docs t r ing /1 type/grammar
for details.

48 The Ciao Preprocessor

6.3 Usage and interface (assertions_doc)

Library usage:

The recommended procedure in order to make use of assertions in user programs is to include
the a s s e r t i o n s syntax library, using one of the following declarations, as appropriate:

: - m o d u l e (. . . , . . . , [a s s e r t i o n s]) .
: - u s e _ p a c k a g e ([a s s e r t i o n s]) .

Exports:

— Predicates:

check/1, t r u s t / 1 , t r u e / 1 , f a l s e / 1 .

New operators denned:

=>/2 [975,xfx], : : / 2 [978,xfx], d e c l / 1 [1150,fx], d e c l / 2 [1150,xfx], pred/1 [1150,fx], pred/2
[1150,xfx], prop/1 [1150,fx], prop/2 [1150,xfx], modedef/1 [1150,fx], c a l l s / 1 [1150,fx],
c a l l s / 2 [1150,xfx], s u c c e s s / 1 [1150,fx], s u c c e s s / 2 [1150,xfx], t e s t / 1 [1150,fx], t e s t / 2
[1150,xfx], t e x e c / 1 [1150,fx], t e x e c / 2 [1150,xfx], comp/1 [1150,fx], comp/2 [1150,xfx],
entry /1 [1150,fx], e x i t / 1 [1150,fx], e x i t / 2 [1150,xfx].

New declarations denned:

pred/1 , pred/2, t e x e c / 1 , t e x e c / 2 , c a l l s / 1 , c a l l s / 2 , s u c c e s s / 1 , s u c c e s s / 2 , t e s t / 1 ,
t e s t / 2 , comp/1, comp/2, prop/1, prop/2, en try /1 , e x i t / 1 , e x i t / 2 , modedef/1, d e c l / 1 ,
d e c l / 2 , doc/2 , comment/2.

Imports:

— System library modules:

a s s e r t i o n s / a s s e r t i o n s _ p r o p s .

— Internal (engine) modules:

term_basic, ar i thmet ic , atomic_basic, basic_props, b a s i c c o n t r o l , data_fac t s ,
except ions , io_aux, i o_bas ic , pro log_ f lags , streams_basic , system_info, term_
compare, term_typing, h iord_rt , debugger_support.

— Packages:

prelude, nonpure.

v_

6.4 Documentation on new declarations (assertions_doc)

p r e d / 1 : DECLARATION
This assertion provides information on a predicate. The body of the assertion (its only
argument) contains properties or comments in the formats defined by a s s r t _ b o d y / l .

More than one of these assertions may appear per predicate, in which case each one
represents a possible " mode" of use (usage) of the predicate. The exact scope of the
usage is defined by the properties given for calls in the body of each assertion (which
should thus distinguish the different usages intended). All of them together cover all
possible modes of usage.

For example, the following assertions describe (all the and the only) modes of usage of
predicate l e n g t h / 2 (see l i s t s) :

: - pred length(L,N) : l i s t * var => l i s t * i n t e g e r
"Computes the l ength of L.".
: - pred length(L,N) : var * i n t e g e r => l i s t * i n t e g e r

Chapter 6: The Ciao assertion package 49

"Outputs L of length N.".
:- pred length(L,N) : l i s t * integer => l i s t * integer
"Checks that L i s of length N.".

Usage: :- pred AssertionBody.
— The following properties should hold at call time:

Assert ionBody is an assertion body. (assr t_body/l)

p r e d / 2 : DECLARATION
This assertion is similar to a pred/1 assertion but it is explicitely qualified. Non-qualified
pred/1 assertions are assumed the qualifier check.
Usage: :- AssertionStatus pred AssertionBody.

— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status / l)
AssertionBody is an assertion body. (assrt_body/l)

t e x e c / 1 : DECLARATION
This assertion is similar to a c a l l s / 1 assertion but it is used to provide input data and
execution commands to the unit-test driver.
Usage: :- texec AssertionBody.

— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/l)

t e x e c / 2 : DECLARATION
This assertion is similar to a texec/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified texec/1 assertions are assumed to have check status.
Usage: :- AssertionStatus texec AssertionBody.

— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status / l)
AssertionBody is a call assertion body. (c_assrt_body/l)

c a l l s / 1 : DECLARATION
This assertion is similar to a pred/1 assertion but it only provides information about the
calls to a predicate. If one or several calls assertions are given they are understood to
describe all possible calls to the predicate.
For example, the following assertion describes all possible calls to predicate i s / 2 (see
arithmetic):

:- ca l l s is(term,arithexpression).

Usage: :- ca l l s AssertionBody.
— The following properties should hold at call time:

AssertionBody is a call assertion body. (c_assrt_body/l)

50 The Ciao Preprocessor

calls/2: DECLARATION
This assertion is similar to a c a l l s / 1 assertion but it is explicitely qualified with an
assertion status. Non-qualified c a l l s / 1 assertions are assumed to have check status.
Usage: :- Assert ionStatus c a l l s AssertionBody.

— The following properties should hold at call time:
Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
Assert ionBody is a call assertion body. (c_assrt_body/l)

success/1: DECLARATION
This assertion is similar to a pred/1 assertion but it only provides information about the
answers to a predicate. The described answers might be conditioned to a particular way
of calling the predicate.
For example, the following assertion specifies the answers of the length/2 predicate if it
is called as in the first mode of usage above (note that the previous pred assertion already
conveys such information, however it also compelled the predicate calls, while the success
assertion does not):

: - success length(L,N) : l i s t * var => l i s t * in teger .

Usage: :- success AssertionBody.
— The following properties should hold at call time:

AssertionBody is a predicate assertion body. (s_assrt_body/l)

success/2: DECLARATION
success assertion This assertion is similar to a success/1 assertion but it is explicitely
qualified with an assertion status. The status of non-qualified success/1 assertions is
assumed to be check.
Usage: :- Assert ionStatus success AssertionBody.

— The following properties should hold at call time:
Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
AssertionBody is a predicate assertion body. (s_assrt_body/l)

test/1: DECLARATION
This assertion is similar to a success assertion but it specifies a concrete test case to be
run in order verify (partially) that the predicate is working as expected. For example, the
following test will verify that the length predicate works well for the particular list given:

: - t e s t length(L,N) : (L = [1,2 ,5 ,2]) => (N = 4) .

Usage: :- t e s t AssertionBody.
— The following properties should hold at call time:

AssertionBody is a predicate assertion body. (s_assrt_body/l)

Chapter 6: The Ciao assertion package 51

t e s t / 2 : DECLARATION
This assertion is similar to a t e s t / 1 assertion but it is explicitely qualified with an
assertion status. Non-qualified t e s t / 1 assertions are assumed to have check status. In
this context, check means that the test should be executed when the developer runs the
test battery.

Usage: :- Assert ionStatus t e s t AssertionBody.
— The following properties should hold at call time:

Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
AssertionBody is a predicate assertion body. (s_assrt_body/l)

c o m p / 1 : DECLARATION
This assertion is similar to a pred/1 assertion but it only provides information about the
global execution properties of a predicate (note that such kind of information is also con­
veyed by pred assertions). The described properties might be conditioned to a particular
way of calling the predicate.
For example, the following assertion specifies that the computation of append/3 (see
l i s t s) will not fail if it is called as described (but does not compel the predicate to be
called that way):

: - comp append(Xs,Ys,Zs) : var * var * var + n o t _ f a i l .

Usage: :- comp AssertionBody.
— The following properties should hold at call time:

AssertionBody is a comp assertion body. (g_assrt_body/l)

c o m p / 2 : DECLARATION
This assertion is similar to a comp/1 assertion but it is explicitely qualified. Non-qualified
comp/1 assertions are assumed the qualifier check.
Usage: :- Assert ionStatus comp AssertionBody.

— The following properties should hold at call time:
Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
AssertionBody is a comp assertion body. (g_assrt_body/l)

p r o p / 1 : DECLARATION
This assertion is similar to a pred/1 assertion but it flags that the predicate being docu­
mented is also a " property."
Properties are standard predicates, but which are guaranteed to terminate for any possible
instantiation state of their argument(s), do not perform side-effects which may interfere
with the program behaviour, and do not further instantiate their arguments or add new
constraints.
Provided the above holds, properties can thus be safely used as run-time checks. The
program transformation used in ciaopp for run-time checking guarantees the third re­
quirement. It also performs some basic checks on properties which in most cases are
enough for the second requirement. However, it is the user's responsibility to guaran­
tee termination of the properties defined. (See also Chapter 8 [Declaring regular types],
page 63 for some considerations applicable to writing properties.)

52 The Ciao Preprocessor

The set of properties is thus a strict subset of the set of predicates. Note that properties
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.
Usage: :- prop AssertionBody.

— The following properties should hold at call time:
Assert ionBody is an assertion body. (assr t_body/l)

p r o p / 2 : DECLARATION
This assertion is similar to a prop/1 assertion but it is explicitely qualified. Non-qualified
prop/1 assertions are assumed the qualifier check.
Usage: :- AssertionStatus prop Assert ionBody.

— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status / l)
AssertionBody is an assertion body. (assrt_body/l)

e n t r y / 1 : DECLARATION
This assertion provides information about the external calls to a predicate. It is identical
syntactically to a c a l l s / 1 assertion. However, they describe only external calls, i.e., calls
to the exported predicates of a module from outside the module, or calls to the predicates
in a non-modular file from other files (or the user).
These assertions are trusted by the compiler. As a result, if their descriptions are erroneous
they can introduce bugs in programs. Thus, entry/1 assertions should be written with
care.

An important use of these assertions is in providing information to the compiler which it
may not be able to infer from the program. The main use is in providing information on
the ways in which exported predicates of a module will be called from outside the module.
This will greatly improve the precision of the analyzer, which otherwise has to assume
that the arguments that exported predicates receive are any arbitrary term.

Usage: :- entry AssertionBody.
— The following properties should hold at call time:

AssertionBody is a call assertion body. (c_assrt_body/l)

e x i t / 1 : DECLARATION
This type of assertion provides information about the answers that an (exported) predicate
provides for external calls. It is identical syntactically to a success/1 assertion. However,
it describes only external answers, i.e., answers to the exported predicates of a module
from outside the module, or answers to the predicates in a non-modular file from other
files (or the user). The described answers may be conditioned to a particular way of calling
the predicate. E.g.:

: - exit length(L,N) : l i s t * var => l i s t * integer.

Usage: :- exit AssertionBody.
— The following properties should hold at call time:

AssertionBody is a predicate assertion body. (s_assrt_body/l)

Chapter 6: The Ciao assertion package 53

e x i t / 2 : DECLARATION
exit assertion This assertion is similar to an e x i t / 1 assertion but it is explicitely qualified
with an assertion status. Non-qualified e x i t / 1 assertions are assumed the qualifier check.
Usage: :- Assert ionStatus ex i t AssertionBody.

— The following properties should hold at call time:
Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
Assert ionBody is a predicate assertion body. (s_assrt_body/l)

m o d e d e f / 1 : DECLARATION
This assertion is used to define modes. A mode defines in a compact way a set of call
and success properties. Once defined, modes can be applied to predicate arguments in
assertions. The meaning of this application is that the call and success properties defined
by the mode hold for the argument to which the mode is applied. Thus, a mode is
conceptually a "property macro".
The syntax of mode definitions is similar to that of pred declarations. For example, the
following set of assertions:

: - modedef +A : nonvar(A) # "A i s bound upon predica te e n t r y . " .

: - pred p(+A,B) : integer(A) => ground(B).

is equivalent to:
: - pred p(A,B) : (nonvar(A),integer(A)) => ground(B)

"A i s bound upon predica te e n t r y . " .
Usage: :- modedef Assert ionBody.

— The following properties should hold at call time:
Assert ionBody is an assertion body. (assr t_body/l)

d e c l / 1 : DECLARATION
This assertion is similar to a pred/1 assertion but it is used for declarations instead than
for predicates.
Usage: :- decl AssertionBody.

— The following properties should hold at call time:
AssertionBody is an assertion body. (assr t_body/l)

d e c l / 2 : DECLARATION
This assertion is similar to a dec l /1 assertion but it is explicitely qualified. Non-qualified
dec l /1 assertions are assumed the qualifier check.
Usage: :- Assert ionStatus decl AssertionBody.

— The following properties should hold at call time:
Assert ionStatus is an acceptable status for an assertion. (a s s r t _ s t a t u s / l)
AssertionBody is an assertion body. (assr t_body/l)

54 The Ciao Preprocessor

doc/2: DECLARATION
Usage: :- doc(Pred,Comment).
Documentation . This assertion provides a text Comment for a given predicate Pred.

— The following properties should hold at call time:
Pred is a head pattern. (head_pat tern/ l)
Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by
stringcommand/1. See the lpdoc manual for documentation on comments. (
docs t r ing / l)

comment/2: DECLARATION
Usage: :-comment (Pred, Comment).
An alias for doc/2 (deprecated, for compatibility with older versions).

— The following properties should hold at call time:
Pred is a head pattern. (head_pat tern/ l)
Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by
stringcommand/1. See the lpdoc manual for documentation on comments. (
docs t r ing / l)

6.5 Documentation on exports (assertions_doc)

check/1: PREDICATE
Usage: check(PropertyConjunction)
This assertion provides information on a clause program point (position in the body of
a clause). Calls to a check/1 assertion can appear in the body of a clause in any place
where a literal can normally appear. The property defined by PropertyConjunction
should hold in all the run-time stores corresponding to that program point. See also
Chapter 11 [Run-time checking of assertions], page 101.

— The following properties should hold at call time:
PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/l)

trust/1: PREDICATE
Usage: t rust(PropertyConjunction)
This assertion also provides information on a clause program point. It is identical syntac­
tically to a check/1 assertion. However, the properties stated are not taken as something
to be checked but are instead trusted by the compiler. While the compiler may in some
cases detect an inconsistency between a t r u s t / 1 assertion and the program, in all other
cases the information given in the assertion will be taken to be true. As a result, if these
assertions are erroneous they can introduce bugs in programs. Thus, t r u s t / 1 assertions
should be written with care.

An important use of these assertions is in providing information to the compiler which
it may not be able to infer from the program (either because the information is not

Chapter 6: The Ciao assertion package 55

present or because the analyzer being used is not precise enough). In particular, providing
information on external predicates which may not be accessible at the time of compiling
the module can greatly improve the precision of the analyzer. This can be easily done
with trust assertion.

— The following properties should hold at call time:
PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/l)

t r u e / 1 : PREDICATE
Usage: true(PropertyConjunction)
This assertion is identical syntactically to a check/1 assertion. However, the properties
stated have been proved to hold by the analyzer. Thus, these assertions often represent
the analyzer output.

— The following properties should hold at call time:
PropertyCon junction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/l)

f a l s e / 1 : PREDICATE
Usage: false(PropertyConjunction)
This assertion is identical syntactically to a check/1 assertion. However, the properties
stated have been proved not to hold by the analyzer. Thus, these assertions often represent
the analyzer output.

— The following properties should hold at call time:
PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/l)

56 The Ciao Preprocessor

Chapter 7: Types and properties related to assertions 57

7 Types and properties related to assertions
Author(s): Manuel Hermenegildo.
This module is part of the assertions library. It provides the formal definition of the

syntax of several forms of assertions and describes their meaning. It does so by defining types
and properties related to the assertions themselves. The text describes, for example, the overall
fields which are admissible in the bodies of assertions, where properties can be used inside these
bodies, how to combine properties for a given predicate argument (e.g., conjunctions) , etc. and
provides some examples.

7.1 Usage and interface (assertions_props)

• Library usage:
:- use_module(library(assertions_props)).

• Exports:
— Properties:

head_pattern/l, nabody/1, docstring/1.

— Regular Types:
assrt_body/l, complex_arg_property/l, property_conjunction/l, property.
starterm/1, complex_goal_property/l, dictionary/1, c_assrt_body/l, s_assrt_
body/1, g_assrt_body/l, assrt_status/l, assrt_type/l, predfunctor/1,
propfunctor/1.

• Imports:
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
compare, term_typing, hiord_rt, debugger_support.

— Packages:
prelude, nonpure, dcg, assertions, regtypes.

7.2 Documentation on exports (assertions_props)

assrt_body/l: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of pred/1,
decl /1, etc. assertions. Such a body is of the form:

Pr [: : DP] [: CP] [=> AP] [+ GP] [# CO]

where (fields between [...] are optional):
• Pr is a head pattern (head_pattern/l) which describes the predicate or property

and possibly gives some implicit call/answer information.
• DP is a (possibly empty) complex argument property (complex_arg_property/l)

which expresses properties which are compatible with the predicate, i.e., instantiations
made by the predicate are compatible with the properties in the sense that applying
the property at any point would not make it fail.

58 The Ciao Preprocessor

• CP is a (possibly empty) complex argument property (complex_arg_property/l)
which applies to the calls to the predicate.

• AP is a (possibly empty) complex argument property (complex_arg_property/l)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

• GP is a (possibly empty) complex goal property (complex_goal_property/l) which
applies to the whole execution of a call to the predicate. These only apply if the
(possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docs t r ing / l) . This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com­
mands that are applicable in comment strings can be used (see stringcommand/l).
See the lpdoc manual for documentation on assertion comments.

Usage: assrt_body(X)
X is an assertion body.

head_pattern/l: PROPERTY
A head pattern can be a predicate name (functor/arity) (predname/l) or a term. Thus,
both p /3 and p(A,B,C) are valid head patterns. In the case in which the head pattern is
a term, each argument of such a term can be:

• A variable. This is useful in order to be able to refer to the correspond­
ing argument positions by name within properties and in comments. Thus,
p(Input .Parameter, Output) is a valid head pattern.

• A variable, as above, but preceded by a " mode." This mode determines in a
compact way certain call or answer properties. For example, the head pattern
p(Input,+Parameter,Output) is valid, as long as +/1 is declared as a mode.
Acceptable modes
are documented in library(basicmodes) and l ibrary(isomodes) . User defined
modes are documented in modedef/1.

• Any term. In this case this term determines the instantiation state of the correspond­
ing argument position of the predicate calls to which the assertion applies.

• A ground term preceded by a " mode." The ground term determines a property of
the corresponding argument. The mode determines if it applies to the calls and/or
the successes. The actual property referred to is that given by the term but with
one more argument added at the beginning, which is a new variable which, in a
rewriting of the head pattern, appears at the argument position occupied by the term.
For example, the head pattern p (I n p u t , + l i s t (i n t) , O u t p u t) is valid for mode +/1
defined in l i b r a r y (isomodes), and equivalent in this case to having the head pattern
p(Input,A,Output) and stating that the property l i s t (A , i n t) holds for the calls
of the predicate.

• Any term preceded by a " mode." In this case, only one variable is admitted,
it has to be the first argument of the mode, and it represents the argument po­
sition. I.e., it plays the role of the new variable mentioned above. Thus, no
rewriting of the head pattern is performed in this case. For example, the head
pattern p(Input , + (Pa rame te r , l i s t (i n t)) ,Ou tpu t) is valid for mode +/2 defined
in l ibrary(isomodes) , and equivalent in this case to having the head pattern
p (Input, Parameter, Output) and stating that the property l i s t (Parameter, i n t)
holds for the calls of the predicate.

Usage: head_pattern(Pr)
Pr is a head pattern.

Chapter 7: Types and properties related to assertions 59

complex_arg_proper ty / l : REGTYPE
complex_arg_property(Props)
Props is a (possibly empty) complex argument property. Such properties can appear in
two formats, which are defined by property_conjunction/l and proper ty_s ta r te rm/ l
respectively. The two formats can be mixed provided they are not in the same field of an
assertion. I.e., the following is a valid assertion:
: - pred foo(X,Y) : nonvar * var => (ground(X),ground(Y)) .
Usage: complex_arg_property(Props)
Props is a (possibly empty) complex argument property

property . c o n j u n c t i o n /] . : REGTYPE
This type defines the first, unabridged format in which properties can be expressed in the
bodies of assertions. It is essentially a conjunction of properties which refer to variables.
The following is an example of a complex property in this format:

• (i n t e g e r (X) , l i s t (Y , i n t e g e r)) : X has the property in t ege r /1 and Y has the prop­
erty l i s t / 2 , with second argument integer .

Usage: property_conjunction(Props)
Props is either a term or a conjunction of terms. The main functor and arity of each of
those terms corresponds to the definition of a property. The first argument of each such
term is a variable which appears as a head argument.

p r o p e r t y _ s t a r t e r m / l : REGTYPE
This type defines a second, compact format in which properties can be expressed in the
bodies of assertions. A proper ty_s ta r te rm/ l is a term whose main functor is */2 and,
when it appears in an assertion, the number of terms joined by */2 is exactly the arity of
the predicate it refers to. A similar series of properties as in property_conjunct ion/ l
appears, but the arity of each property is one less: the argument position to which they
refer (first argument) is left out and determined by the position of the property in the
proper ty_s ta r te rm/ l . The idea is that each element of the */2 term corresponds to a
head argument position. Several properties can be assigned to each argument position by
grouping them in curly brackets. The following is an example of a complex property in
this format:

• in teger * l i s t (in teger) : the first argument of the procedure (or function, or ...)
has the property in t ege r /1 and the second one has the property l i s t / 2 , with second
argument integer .

• { in tege r ,va r} * l i s t (in teger) : the first argument of the procedure (or function,
or ...) has the properties i n t ege r /1 and var /1 and the second one has the property
l i s t / 2 , with second argument integer .

Usage: property_starterm(Props)

Props is either a term or several terms separated by */2. The main functor of each of
those terms corresponds to that of the definition of a property, and the arity should be one
less than in the definition of such property. All arguments of each such term are ground.

complex_goal_property / 1 :
complex_goal_property(Props)

REGTYPE

60 The Ciao Preprocessor

Props is a (possibly empty) complex goal property. Such properties can be either a term
or a conjunction of terms. The main functor and arity of each of those terms corresponds
to the definition of a property. Such properties apply to all executions of all goals of the
predicate which comply with the assertion in which the Props appear.

The arguments of the terms in Props are implicitely augmented with a first argument
which corresponds to a goal of the predicate of the assertion in which the Props appear.
For example, the assertion

:- comp var(A) + not_further_inst(A) .

has property not_further_inst/l as goal property, and establishes that in all executions
of var(A) it should hold that not_further_inst (var(A) ,A).
Usage: complex_goal_property(Props)
Props is either a term or a conjunction of terms. The main functor and arity of each of
those terms corresponds to the definition of a property. A first implicit argument in such
terms identifies goals to which the properties apply.

n a b o d y / 1 : PROPERTY
Usage: nabody(ABody)
ABody is a normalized assertion body.

d i c t i o n a r y / 1 : REGTYPE
Usage: dictionary(D)
D is a dictionary of variable names.

c_assr t_body / l : REGTYPE
This predicate defines the different types of syntax admissible in the bodies of c a l l / 1 ,
entry/1, etc. assertions. The following are admissible:

Pr : CP [# CO]

where (fields between [...] are optional):
• CP is a (possibly empty) complex argument property (complex_arg_property/l)

which applies to the calls to the predicate.
• CO is a comment string (docstring/l) . This comment only applies if the (possibly

empty) properties given for calls in the assertion hold. The usual formatting com­
mands that are applicable in comment strings can be used (see stringcommand/l).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: c_assrt_body(X)
X is a call assertion body.

s_assr t_body / l : REGTYPE
This predicate defines the different types of syntax admissible in the bodies of pred/1,
func/1, etc. assertions. The following are admissible:

Chapter 7: Types and properties related to assertions 61

Pr : CP => AP # CO
Pr : CP => AP
Pr => AP # CO
Pr => AP

where:

• Pr is a head pattern (head_pattern/l) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/l)
which applies to the calls to the predicate.

• AP is a (possibly empty) complex argument property (complex_arg_property/l)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/l) . This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com­
mands that are applicable in comment strings can be used (see stringcommand/l).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: s_assrt_body(X)
X is a predicate assertion body.

g_assrt_body/l: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of comp/1
assertions. The following are admissible:

Pr : CP + GP # CO
Pr : CP + GP
Pr + GP # CO
Pr + GP

where:

• Pr is a head pattern (head_pattern/l) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/l)
which applies to the calls to the predicate.

• GP contains (possibly empty) complex goal property (complex_goal_property/l)
which applies to the whole execution of a call to the predicate. These only apply if
the (possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/l) . This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com­
mands that are applicable in comment strings can be used (see stringcommand/l).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: g_assrt_body(X)
X is a comp assertion body.

62 The Ciao Preprocessor

a s s r t _ s t a t u s / l : REGTYPE
The types of assertion status. They have the same meaning as the program-point asser­
tions, and are as follows:

a s s r t _ s t a t u s (t r u e) .
a s s r t _ s t a t u s (f a l s e) .
a s s r t_ s t a tus (check) .
a ss r t_s ta tus (checked) .
a s s r t _ s t a t u s (t r u s t) .

Usage: assr t_s ta tus(X)
X is an acceptable status for an assertion.

a s s r t _ t y p e / l : REGTYPE
The admissible kinds of assertions:

assrt_type(pred).
assrt_type(prop).
assrt_type(decl).
assrt_type(func).
assrt_type(calls).
assrt_type(success).
assrt_type(comp).
assrt_type(entry).
assrt_type(exit).
assrt_type(test).
assrt_type(texec).
assrt_type(modedef).

Usage: assrt_type(X)

X is an admissible kind of assertion.

p r e d f u n c t o r / 1 : REGTYPE
Usage: predfunctor(X)
X is a type of assertion which defines a predicate.

p r o p f u n c t o r / 1 : REGTYPE
Usage: propfunctor(X)
X is a type of assertion which defines a property.

d o c s t r i n g / 1 : PROPERTY
Usage: docstr ing(String)
String is a text comment with admissible documentation commands. The usual format­
ting commands that are applicable in comment strings are defined by stringcommand/1.
See the lpdoc manual for documentation on comments.

Chapter 8: Declaring regular types 63

8 Declaring regular types
Author(s): Manuel Hermenegildo, Pedro Lopez, Francisco Bueno.
This library package adds declarations and new operator definitions which provide simple

syntactic sugar to write regular type definitions in source code. Regular types are just properties
which have the additional characteristic of being regular types (bas ic_props: regtype/ l) ,
defined below.

For example, this library package allows writing:
: - regtype tree(X) # "X i s a t r e e . " .

instead of the more cumbersome:
: - prop tree(X) + regtype # "X i s a t r e e . " .

Regular types can be used as properties to describe predicates and play an essential role in
program debugging (see the Ciao Prolog preprocessor (ciaopp) manual).

In this chapter we explain some general considerations worth taking into account when writing
properties in general, not just regular types.

8.1 Defining properties

Given the classes of assertions in the Ciao assertion language, there are two fundamental
classes of properties. Properties used in assertions which refer to execution states (i.e., c a l l s / 1 ,
success/1 , and the like) are called properties of execution states. Properties used in asser­
tions related to computations (i.e., comp/l) are called properties of computations. Different
considerations apply when writing a property of the former or of the latter kind.

Consider a definition of the predicate s t r ing_concat /3 which concatenates two character
strings (represented as lists of ASCII codes):

s t r ing_conca t ([] ,L ,L) .
s t r ing_concat([X|Xs] , L,[X|NL]):- string_concat(Xs,L,NL).

Assume that we would like to state in an assertion that each argument "is a list of inte­
gers." However, we must decide which one of the following two possibilities we mean exactly:
"the argument is instantiated to a list of integers" (let us call this property i n s t a n t i a t e d .
t o _ i n t l i s t / l) , or "if any part of the argument is instantiated, this instantiation must be
compatible with the argument being a list of integers" (we will call this property compatible.
w i t h _ i n t l i s t / l) . For example, i n s t a n t i a t e d _ t o _ i n t l i s t / l should be true for the terms []
and [1 ,2] , but should not for X, [a ,2] , and [X,2]. In turn, compat ib le_wi th_ in t l i s t / l
should be true for [] , X, [1,2] , and [X,2], but should not be for [X| l] , [a ,2] , and 1. We
refer to properties such as i n s t a n t i a t e d _ t o _ i n t l i s t / l above as instantiation properties and
to those such as compat ib le_wi th_ in t l i s t / l as compatibility properties (corresponding to the
traditional notions of "instantiation types" and "compatibility types").

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compat ib le_wi th_ in t l i s t / l to state that on success of s t r ing_
concat/3 all three argument must be compatible with lists of integers in an assertion like:

: - success string_concat(A,B,C) => (compat ible_with_int l is t (A) ,
compat ib le_with_int l i s t (B) ,
compatible_with_int l is t(C)) .

With this assertion, no error will be flagged for a call to s t r ing_concat /3 such
as s t r ing_concat([20] ,L,R), which on success produces the resulting atom s t r ing_
concat([20] ,L, [20 |L]), but a call s tr ing_concat ([] ,a,R) would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use i n s t a n t i a t e d _ t o _ i n t l i s t / l for sumlis t /2 as follows:

64 The Ciao Preprocessor

: - c a l l s sumlist(L,N) : i n s t a n t i a t e d _ t o _ i n t l i s t (L) .

s u m l i s t ([] , 0) .
sumlist([X|R],S) : - sumlist(R,PS), S i s PS+X.

to describe the type of calls for which the program has been designed, i.e., those in which the
first argument of sumlis t /2 is indeed a list of integers.

The property i n s t a n t i a t e d _ t o _ i n t l i s t / l might be written as in the following (Prolog)
definition:

: - prop i n s t a n t i a t e d _ t o _ i n t l i s t / l .

i n s t an t i a t ed_ to_ in t l i s t (X) :-
nonvar(X), i n s t an t i a t ed_ to_ in t l i s t_aux(X) .

i n s t a n t i a t e d _ t o _ i n t l i s t _ a u x ([]) .
i n s t an t i a t ed_ to_ in t l i s t_aux([X |T]) : -

in teger(X) , i n s t a n t i a t e d _ t o _ i n t l i s t (T) .
(Recall that the Prolog builtin in t ege r /1 itself implements an instantiation check, failing if

called with a variable as the argument.)
The property compat ib le_wi th_ in t l i s t / l might in turn be written as follows (also in

Prolog):

: - prop compa t ib le_wi th_ in t l i s t / l .

compatible_with_intl is t(X) :- var(X).
compatible_with_intl is t(X) :-

nonvar(X), compatible_with_intl is t_aux(X).

compat ib le_wi th_in t l i s t_aux([]) .
compatible_with_intl is t_aux([X|T]) : -

int_compat(X), compat ib le_wi th_int l i s t (T) .

int_compat(X) : - var(X).
int_compat(X) : - nonvar(X), in teger(X) .

Note that these predicates meet the criteria for being properties and thus the prop/1 decla­
ration is correct.

Ensuring that a property meets the criteria for "not affecting the computation" can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

i n t l i s t ([]) .
i n t l i s t ([X | R]) : - in t (X) , i n t l i s t (R) .

(Incidentally, note that the above definition, provided that it suits the requirements for being a
property and that i n t / 1 is a regular type, meets the criteria for being a regular type. Thus, it
could be declared : - regtype i n t l i s t / 1 .)

But note that (independently of the definition of i n t / l) the definition above is not the
correct instantiation check, since it would succeed for a call such as i n t l i s t (X) . In fact, it is
not strictly correct as a compatibility property either, because, while it would fail or succeed
as expected, it would perform instantiations (e.g., if called with i n t l i s t (X) it would bind X to
[]). In practice, it is convenient to provide some run-time support to aid in this task.

The run-time support of the Ciao system (see Chapter 11 [Run-time checking of assertions],
page 101) ensures that the execution of properties is performed in such a way that properties
written as above can be used directly as instantiation checks. Thus, writing:

Chapter 8: Declaring regular types 65

: - c a l l s sumlist(L,N) : i n t l i s t (L) .
has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat (Property) (basic_props:compat/l). Thus, writing:

: - success string_concat(A,B,C) => (compa t (in t l i s t (A)) ,
compa t (in t l i s t (B)) ,
compat (in t l i s t (C))) .

also has the desired effect.
As a general rule, the properties that can be used directly for checking for compatibility should

be downwards closed, i.e., once they hold they will keep on holding in every state accessible in
forwards execution. There are certain predicates which are inherently instantiation checks and
should not be used as compatibility properties nor appear in the definition of a property that
is to be used with compat. Examples of such predicates (for Prolog) are ==, ground, nonvar,
integer , atom, >, etc. as they require a certain instantiation degree of their arguments in order
to succeed.

In contrast with properties of execution states, properties of computations refer to the entire
execution of the call(s) that the assertion relates to. One such property is, for example, not_
f a i l / 1 (note that although it has been used as in : - comp append(Xs,Ys,Zs) + no t_fa i l ,
it is in fact read as not_fail(append(Xs,Ys,Zs)); see assertions_props:complex_goal_
property/1) . For this property, which should be interpreted as "execution of the predicate
either succeeds at least once or loops," we can use the following predicate not_f a i l / 1 for run­
time checking:

no t_ fa i l (Goa l) : -
i f (ca l l (Goa l) ,

t r u e , %70 then
warning(Goal)) . %% else

where the warning/1 (library) predicate simply prints a warning message.
In this simple case, implementation of the predicate is not very difficult using the (non­

standard) i f / 3 builtin predicate present in many Prolog systems.
However, it is not so easy to code predicates which check other properties of the computation

and we may in general need to program a meta-interpreter for this purpose.

66 The Ciao Preprocessor

8.2 Usage and interface (regtypes_doc)

• Library usage:
:- use_package(regtypes).
or
: - m o d u l e (. . . , . . . , [r e g t y p e s]) .

• New operators denned:
regtype/1 [1150,fx], regtype/2 [1150,xfx].

• New declarations denned:
regtype/1, regtype/2.

• Imports:
— System library modules:

assertions/assertions_props.
— Internal (engine) modules:

term_basic.
— Packages:

prelude, assertions, pure.

8.3 Documentation on new declarations (regtypes_doc)

regtype/1: DECLARATION
This assertion is similar to a prop assertion but it flags that the property being doc­
umented is also a " regular type." Regular types are properties whose definitions are
regular programs (see lelow). This allows for example checking whether it is in the class
of types supported by the regular type checking and inference modules.
A regular program is defined by a set of clauses, each of the form:

p(x, v_l , . . . , v_n) : - body_l, . . . , body_k.
where:

1. x is a term whose variables (which are called term variables) are unique, i.e., it is not
allowed to introduce equality constraints between the variables of x.
For example, p(f (X, Y)) : - . . . is valid, but p(f (X, X)) : - . . . is not.

2. in all clauses defining p/n+1 the terms x do not unify except maybe for one single
clause in which x is a variable.

3. n >= 0 and p/n is a parametric type functor (whereas the predicate defined by the
clauses is p/n+1).

4. v_l, ..., v_n are unique variables, which are called parametric variables.
5. Each body_i is of the form:

1. t (z) where z is one of the term variables and t is a regular type expression;
2. q(y, t _ l , . . . , t_m) where m >= 0, q/m is a parametric type functor, not in the

set of functors =/2, ~/2, . / 3 .
t _ l , . . . , t_m are regular type expressions, and y is a term variable.

6. Each term variable occurs at most once in the clause's body (and should be as the
first argument of a literal).

Chapter 8: Declaring regular types 67

A regular type expression is either a parametric variable or a parametric type functor
applied to some of the parametric variables.
A parametric type functor is a regular type, defined by a regular program, or a basic type.
Basic types are defined in Chapter 9 [Basic data types and properties], page 69.
The set of regular types is thus a well defined subset of the set of properties. Note that
types can be used to describe characteristics of arguments in assertions and they can also
be executed (called) as any other predicates.
Usage: :- regtype AssertionBody.

— The following properties should hold at call time:
Assert ionBody is an assertion body. (assrt_body/l)

r e g t y p e / 2 : DECLARATION
This assertion is similar to a regtype/1 assertion but it is explicitely qualified. Non­
qualified regtype/1 assertions are assumed the qualifier check. Note that checking regular
type definitions should be done with the ciaopp preprocessor.
Usage: :- AssertionStatus regtype Assert ionBody.

— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status / l)
Assert ionBody is an assertion body. (assr t_body/l)

68 The Ciao Preprocessor

Chapter 9: Basic data types and properties 69

9 Basic data types and properties
Author(s): Daniel Cabeza, Manuel Hermenegildo.
This library contains the set of basic properties used by the builtin predicates, and which

constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

9.1 Usage and interface (basic_props)

r -

• Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:
— Properties:

member/2, compat/2, inst/2, iso/1, deprecated/1, not_further_inst/2, sideff/2,
regtype/1, native/1, native/2, rtcheck/1, rtcheck/2, no_rtcheck/l, eval/1,
equiv/2, bind_ins/l, error_free/l, memo/1, filter/2, pe_type/l.

— Regular Types:
term/1, int/1, nnegint/1, flt/1, num/1, atm/1, struct/1, gnd/1, gndstr/1,
constant/1, callable/1, operator_specifier/1, list/1, list/2, nlist/2,
sequence/2, sequence_or_list/2, character_code/l, string/1, num_code/l,
predname/1, atm_or_atm_list/l, flag_values/l.

• Imports:
— System library modules:

assertions/native_props, terms_check.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basiccontrol, data_facts, exceptions,
io_aux, io_basic, prolog_flags, streams_basic, system_info, term_compare,
term_typing, hiord_rt, debugger_support.

— Packages:
prelude, nonpure, assertions, nortchecks, nativeprops.

9.2 Documentation on exports (basic_props)

t e r m / 1 : REGTYPE
The most general type (includes all possible terms).
(True) Usage: term(X)
X is any term.

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

General properties:
True: term(X)

— The following properties hold globally:
term(X) is side-effect free. (s ideff /2)

70 The Ciao Preprocessor

True: term(X)

— The following properties hold globally:

term(X) is evaluable at compile-time. (e v a l / l)

True: term(X)

— The following properties hold globally:

term(X) is equivalent to true. (equiv/2)

i n t / 1 : R E G T Y P E
The type of integers. The range of integers is [-2~2147483616, 2~2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.

(True) Usage: int (T)

T is an integer.

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (n a t i v e / 1)

General properties:

True: int (T)

— The following properties hold globally:

in t (T) is side-effect f ree . (s i d e f f / 2)

True: int (T)

— / / the following properties hold at call time:

T is currently a term which is not a free variable. (nonvar/ l)

then the following properties hold globally:

in t (T) is evaluable at compile-time. (e v a l / l)

All calls of the form in t (T) are deterministic. (i s _ d e t / l)

Trust: in t (T)

— The following properties hold upon exit:

T is an integer. (i n t / l)

Trust:

— The following properties hold globally:

Indicates the type of test tha t a predicate performs. Required by the nonfailure
analyisis. (t e s t _ t y p e / 2)

n n e g i n t / 1 : R E G T Y P E

The type of non-negative integers, i.e., natural numbers.

(True) Usage: nnegint(T)

T is a non-negative integer.

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (n a t i v e / 1)

General properties:

True: nnegint(T)

Chapter 9: Basic data types and properties 71

— The following properties hold globally:
nnegint(T) is side-effect free. (s ideff /2)

True: nnegint(T)
— If the following properties hold at call time:

T is currently a term which is not a free variable. (nonvar/l)
then the following properties hold globally:
nnegint (T) is evaluable at compile-time. (eva l / l)

Trust: nnegint (T)

— The following properties hold upon exit:
T is a non-negative integer. (nnegin t / l)

Trust:
— The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (tes t_ type/2)

flt/1: REGTYPE
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe­
cial values: Infinity, either positive or negative, represented as l.OelOOO and -l.OelOOO;
and Not-a-number, which arises as the result of indeterminate operations, represented as
O.Nan

(True) Usage: f i t (T)
T is a float.

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

General properties:
True: f l t (T)

— The following properties hold globally:
f l t (T) is side-effect free. (s ideff /2)

True: f l t (T)
— / / the following properties hold at call time:

T is currently a term which is not a free variable. (nonvar/l)
then the following properties hold globally:
f l t (T) is evaluable at compile-time. (eva l / l)
All calls of the form f l t (T) are deterministic. (i s _ d e t / l)

Trust: f l t (T)

— The following properties hold upon exit:
T is a float. (f l t / l)

Trust:

— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (tes t_ type/2)

72 The Ciao Preprocessor

n u m / 1 :
The type of numbers, that is, integer or floating-point.

(True) Usage: num(T)

T is a number.

— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:

True: num(T)

— The following properties hold globally:

num(T) is side-effect f ree .

num(T) is binding insensitive.

True: num(T)

— If the following properties hold at call time:

T is currently a term which is not a free variable.

then the following properties hold globally:

num(T) is evaluable at compile-time.

All calls of the form num(T) are deterministic.

Trust: num(T)

— The following properties hold upon exit:

T is a number.

Trust:

— The following properties hold globally:

Indicates the type of test tha t a predicate performs. Required
analyisis.

R E G T Y P E

(n a t i v e / l)

(sideff/2)

(bind_ins/l)

(nonvar/l)

(eval/1)

(is_det/l)

(num/1)

by the nonfailure
(t e s t _ t y p e / 2)

atm/1:
The type of atoms, or non-numeric constants. The size of atoms is unbound.

(True) Usage: atm(T)

T is an atom.

— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:

True: atm(T)

— The following properties hold globally:

atm(T) is side-effect f ree .

True: atm(T)

— / / the following properties hold at call time:

T is currently a term which is not a free variable.

then the following properties hold globally:

atm(T) is evaluable at compile-time.

All calls of the form atm(T) are deterministic.

Trust: atm(T)

R E G T Y P E

(n a t i v e / l)

(s i d e f f / 2)

(nonvar/ l)

(e v a l / 1)

(i s _ d e t / l)

Chapter 9: Basic data types and properties 73

— The following properties hold upon exit:

T is an atom.

Trust:

— The following properties hold globally:

Indicates the type of test tha t a predicate performs,
analyisis.

(atm/1)

Required by the nonfailure
(t e s t _ t y p e / 2)

s t r u c t / 1 : R E G T Y P E
The type of compound terms, or terms with non-zeroary functors. By now there is a limit
of 255 arguments.
(True) Usage: s t ruc t (T)
T is a compound term.

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (n a t i v e / 1)

General properties:
True: s t ruc t (T)

— The following properties hold globally:

s t r u c t (T) is side-effect f ree . (s i d e f f / 2)

True: s t ruc t (T)

— If the following properties hold at call time:

T is currently a term which is not a free variable. (n o n v a r / l)

then the following properties hold globally:

s t r u c t (T) is evaluable at compile-time. (e v a l / l)

Trust: s t r u c t (T)

— The following properties hold upon exit:

T is a compound term. (s t r u c t / 1)

g n d / 1 :
The type of all terms without variables.

(True) Usage: gnd(T)
T is ground.

— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:

True: gnd(T)

— The following properties hold globally:

gnd(T) is side-effect f ree .

True: gnd(T)

— If the following properties hold at call time:

T is currently ground (it contains no variables).

then the following properties hold globally:

gnd(T) is evaluable at compile-time.

All calls of the form gnd(T) are deterministic.

R E G T Y P E

(n a t i v e / l)

(s i d e f f / 2)

(g r o u n d / l)

(eval/l)

(is_det

74 The Ciao Preprocessor

Trust: gnd(T)

— The following properties hold upon exit:

T is ground. (gnd/ l)

Trust:

— The following properties hold globally:

Indicates the type of test tha t a predicate performs. Required by the nonfailure
analyisis. (t e s t _ t y p e / 2)

gndstr/1:
(True) Usage: gndstr(T)
T is a ground compound term.

— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:

True: gndstr(T)

— The following properties hold globally:

gndstr(T) is side-effect f ree .

True: gndstr(T)
— If the following properties hold at call time:

T is currently ground (it contains no variables).

then the following properties hold globally:

gndstr(T) is evaluable at compile-time.

All calls of the form g n d s t r (T) are deterministic.

Trust: gndstr(T)

— The following properties hold upon exit:

T is a ground compound term.

R E G T Y P E

(n a t i v e / l)

(s i d e f f / 2)

(g r o u n d / l)

(e v a l / 1)

(i s _ d e t / l)

(g n d s t r / l)

c o n s t a n t / 1 :
(True) Usage: c o n s t a n t (T)

T is an atomic term (an atom or a number).

General properties:
True: c o n s t a n t (T)

— The following properties hold globally:

c o n s t a n t (T) is side-effect f ree .

True: c o n s t a n t (T)

— / / the following properties hold at call time:

T is currently a term which is not a free variable.

then the following properties hold globally:

c o n s t a n t (T) is evaluable at compile-time.

All calls of the form c o n s t a n t (T) are deterministic.

Trust: c o n s t a n t (T)

— The following properties hold upon exit:

T is an atomic term (an atom or a number).

R E G T Y P E

(s i d e f f / 2)

(n o n v a r / l)

(e v a l / 1)

(i s _ d e t / l)

(c o n s t a n t / l)

Chapter 9: Basic data types and properties 75

ca l l ab l e /1 : REGTYPE
(True) Usage: callable(T)
T is a term which represents a goal, i.e., an atom or a structure.

General properties:
True: callable(T)

— The following properties hold globally:
callable (T) is side-effect free. (s ideff /2)

True: callable(T)
— If the following properties hold at call time:

T is currently a term which is not a free variable. (nonvar/l)
then the following properties hold globally:
callable (T) is evaluable at compile-time. (eval / l)
All calls of the form cal lable (T) are deterministic. (i s_det / l)

Trust: cal lable (T)
— The following properties hold upon exit:

T is currently a term which is not a free variable. (nonvar/l)

operator_spec i f i er / l : REGTYPE
The type and associativity of an operator is described by the following mnemonic atoms:

xf x Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yf x Infix, left-associative: same as above, but the other way around.

f x Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

f y Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

(True) Usage: operator_specifier(X)
X specifies the type and associativity of an operator.

General properties:
True: operator_specifier(X)

— The following properties hold globally:

operator_specifier(X) is side-effect free. (s ideff /2)

True: operator_specifier(X)

76 The Ciao Preprocessor

— If the following properties hold at call time:

X is currently a term which is not a free variable.

then the following properties hold globally:

operator_spec i f ier(X) is evaluable at compile-time.

All calls of the form operator_spec i f ier(X) are deterministic.

Goal operator_spec i f i er (X) produces 7 solutions.

Trust: opera tor_spec i f i er (T)

— The following properties hold upon exit:

(nonvar/l)

(eval/1)

(is_det/l)

(relations/2)

T specifies the type and associativity of an operator. (operator_specifier/l)

list/1: R E G T Y P E
A list is formed with successive applications of the functor ' . ' / 2 , and its end is the atom
[] . Defined as

l i s t ([]) .
l i s t ([_ l | L]) : -

l i s t (L) .

(True) Usage: l i s t (L)

L is a list.

General properties:

True: l i s t (L)

— The following properties hold globally:

l i s t (L) is side-effect f ree .

True: l i s t (L)

— If the following properties hold at call time:

L is currently ground (it contains no variables).

then the following properties hold globally:

l i s t (L) is evaluable at compile-time.

All calls of the form l i s t (L) are deterministic.

Trust: l i s t (T)

— The following properties hold upon exit:

T is a list. (l i s t / 1)

(s i d e f f / 2)

(ground/l)

(e v a l / 1)

(i s _ d e t / l)

list/2:
l i s t (L , T)

L is a list, and for all its elements, T holds.

(True) Usage: l i s t (L , T)

L is a list of Ts.

Meta-predicate with arguments: l i s t (? , (pred 1)) .

General properties:

True: l i s t (L , T)

— The following properties hold globally:

l i s t (L , T) is side-effect f ree .

REGTYPE

(s i d e f f / 2)

Chapter 9: Basic data types and properties 77

True: l i s t (L , T)

— If the following properties hold at call time:

L is currently ground (it contains no variables).

T is currently ground (it contains no variables).

then the following properties hold globally:

l i s t (L , T) is evaluable at compile-time.

Trust: l i s t (X , T)

— The following properties hold upon exit:

X is a list.

(ground/l)

(ground/l)

(eval/1)

(list/1)

n l i s t / 2 : REGTYPE
(True) Usage: n l i s t (L , T)

L is T or a nested list of Ts. Note that if T is term, this type is equivalent to term, this
fact explain why we do not have a n l i s t / 1 type

Meta-predicate with arguments: n l i s t (? , (pred 1)) .
General properties:
True: n l i s t (L , T)

— The following properties hold globally:

n l i s t (L , T) is side-effect f ree . (s i d e f f / 2)

True: n l i s t (L , T)

— / / the following properties hold at call time:

L is currently ground (it contains no variables). (g r o u n d / l)

T is currently ground (it contains no variables). (g r o u n d / l)

then the following properties hold globally:

n l i s t (L , T) is evaluable at compile-time. (e v a l / l)

Trust: n l i s t (X , T)

— The following properties hold upon exit:

X is any term. (term/1)

m e m b e r / 2 :
(True) Usage: member(X,L)

X is an element of L.

General properties:

True: member(X,L)

— The following properties hold globally:

member(X,L) is side-effect f r e e ,

member(X,L) is binding insensitive.

True: member(X,L)

— / / the following properties hold at call time:

L is a list.

then the following properties hold globally:

member(X,L) is evaluable at compile-time.

P R O P E R T Y

(s i d e f f / 2)

(b i n d _ i n s / l)

(l i s t / 1)

(e v a l / 1)

78 The Ciao Preprocessor

Trust: member(_X,L)
— The following properties hold upon exit:

L is a list.

Trust: member(X,L)
— If the following properties hold at call time:

L is currently ground (it contains no variables).
then the following properties hold upon exit:
X is currently ground (it contains no variables).

(list/1)

(ground/l)

(ground/l)

s e q u e n c e / 2 : REGTYPE
A sequence is formed with zero, one or more occurrences of the operator ' , '/2. For
example, a, b , c is a sequence of three atoms, a is a sequence of one atom.
(True) Usage: sequence(S,T)
S is a sequence of Ts.

Meta-predicate with arguments: sequence (?, (pred 1)).
General properties:
True: sequence(S,T)

— The following properties hold globally:
sequence(S,T) is side-effect free. (s ideff /2)

True: sequence(S,T)
— / / the following properties hold at call time:

S is currently ground (it contains no variables). (
T is currently ground (it contains no variables). (

then the following properties hold globally:

sequence(S,T) is evaluable at compile-time.

Trust: sequence(E,T)
— The following properties hold upon exit:

E is currently a term which is not a free variable. (
T is currently ground (it contains no variables). (

ground/l)

ground/l)

(eval/1)

nonvar/l)

ground/l)

sequence_or_l is t /2:
(True) Usage: sequence_or_list(S,T)
S is a sequence or list of Ts.

Meta-predicate with arguments: sequence_or_list(?, (pred 1)).
General properties:
True: sequence_or_list(S,T)

— The following properties hold globally:
sequence_or_list(S,T) is side-effect free.

True: sequence_or_list(S,T)

REGTYPE

(s ideff /2)

Chapter 9: Basic data types and properties 79

— If the following properties hold at call time:
S is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:
sequence_or_list(S,T) is evaluable at compile-time.

Trust: sequence_or_list(E,T)
— The following properties hold upon exit:

E is currently a term which is not a free variable.
T is currently ground (it contains no variables).

(ground/l)

(ground/l)

(eval/1)

(nonvar/l)

(ground/l)

character _ c o d e / l :
(True) Usage: character_code(T)
T is an integer which is a character code.

General properties:
True: character_code(T)

— The following properties hold globally:
character_code(T) is side-effect free.

True: character_code(T)
— / / the following properties hold at call time:

T is currently a term which is not a free variable.
then the following properties hold globally:
character_code(T) is evaluable at compile-time.

Trust: character_code(I)
— The following properties hold upon exit:

I is an integer which is a character code.

REGTYPE

(s ideff /2)

(nonvar/l)

(eval/1)

(character_code/l)

string/1: REGTYPE
A string is a list of character codes. The usual syntax for strings "s t r ing" is allowed, which
is equivalent to [0 ' s , 0 ' t , 0 ' r , 0 ' i , 0 ' n , 0 ' g] or [115,116,114,105,110,103]. There
is also a special Ciao syntax when the list is not complete: " s t " | |R is equivalent to
[0 ' s , 0 ' t | R] .
(True) Usage: string(T)
T is a string (a list of character codes).

General properties:
True: string(T)

— The following properties hold globally:
s t r ing(T) is side-effect free. (s ideff /2)

True: string(T)
— / / the following properties hold at call time:

T is currently ground (it contains no variables). (ground/l)
then the following properties hold globally:
string(T) is evaluable at compile-time. (eval/1)

80 The Ciao Preprocessor

Trust: s t r i n g (T)

— The following properties hold upon exit:

T is a string (a list of character codes). (string/1)

num_code/l: R E G T Y P E
These are the ASCII codes which can appear in decimal representation of floating point
and integer numbers, including scientific notation and fractionary part.

p r e d n a m e / 1 : REGTYPE
(True) Usage: predname(P)

P is a Name/Ari ty structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

General properties:

True: predname(P)

— The following properties hold globally:

predname (P) is side-effect f ree . (s i d e f f / 2)

True: predname(P)

— / / the following properties hold at call time:

P is currently ground (it contains no variables). (ground/1)

then the following properties hold globally:

predname (P) is evaluable at compile-time. (e v a l / l)

Trust: predname (P)

— The following properties hold upon exit:

P is a Name/Ari ty structure denoting a predicate name:

predname(P/A) : -
atm(P) ,
nneg in t (A) .

(predname/l)

a t m _ o r _ a t m _ l i s t / l : REGTYPE
(True) Usage: atm_or_atm_list(T)

T is an atom or a list of atoms.

General properties:

True: atm_or_atm_list(T)

— The following properties hold globally:

atm_or_atm_list (T) is side-effect f ree . (s i d e f f / 2)

True: atm_or_atm_list(T)

Chapter 9: Basic data types and properties 81

— If the following properties hold at call time:
T is currently ground (it contains no variables).
then the following properties hold globally:
atm_or_atm_list (T) is evaluable at compile-time.

Trust: atm_or_atm_list(T)
— The following properties hold upon exit:

T is an atom or a list of atoms.

(ground/l)

(eval/1)

(atm_or_atm_list/l)

compat/2: PROPERTY
This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y| Z], and [Y,Z] are all compatible with the
regular type l i s t / 1 , whereas the terms f (a) and [1|2] are not.
(True) Usage: compat(Term,Prop)
Term is compatible with Prop

Meta-predicate with arguments: compat (?, (pred 1)).
General properties:
True: compat(Term,Prop)

— / / the following properties hold at call time:
Term is currently ground (it contains no variables). (ground/1)
Prop is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
compat (Term,Prop) is evaluable at compile-time. (eva l / l)

inst/2:
(True) Usage: inst(Term,Prop)
Term is instantiated enough to satisfy Prop.

Meta-predicate with arguments: in s t (? , (pred 1)).
General properties:
True: inst(Term,Prop)

— The following properties hold globally:
inst (Term, Prop) is side-effect free.

True: inst(Term,Prop)
— / / the following properties hold at call time:

Term is currently ground (it contains no variables).
Prop is currently ground (it contains no variables).
then the following properties hold globally:
inst (Term,Prop) is evaluable at compile-time.

PROPERTY

(s ideff /2)

(ground/l)

(ground/l)

(eval/1)

82 The Ciao Preprocessor

i s o / 1 : PROPERTY
(True) Usage: iso(G)
Complies with the ISO-Prolog standard.

Meta-predicate with arguments: i so(goal) .
General properties:
True: iso(G)

— The following properties hold globally:
iso(G) is side-effect free. (s ideff /2)

d e p r e c a t e d / 1 : PROPERTY
Specifies that the predicate marked with this global property has been deprecated, i.e.,
its use is not recommended any more since it will be deleted at a future date. Typically
this is done because its functionality has been superseded by another predicate.
(True) Usage: deprecated(G)
DEPRECATED.

Meta-predicate with arguments: deprecated(goal).
General properties:
True: deprecated(G)

— The following properties hold globally:
deprecated(G) is side-effect free. (s ideff /2)

not_further_inst /2: PROPERTY
(True) Usage: not_further_inst(G,V)
V is not further instantiated.

Meta-predicate with arguments: not_further_inst(goal,?).
General properties:
True: not_further_inst(G,V)

— The following properties hold globally:
not_further_inst (G,V) is side-effect free. (s ide f f /2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

s ideff /2: PROPERTY
sideff(G,X)
Declares that G is side-effect free (if its execution has no observable result other than its
success, its failure, or its abortion), soft (if its execution may have other observable results
which, however, do not affect subsequent execution, e.g., input /output), or hard (e.g.,
assert/retract).
(True) Usage: sideff(G,X)
G is side-effect X.

— / / the following properties hold at call time:
G is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
X is an element of [free,soft ,hard]. (member/2)

Chapter 9: Basic data types and properties 83

Meta-predicate with arguments: sideff (goa l ,?) .
General properties:
True: sideff(G,X)

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)
sideff (G,X) is side-effect free. (s ideff /2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

r e g t y p e / 1 : PROPERTY
(True) Usage: regtype G
Defines a regular type.

Meta-predicate with arguments: regtype goal.
General properties:
True: regtype G

— The following properties hold globally:
regtype G is side-effect free. (s ideff /2)

n a t i v e / 1 : PROPERTY
(True) Usage: nat ive(Pred)
This predicate is understood natively by CiaoPP.

Meta-predicate with arguments: na t ive (goal) .
General properties:
True: nat ive(P)

— The following properties hold globally:
nat ive(P) is side-effect free. (s ideff /2)

n a t i v e / 2 : PROPERTY
(True) Usage: native(Pred,Key)
This predicate is understood natively by CiaoPP as Key.

Meta-predicate with arguments: na t ive (goa l ,?) .
General properties:
True: native(P,K)

— The following properties hold globally:
native(P,K) is side-effect free. (s ideff /2)

r t c h e c k / 1 : PROPERTY
(True) Usage: rtcheck(G)
Equivalent to rtcheck(G, complete).

84 The Ciao Preprocessor

— If the following properties hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (c a l l a b l e / 1)

Meta-predicate with arguments: r t c h e c k (g o a l) .

General properties:

True: rtcheck(G)

— The following properties hold globally:

rtcheck(G) is side-effect f ree . (s i d e f f / 2)

r t c h e c k / 2 : P R O P E R T Y

(True) Usage: r tcheck(G,Status)

The runtime check of the property have the status S tatus .

— / / the following properties hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (c a l l a b l e / 1)

Status of the runtime-check implementation for a given property. Valid values are:
• unimplemented: No run-time checker has been implemented for the property.

Althought it can be implemented further.

• incomplete: The current run-time checker is incomplete, which means, under
certain circunstances, no error is reported if the property is violated.

• unknown: We do not know if current implementation of run-time checker is
complete or not.

• complete: The opposite of incomplete, error is reported always that the property
is violated. Default.

• impossible: The property must not be run-time checked (for theoretical or prac­
tical reasons).

(r t c _ s t a t u s / l)

Meta-predicate with arguments: r t c h e c k (g o a l , ?) .

General properties:

True: r tcheck(G,Status)

— The following properties hold globally:

rtcheck(G,Status) is side-effect f ree . (s i d e f f / 2)

n o _ r t c h e c k / l : P R O P E R T Y
(True) Usage: no_rtcheck(G)

Declares that the assertion in which this comp property appears must not be checked at
run-time. Equivalent to rtcheck(G, impossible).

— / / the following properties hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (c a l l a b l e / 1)

Meta-predicate with arguments: n o _ r t c h e c k (g o a l) .

General properties:

True: no_rtcheck(G)

— The following properties hold globally:

no_rtcheck(G) is side-effect f ree . (s i d e f f / 2)

Chapter 9: Basic data types and properties 85

e v a l / 1 : PROPERTY
(True) Usage: eval(Goal)

Goal is evaluable at compile-time.

Meta-predicate with arguments: eval (goal) .

e q u i v / 2 : PROPERTY
(True) Usage: equiv(Goall,Goal2)
Goall is equivalent to Goal2.

Meta-predicate with arguments: equiv (goal, goal) .

b i n d _ i n s / l : PROPERTY
(True) Usage: bind_ins(Goal)
Goal is binding insensitive.

Meta-predicate with arguments: bind_ins(goal).

error _ free / l : PROPERTY
(True) Usage: error_free(Goal)
Goal is error free.

Meta-predicate with arguments: e r ror_f ree(goal) .

m e m o / 1 : PROPERTY
(True) Usage: memo(Goal)

Goal should be memoized (not unfolded).

Meta-predicate with arguments: memo (goal).

f i l ter /2: PROPERTY
(True) Usage: f i l t e r (Vars ,Goal)
Vars should be filtered during global control).

flag_values/l: REGTYPE
(True) Usage: flag_values(X)
Define the valid flag values

p e _ t y p e / l : PROPERTY
(True) Usage: pe_type(Goal)
Goal will be filtered in partial evaluation time according to the PE types defined in the
assertion.

Meta-predicate with arguments: pe_type(goal) .

86 The Ciao Preprocessor

9.3 Known bugs and planned improvements (basic_props)
• Run-time checks have been reported not to work with this code. That means that either

the assertions here, or the code that implements the run-time checks are erroneous.

Chapter f 0: Properties which are native to analyzers 87

10 Properties which are native to analyzers
Author(s): Francisco Bueno, Manuel Hermenegildo, Pedro Lopez, Edison Mera.
This library contains a set of properties which are natively understood by the different pro­

gram analyzers of ciaopp. They are used by ciaopp on output and they can also be used as
properties in assertions.

10.1 Usage and interface (native_props)

f -

• Library usage:
:- use_module(library(assertions(native_props)))
or also as a package : - use_package(nativeprops).
Note the different names of the library and the package.

• Exports:
— Properties:

clique/1, clique_l/l, compat/1, constraint/1, covered/1, covered/2,
exception/1, exception/2, fails/1, finite_solutions/l, have_choicepoints/l,
indep/1, indep/2, instance/1, is_det/l, linear/1, mshare/1, mut_exclusive/l,
no_choicepoints/l, no_exception/l, no_exception/2, no_signal/l, no_signal/2,
non_det/l, nonground/1, not_covered/l, not_fails/l, not_mut_exclusive/l,
num_
solutions/2, solutions/2, possibly_fails/1, possibly_nondet/l, relations/2,
sideff_hard/l, sideff_pure/l, sideff_soft/l, signal/1, signal/2, signals/2,
size/2, size/3, size_lb/2, size_o/2, size_ub/2, size_metric/3, size_metric/4,
succeeds/1, steps/2, steps_lb/2, steps_o/2, steps_ub/2, tau/1, terminates/1,
test_type/2, throws/2, user_output/2.

• Imports:
— System library modules:

terms_check, terms_vars, hiordlib, sort, l i s t s , streams, f i l e _ u t i l s , system,
odd, rtchecks/rtchecks_send.

— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
compare, term_typing, hiord_rt, debugger_support, internals.

— Packages:
prelude, nonpure, assertions, hiord.

10.2 Documentation on exports (native_props)

c l i q u e / 1 : PROPERTY
clique(X)
X is a set of variables of interest, much the same as a sharing group but X represents all
the sharing groups in the powerset of those variables. Similar to a sharing group, a clique
is often translated to ground/1, indep/1, and indep/2 properties.
Usage: clique (X)
The clique pattern is X.

88 The Ciao Preprocessor

The following properties should hold globally:
This predicate is understood natively by CiaoPP as clique(X). (nat ive/2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

clique_l/l: PROPERTY
clique_l(X)
X is a set of variables of interest, much the same as a sharing group but X represents all the
sharing groups in the powerset of those variables but disregarding the singletons. Similar
to a sharing group, a clique.l is often translated to ground/1, indep/1, and indep/2
properties.
Usage: clique_l(X)
The 1-clique pattern is X.

— The following properties should hold globally:
This predicate is understood natively by CiaoPP as cl ique_l(X). (nat ive/2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

compat/1: PROPERTY
Usage: compat(Prop)
Use Prop as a compatibility property.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: compat (goal) .

constraint/1: PROPERTY
constraint(C)

C contains a list of linear (in)equalities that relate variables and in t values. For example,
[A < B + 4] is a constraint while [A < BC + 4] or [A = 3 .4 , B >= C] are not.
(True) Usage: constraint(C)
C is a list of linear equations

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

covered/1: PROPERTY
covered(X)
For any call of the form X there is at least one clause whose test succeeds (i.e., all the calls
of the form X are covered) [DLGH97].
Usage: covered(X)
All the calls of the form X are covered.

— The following properties should hold globally:
The runtime check of the property have the status unimplemented. (rtcheck/2)

Chapter 10: Properties which are native to analyzers 89

covered/2: PROPERTY
covered(X,Y)
All variables occuring in X occur also in Y.
(True) Usage: covered(X,Y)
X is covered by Y.

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

exception/1: PROPERTY
Usage: exception(Goal)
Calls of the form Goal throw an exception.

Meta-predicate with arguments: exception (goal) .

exception/2: PROPERTY
Usage: exception(Goal,E)

Calls of the form Goal throw an exception that unifies with E.

Meta-predicate with arguments: exception (goa l ,?) .

fails/1: PROPERTY
fai ls(X)
Calls of the form X fail.
(True) Usage: fa i ls (X)
Calls of the form X fail.

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

Meta-predicate with arguments: f a i l s (goal) .

finite_solutions/l: PROPERTY
f in i te_solu t ions(X)
Calls of the form X produce a finite number of solutions [DLGH97].
Usage: f in i te_solut ions(X)
All the calls of the form X have a finite number of solutions.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: f i n i t e_so lu t ions (goa l) .

90 The Ciao Preprocessor

have_choicepoints/l: PROPERTY
Usage: have_choicepoints(X)
A call to X creates choicepoints.

Meta-predicate with arguments: have_choicepoints(goal) .

indep/1: PROPERTY
(True) Usage: indep(X)
The variables in pairs in X are pairwise independent.

— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep(X). (nat ive/2)

indep/2: PROPERTY
(True) Usage: indep(X,Y)
X and Y do not have variables in common.

— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep([[X, Y]]) . (nat ive/2)

instance/1: PROPERTY
Usage: instance(Prop)
Use Prop as an instantiation property. Verify that execution of Prop does not produce
bindings for the argument variables.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: instance (goal) .

is_det/l: PROPERTY
is_det(X)
All calls of the form X are deterministic, i.e., produce at most one solution, or do not
terminate. In other words, if X succeeds, it can only succeed once. It can still leave choice
points after its execution, but when backtracking into these, it can only fail or go into an
infinite loop.
Usage: is_det(X)
All calls of the form X are deterministic.

Meta-predicate with arguments: i s_de t (goa l) .

linear/1: PROPERTY
linear(X)
X is bound to a term which is linear, i.e., if it contains any variables, such variables appear
only once in the term. For example, [1,2,3] and f (A,B) are linear terms, while f (A,A)
is not.
(True) Usage: l inear(X)
X is instantiated to a linear term.

Chapter 10: Properties which are native to analyzers 91

The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

m s h a r e / 1 : PROPERTY
mshare(X)
X contains all sharing sets [JL88,MH89b] which specify the possible variable occurrences
in the terms to which the variables involved in the clause may be bound. Sharing sets are a
compact way of representing groundness of variables and dependencies between variables.
This representation is however generally difficult to read for humans. For this reason, this
information is often translated to ground/1, indep/1 and indep/2 properties, which are
easier to read.
Usage: mshare(X)
The sharing pattern is X.

— The following properties should hold globally:
This predicate is understood natively by CiaoPP as sharing(X). (nat ive/2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

General properties:
Test: mshare(L)

— If the following properties should hold at call time:
L=[[A],[p(A)]] (= /2)
then the following properties should hold globally:
Calls of the form mshare(L) fail. (f a i l s / 1)

Test: mshare(L)
— If the following properties should hold at call time:

L=[[A],[p(B)]] (= /2)
then the following properties should hold globally:
All the calls of the form mshare(L) do not fail. (not_f a i l s / 1)

m u t _ e x c l u s i v e / l : PROPERTY
mut_exclusive(X)
For any call of the form X at most one clause succeeds, i.e., clauses are pairwise exclusive.
Usage: mut_exclusive(X)
For any call of the form X at most one clause succeeds.

— The following properties should hold globally:
The runtime check of the property have the status unimplemented. (r tcheck/2)

Meta-predicate with arguments: mut_exclusive(goal).

n o _ c h o i c e p o i n t s / l : PROPERTY
Usage: no_choicepoints(X)
A call to X does not create choicepoints.

Meta-predicate with arguments: no_choicepoints(goal) .

92 The Ciao Preprocessor

no_exception/l: P R O P E R T Y
Usage: no_excep t ion (Goa l)

Calls of the form Goal do not throw any exception.

Meta-predicate with arguments: n o _ e x c e p t i o n (g o a l) .

no_exception/2: P R O P E R T Y
Usage: no_excep t ion (Goa l ,E)

Calls of the form Goal do not throw exception E.

Meta-predicate with arguments: no_except ion (g o a l , ?) .

no_signal/l: P R O P E R T Y
Usage: n o _ s i g n a l (G o a l)

Calls of the form Goal do not send any signal.

Meta-predicate with arguments: n o _ s i g n a l (g o a l) .

no_signal/2: P R O P E R T Y
Usage: n o _ s i g n a l (G o a l , E)

Calls of the form Goal do not send the signal E.

Meta-predicate with arguments: n o _ s i g n a l (g o a l , ?) .

non_det/l: P R O P E R T Y
non_det(X)

All calls of the form X are non-deterministic, i.e., produce several solutions.

Usage: non_det(X)

All calls of the form X are non-deterministic.

Meta-predicate with arguments: non_det (g o a l) .

nonground/1: P R O P E R T Y
Usage: nonground(X)

X is not ground.

— The following properties should hold globally:

This predicate is understood natively by CiaoPP as not_ground(X) . (n a t i v e / 2)

not_covered/l: P R O P E R T Y
not_covered(X)

There is some call of the form X for which there is no clause whose test succeeds [DLGH97].

Usage: not_covered(X)

Not all of the calls of the form X are covered.

— The following properties should hold globally:

The runtime check of the property have the status unimplemented. (r t c h e c k / 2)

Chapter 10: Properties which are native to analyzers 93

not_fa i l s / l : PROPERTY
not_fai ls(X)
Calls of the form X produce at least one solution, or do not terminate [DLGH97].
(True) Usage: not_fai ls(X)
All the calls of the form X do not fail.

— The following properties hold globally:
This predicate is understood natively by CiaoPP. (nat ive/1)

Meta-predicate with arguments: not_f a i l s (goal) .

not_mut_exc lus ive / l : PROPERTY
not_mut_exclusive(X)
For calls of the form X more than one clause may succeed. I.e., clauses are not disjoint for
some call.
Usage: not_mut_exclusive(X)

For some calls of the form X more than one clause may succeed.
— The following properties should hold globally:

The runtime check of the property have the status unimplemented. (r tcheck/2)

Meta-predicate with arguments: not_mut_exclusive(goal).

num_so lut ions /2 : PROPERTY
Usage 1: num_solutions(X,N)
All the calls of the form X have N solutions.

— If the following properties should hold at call time:
X is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
N is an integer. (i n t / l)

Usage 2: num_solutions(Goal,Check)

For a call to Goal, Check(X) succeeds, where X is the number of solutions.
— If the following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
Check is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)

s o l u t i o n s / 2 : PROPERTY
Usage: solut ions(Goal ,Sols)
Goal Goal produces the solutions listed in Sols.

— If the following properties should hold at call time:
Goal is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
Sols is a list. (l i s t / 1)

94 The Ciao Preprocessor

poss ib ly_fa i l s / l : PROPERTY
possibly_fails(X)

Non-failure is not ensured for any call of the form X [DLGH97]. In other words, nothing
can be ensured about non-failure nor termination of such calls.
Usage: possibly_fai ls(X)
Non-failure is not ensured for calls of the form X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: possibly_f a i l s (goal) .

p o s s i b l y _ n o n d e t / l : PROPERTY
possibly_nondet(X)
Non-determinism is not ensured for all calls of the form X. In other words, nothing can
be ensured about determinacy nor termination of such calls.
Usage: possibly_nondet(X)
Non-determinism is not ensured for calls of the form X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

re la t ions /2 : PROPERTY
relat ions(X,N)
The goal X produces N solutions. In other words, N is the cardinality of the solution set of
X.
Usage: relat ions(X,N)
Goal X produces N solutions.

— The following properties should hold globally:
The runtime check of the property have the status unimplemented. (r tcheck/2)

Meta-predicate with arguments: r e l a t i o n s (goa l ,?) .

s ideff_hard/ l : PROPERTY
Usage: sideff_hard(X)
X has hard side-effects, i.e., those that might affect program execution (e.g., assert/retract).

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s ideff_hard(goal) .

Chapter 10: Properties which are native to analyzers 95

s ideff_pure/ l : PROPERTY
Usage: sideff_pure(X)
X is pure, i.e., has no side-effects.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: sideff_pure(goal).

s ideff_soft / l : PROPERTY
Usage: sideff_soft(X)
X has soft side-effects, i.e., those not affecting program execution (e.g., input/output).

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s ideff_soft(goal) .

s i g n a l / 1 : PROPERTY
Usage: signal(Goal)
Calls of the form Goal throw a signal.

Meta-predicate with arguments: signal (goal) .

s i g n a l / 2 : PROPERTY
Usage: signal(Goal,E)

A call to Goal sends a signal that unifies with E.

Meta-predicate with arguments: signal (goa l ,?) .

s igna l s /2 : PROPERTY
Usage: signals(Goal,Es)
Calls of the form Goal can generate only the signals that unify with the terms listed in
Es.

— The following properties should hold globally:
The runtime check of the property have the status unimplemented. (rtcheck/2)

Meta-predicate with arguments: s ignals (goa l ,?) .

s i z e / 2 : PROPERTY
Usage: size(X,Y)
Y is the size of argument X, for any approximation.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

96 The Ciao Preprocessor

size/3: PROPERTY
Usage: size(A,X,Y)
Y is the size of argument X, for the approximation A.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

size_lb/2: PROPERTY
size_lb(X,Y)
The minimum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHD96b].
Usage: size_lb(X,Y)
Y is a lower bound on the size of argument X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

size_o/2: PROPERTY
Usage: size_o(X,Y)
The size of argument X is in the order of Y.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

size_ub/2: PROPERTY
size_ub(X,Y)
The maximum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHD96b].
Usage: size_ub(X,Y)
Y is a upper bound on the size of argument X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

size_metric/3: PROPERTY
Usage: size_metric(Head,Var,Metric)
Metric is the metric of the variable Var, for any approximation.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s i ze_met r i c (goa l , ? , ?) .

Chapter 10: Properties which are native to analyzers 97

size_metric/4: PROPERTY
Usage: size_metric(Head,Approx,Var,Metric)
Metric is the metric of the variable Var, for the approximation Approx. Currently, Metric
can be: i n t / 1 , s i z e / 1 , l eng th /1 , depth/2, and void/1 .

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s i ze_me t r i c (goa l , ? , ? , ?) .

succeeds/1: PROPERTY
Usage: succeeds(Prop)
A call to Prop succeeds.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: succeeds (goal) .

steps/2: PROPERTY
steps(X,Y)
The time (in resolution steps) spent by any call of the form X is given by the expression Y
Usage: steps(X,Y)
Y is the cost (number of resolution steps) of any call of the form X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s teps (goal ,?) .

steps_lb/2: PROPERTY
steps_lb(X,Y)
The minimum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DLGHL97,LGHD96b]
Usage: steps_lb(X,Y)
Y is a lower bound on the cost of any call of the form X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (no_rtcheck/l)

Meta-predicate with arguments: s t eps_ lb (goa l , ?) .

98 The Ciao Preprocessor

steps_o/2: P R O P E R T Y
Usage: s teps_o(X,Y)

Y is the complexity order of the cost of any call of the form X.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (n o _ r t c h e c k / l)

Meta-predicate with arguments: s t e p s _ o (g o a l , ?) .

steps_ub/2: P R O P E R T Y
steps_ub(X,Y)

The maximum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DL93,LGHD96b].
Usage: s teps_ub(X,Y)

Y is a upper bound on the cost of any call of the form X.

— The following properties should hold globally:

Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (n o _ r t c h e c k / l)

Meta-predicate with arguments: s t e p s _ u b (g o a l , ?) .

tau/1: P R O P E R T Y
t au (Types)

Types contains a list with the type associations for each variable, in the form
V/ [Tl, . . ,TN]. Note that tau is used in object-oriented programs only
(True) Usage: t au (Type In fo)

Types is a list of associations between variables and list of types

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (n a t i v e / 1)

terminates/1: P R O P E R T Y
t e r m i n a t e s (X)

Calls of the form X always terminate [DLGH97].

Usage: t e r m i n a t e s (X)

All calls of the form X terminate.

— The following properties should hold globally:
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (n o _ r t c h e c k / l)

Meta-predicate with arguments: t e r m i n a t e s (g o a l) .

test_type/2: P R O P E R T Y
Usage: t e s t _ t y p e (X , T)

Indicates the type of test tha t a predicate performs. Required by the nonfailure analyisis.

Meta-predicate with arguments: t e s t _ t y p e (g o a l , ?) .

Chapter 10: Properties which are native to analyzers 99

throws/2: PROPERTY
Usage: throws(Goal,Es)
Calls of the form Goal can throw only the exceptions that unify with the terms listed in
Es.

— The following properties should hold globally:
The runtime check of the property have the status unimplemented. (rtcheck/2)

Meta-predicate with arguments: throws (goa l ,?) .

user_output/2:
Usage: user_output(Goal,S)
Calls of the form Goal write S to standard output.

Meta-predicate with arguments: user_output (goal ,?) .

PROPERTY

instance/2:
(True) Usage: instance(Terml,Term2)
Terml is an instance of Term2.

— The following properties hold globally:
This predicate is understood natively by CiaoPP.

PROPERTY

(n a t i v e / l)

10.3 Known bugs and planned improvements (native_props)

• A missing property is succeeds (not_fails = succeeds or not.terminates. - EMM

100 The Ciao Preprocessor

Chapter 11: Run-time checking of assertions 101

11 Run-time checking of assertions
Author(s): Edison Mera.
This package provides a complete implementation of run-time checks of predicate assertions.

The program is instrumented to check such assertions at run time, and in case a property does
not hold, the error is reported. Note that there is also an older package called rtchecks, by David
Trallero. The advantage of this one is that it can be used independently of CiaoPP and also has
updated functionality.

There are two main applications of run-time checks:
• To improve debugging of certain predicates, specifying some expected behavior that is

checked at run-time with the assertions.
• To avoid manual implementation of run-time checks that should be done in some predicates,

leaving the code clean and understandable.

The run-time checks can be configured using prolog flags. Below we itemize the valid prolog
flags with its values and a brief explanation of the meaning:

• rtchecks_level
• exports: Only use rtchecks for external calls of the exported predicates.
• inner : Use also rtchecks for internal calls. Default.

• rtchecks_trust
• no : Disable rtchecks for trust assertions.
• yes : Enable rtchecks for trust assertions. Default.

• rtchecks_entry
• no : Disable rtchecks for entry assertions.
• yes : Enable rtchecks for entry assertions. Default.

• rtchecks_exit
• no : Disable rtchecks for exit assertions.
• yes : Enable rtchecks for exit assertions. Default.

• rtchecks_test
• no : Disable rtchecks for test assertions. Default.
• yes : Enable rtchecks for test assertions. Used for debugging purposes, but is better

to use the unittest library.
• rtchecks_inline

• no : Instrument rtchecks using call to library predicates present in rtchecks_rt.pl,
nativeprops.pl and basic_props.pl. In this way, space is saved, but sacrifying
performance due to usage of meta calls and external methods in the libraries. Default.

• yes : Expand library predicates inline as far as possible. In this way, the code is faster,
because its avoids metacalls and usage of external methods, but the final executable
could be bigger.

• rtchecks_asrloc Controls the usage of locators for the assertions in the error messages.
The locator says the file and lines that contains the assertion that had failed. Valid values
are:

• no : Disabled.
• yes : Enabled. Default.

• rtchecks_predloc Controls the usage of locators for the predicate that caused the run-time
check error. The locator says the first clause of the predicate that the violated assertion
refers to.

• no : Disabled.

http://rtchecks_rt.pl
http://nativeprops.pl
http://basic_props.pl

102 The Ciao Preprocessor

• yes : Enabled, Default.
rtchecks_callloc

• no : Do not show the stack of predicates that caused the failure
• predicate: Show the stack of predicates that caused the failure. Instrument it in the

predicate. Default.
• l i t e r a l : Show the stack of predicates that caused the failure. Instrument it in the

literal. This mode provides more information, because reports also the literal in the
body of the predicate.

rtchecks_namefmt

• long : Show the name of predicates, properties and the values of the variables
• short : Only show the name of the predicate in a reduced format. Default.

rtchecks_abort_on_error
Controls if run time checks must abort the execution of a program (by raising an exception),
or if the execution of the program have to continue.
Note that this option only affect the default handler and the predicate ca l l _r t c / l , so if
you use your own handler it will not have effect.

• yes : Raising a run time error will abort the program.
• no : Raising a run time error will not stop the execution, but a message will be shown.

Default.

11.1 Usage and interface (rtchecks_doc)

Library usage:
:- use_package(rtchecks).
or
: - m o d u l e (. . . , . . . , [r t c h e c k s]) .
Imports:

— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
compare, term_typing, hiord_rt, debugger_support.

— Packages:
prelude, nonpure, assertions.

PART III - Extending CiaoPP 103

PART III - Extending CiaoPP

f

Author(s): The CLIP Group.

V

\

/

104 The Ciao Preprocessor

Chapter 12: Adding a new analysis domain to CiaoPP 105

12 Adding a new analysis domain to CiaoPP
Author(s): The CLIP Group.
One of the most relevant features of the CiaoPP system is that it allows the addition of new

analysis domains to the abstract interpretation-based framework in an easy way.
The next Chapter (Chapter 13 [Plug-in points for abstract domains], page 107) describes the

module domains.pl, the general interface used by the analyzer for accessing the operations of
the different domains implemented in the system. The developer of a new domain must edit this
module, adding the necessary clauses to link the general interface with the specific operations
of the new domain.

The procedure of adding a new domain is illustrated in Chapter 14 [Simple groundness
abstract domain], page 117 by means of a simple abstract domain for groundness information
inference. It includes a list of the predicates that need to be implemented by the developer in
order to add the abstract domain to CiaoPP.

http://domains.pl

106 The Ciao Preprocessor

Chapter 13: Plug-in points for abstract domains 107

13 Plug-in points for abstract domains
Author(s): Maria Garcia de la Banda, Francisco Bueno.
This module contains the predicates for selecting the abstract operations that correspond to

an analysis domain. The selection depends on the name of the domain given as first argument to
all predicates. Whenever a new domain is added to the system, a new clause for each predicate
exported here will be needed to call the corresponding domain operation in the domain module.
Some local operations used but not exported by this module would have to be defined, too. See
the following chapter for an example domain module.

Adding an analysis domain to PLAI requires only changes in this module. However, in order
for other CiaoPP operations to work, you may need to change other modules. See, for example,
module inf er_dom.

In this chapter, arguments referred to as Sv, Hv, Fv, Qv, Vars are lists of program variables
and are supposed to always be sorted. Abstract substitutions are referred to as ASub, and are
also supposed sorted (except where indicated), although this depends on the domain.

108 The Ciao Preprocessor

13.1 Usage and interface (domains)

• Library usage:

:- use_module(library(domains)).

• Exports:

— Predicates:

init_abstract_domain/2, amgu/5, call_to_entry/9, exit_to_prime/8, project/5,
extend/5, widen/4, widencall/4, normalize_asub/3, compute_lub/3, glb/4,
less_or_equal/3, less_or_equal_proj/5, identical_abstract/3, identical.
proj/5, identical_proj_l/7, abs_sort/3, augment_asub/4, augment_two_asub/4,
abs_subset/3, eliminate_equivalent/3, call_to_success_fact/9, body_succ_
builtin/9, special_builtin/6, concrete/4, part_conc/5, multi_part_conc/4,
obtain_info/5, info_to_asub/5, full_info_to_asub/4, asub_to_info/5, asub_
to_native/5, unknown_call/5, unknown_call/4, unknown_entry/4, unknown.
entry/3, empty_entry/3, collect_types_in_abs/4, rename_types_in_abs/4, dom_
statistics/2, abstract_instance/5, contains_parameters/2.

— Multifiles:
a i d o m a i n / 1 .

• Imports:

— Application modules:

program(p_unit), ciaopp(preprocess_flags), plai(plai_errors), plai(fixpo_
ops),domain(pd),domain(pdb), domain(gr), domain(java_nullity), domain(def),
domain(fd), domain(fr_top), domain(lsign), domain(share), domain(shfret),
domain(shareson), domain(shfrson), domain(sondergaard), domain(oo_son),
domain(oo_shnltau), domain(share_amgu), domain(share_clique),
domain(bshare(bshare)), domain(aeq_top), domain(depthk), domain(top_path_
sharing), domain(eterms), domain(svterms), domain(termsd), domain(ptypes),
domain(polyhedra), domain(oo_types), domain(deftypes), domain(java_cha),
domain(nfplai), domain(detplai), infer(low_level_props).

— System library modules:

terms_check, terms_vars, s e t s , sor t , messages, a s s e r t i o n s / n a t i v e _ p r o p s .

— Internal (engine) modules:

term_basic, a r i t h m e t i c , a tomic_bas i c , b a s i c _ p r o p s , b a s i c c o n t r o l , da ta_fac t s ,
except ions , io_aux, i o _ b a s i c , pro log_ f lags , streams_basic , system_info, term_
compare, term_typing, h i o r d _ r t , debugger_support.

— Packages:

prelude, nonpure, assertions, regtypes.

13.2 Documenta t ion on expor t s (domains)

i n i t _ a b s t r a c t _ d o m a i n / 2 : PREDICATE
i n i t _ a b s t r a c t _ d o m a i n (A b s l n t , N o r m)

Initializes abstract domain Abs ln t . Tells whether Absln t requires a normalized program.

Chapter 13: Plug-in points for abstract domains 109

a m g u / 5 : PREDICATE
amgu(Abslnt,Sg,Head,ASub,AMGU)

Perform the abstract unification AMGU between Sg and Head given an initial abstract sub­
stitution ASub and abstract domain Abs ln t .

c a l l _ t o _ e n t r y / 9 : PREDICATE
ca l l_ to_entry (Abs ln t ,Sv ,Sg ,Hv ,Head ,Fv ,Pro j ,Entry ,Extra in fo)

Obtains the abstract substitution En t ry which results from adding the abstraction of the
unification Sg = Head to abstract substitution Pro j (the call substitution for Sg projected
on its variables Sv) and then projecting the resulting substitution onto Hv (the variables of
Head) plus Fv (the free variables of the relevant clause). Extrainf o is information which
may be reused later in other abstract operations.

e x i t _ t o _ p r i m e / 8 : PREDICATE
ex i t_ to_pr ime(Abs lnt ,Sg ,Hv,Head,Sv ,Exi t ,Extra info ,Prime)

Computes the abstract substitution Prime which results from adding the abstraction of
the unification Sg = Head to abstract substitution Exit (the exit substitution for a clause
Head projected over its variables Hv), projecting the resulting substitution onto Sv.

p r o j e c t / 5 : PREDICATE
proj ect(Abslnt ,Vars,HvFv_u,ASub ,Proj)

Projects the abstract substitution ASub onto the variables of list Vars resulting in the
projected abstract substitution Proj .

extend/5: PREDICATE
extend(Abs lnt ,Prime ,Sv ,Cal l ,Succ)

Succ is the extension the information given by Prime (success abstract substitution over
the goal variables Sv) to the rest of the variables of the clause in which the goal occurs
(those over which abstract substitution Cal l is defined on). I.e., it is like a conjunction
of the information in Prime and C a l l , except that they are defined over different sets
of variables, and that Prime is a successor substitution to Cal l in the execution of the
program.

w i d e n / 4 : PREDICATE
widen(Abslnt,ASubO,ASubl,ASub)

ASub is the result of widening abstract substitution ASubO and ASubl, which are supposed
to be consecutive approximations to the same abstract value.

w i d e n c a l l / 4 : PREDICATE
widencall(Abslnt,ASubO,ASubl,ASub)

ASub is the result of widening abstract substitution ASubO and ASubl, which are supposed
to be consecutive call patterns in a fixpoint computation.

no The Ciao Preprocessor

normal ize_asub/3: PREDICATE
normalize_asub(AbsInt,ASubO,ASubl)
ASubl is the result of normalizing abstract substitution ASubO. This is required in some
domains, specially to perform the widening.

c o m p u t e _ l u b / 3 : PREDICATE
compute_lub(Abslnt,ListASub,LubASub)
LubASub is the least upper bound of the abstract substitutions in list ListASub.

g l b / 4 : PREDICATE
gib(Abslnt,ASubO,ASubl,GlbASub)
GlbASub is the greatest lower bound of abstract substitutions ASubO and ASubl.

less_or_equal/3: PREDICATE
less_or_equal(Abslnt,ASubO,ASubl)
Succeeds if ASubl is more general or equivalent to ASubO.

less_or_equal_proj/5: PREDICATE
less_or_equal_proj (Abslnt ,Sg,Proj ,Sgl ,Proj l)
Abstract pattern Sg:Proj is less general or equivalent to abstract pattern Sgl:Projl in
domain Abslnt.

ident ica l_abstract /3 : PREDICATE
identical_abstract(Abslnt,ASubl,ASub2)
Succeeds if, in the particular abstract domain, the two abstract substitutions ASubl and
ASub2 are defined on the same variables and are equivalent.

ident ica l_proj /5: PREDICATE
ident ica l_proj (Absln t ,Sg ,Proj ,Sgl ,Pro j1)
Abstract patterns Sg:Proj and Sgl:Projl are equivalent in domain Abslnt. Note that
Proj is assumed to be already sorted.

ident ica l_proj_ l /7 : PREDICATE
ident ica l_proj _1(Abslnt,Sg,Proj,Sgl,Proj1,Prime1,Prime2)
Abstract patterns Sg:Proj and Sgl:Projl are equivalent in domain Abslnt. Note that
Proj is assumed to be already sorted. It is different from iden t ica l_pro j /5 because it
can be true although Sg and Sgl are not variant

Chapter 13: Plug-in points for abstract domains 111

abs_sort/3: PREDICATE
abs_sor t (Abs ln t ,ASub_u,ASub)

ASub is the result of sorting abstract substitution ASub_u.

augment_asub/4: PREDICATE
augment_asub(Abslnt ,ASub,Vars,ASubO)

Augment the abstract substitution ASub adding the variables Vars and then resulting the
abstract substitution ASubO.

augment_two_asub/4: PREDICATE
augment_two_asub(Abslnt,ASubO,ASubl,ASub)

ASub is an abstract substitution resulting of augmenting two abstract substitutions: ASubO
and ASubl whose domains are disjoint.

abs_subset/3: PREDICATE
abs_subset (Abslnt ,LASubl ,LASub2)

Succeeds if each abstract substitution in list LASubl is equivalent to some abstract sub­
stitution in list LASub2.

eliminate_equivalent/3: PREDICATE
e l imina te_equ iva len t (Abs ln t ,TmpLSucc ,LSucc)

The list LSucc is reduced wrt the list TmpLSucc in that it does not contain abstract
substitutions which are equivalent.

call_to_success_fact/9: PREDICATE
c a l l _ t o _ s u c c e s s _ f a c t (A b s l n t , S g , H v , H e a d , S v , C a l l , P r o j , P r i m e , S u c c)

Specialized version of call_to_entry + entry_to_exit + exit_to_prime for a fact Head.

body_succ_builtin/9: PREDICATE
body_succ_bu i l t i n (T y p e , A b s l n t , S g , V s , S v , H v , C a l l , P r o j , S u c c)

Specialized version of call_to_entry + entry_to_exit + exit_to_prime + extend for predi­
cate Sg considered a "builtin" of type Type in domain Abs ln t . Whether a predicate
is "builtin" in a domain is determined by s p e c i a l _ b u i l t i n / 5 . There are two different
ways to treat these predicates, depending on Type: s u c c e s s _ b u i l t i n handles more usual
types of "builtins", c a l l _ t o _ s u c c e s s _ b u i l t i n handles particular predicates. The later
is called when Type is of the form s p e c i a l (SgKey).

special_builtin/6: PREDICATE
s p e c i a l _ b u i l t i n (Abs ln t ,SgKey ,Sg ,Subgoa l ,Type ,Condvar s)

Predicate Sg is considered a "builtin" of type Type in domain Abs ln t . Types are domain
dependent. Domains may have two different ways to treat these predicates: see body_
s u c c _ b u i l t i n / 9 .

112 The Ciao Preprocessor

c o n c r e t e / 4 : PREDICATE
concrete(Absint,Var,ASub,List)
Lis t are (all) the terms to which Var can be bound in the concretization of ASub, if they
are a finite number of finite terms. Otherwise, the predicate fails.

part_conc /5 : PREDICATE
part_conc(Absint,Sg,Subs,NSg,NSubs)
This operation returns in NSg an instance of Sg in which the deterministic structure in­
formation available in Subs is materialized. The substitution NSubs refers to the variables
in NSg.

mult i_part_conc/4: PREDICATE
mult i_part_conc(Absint ,Sg,Subs,List)
Similar to part.conc but it gives instantiations of goals even in the case types are not
deterministic, it generates a Lis t of pairs of goals and substitutions. It stops unfolding
types as soon as they are recursive.

obtain_info/5: PREDICATE
obtain_info(Absint,Prop,Vars,ASub,Info)
Obtains variables Info for which property Prop holds given abstract substitution ASub on
variables Vars for domain Absint.

info_to_asub/5: PREDICATE
info_to_asub(Absint,Kind,InputUser,Qv,ASub)
Obtains the abstract substitution ASub on variables Qv for domain Absint from the user
supplied information InputUser refering to properties on Qv. It works by calling input_
in t e r f ace /5 on each property of InputUser which is a native property, so that they are
accumulated, and then calls input_user_interface/4 .

full_info_to_asub/4: PREDICATE
full_info_to_asub(Absint,InputUser,Qv,ASub)
Same as inf o_to_asub (Absint, InputUser, Qv, ASub) except that it fails if some property
in InputUser is not native or not relevant to the domain Absint.

asub_to_info/5: PREDICATE
asub_to_info(Absint,ASub,Qv,OutputUser,CompProps)
Transforms an abstract substitution ASub on variables Qv for a domain Absint to a list of
state properties OutputUser and computation properties CompProps, such that properties
are visible in the preprocessing unit. It fails if ASub represents bottom. It works by calling
asub_to_native/4.

Chapter 13: Plug-in points for abstract domains 113

asub_to_native/5: PREDICATE
asub_t o_nat ive(Abs in t ,ASub,Qv,Nat i v e S t a t , N a t iveComp)

N a t i v e S t a t and NativeComp are the list of native (state and computational, resp.) prop­
erties that are the concretization of abstract substitution ASub on variables Qv for domain
Abs in t . These are later translated to the properties which are visible in the preprocessing
unit.

unknown_call/5: PREDICATE
u n k n o w n _ c a l l (A b s i n t , S g , V a r s , C a l l , S u c c)

Succ is the result of adding to C a l l the "topmost" abstraction in domain Absin t of the
variables Vars involved in a literal Sg whose definition is not present in the preprocessing
unit. I.e., it is like the conjunction of the information in C a l l with the top for a subset of
its variables.

unknown_call/4: PREDICATE
u n k n o w n _ c a l l (A b s i n t , V a r s , C a l l , S u c c)

Succ is the result of adding to C a l l the "topmost" abstraction in domain Absin t of the
variables Vars involved in a literal whose definition is not present in the preprocessing
unit. I.e., it is like the conjunction of the information in C a l l with the top for a subset of
its variables.

unknown_entry/4: PREDICATE
unknown_en t ry (Abs in t ,Sg ,Va r s ,En t ry)

En t ry is the "topmost" abstraction in domain Abs in t of variables Vars corresponding to
literal Sg.

unknown_entry/3: PREDICATE
unknown_en t ry (Abs in t ,Va r s ,En t ry)

En t ry is the "topmost" abstraction in domain Absin t of variables Vars.

empty_entry/3: PREDICATE
e m p t y _ e n t r y (A b s i n t , V a r s , E n t r y)

En t ry is the "empty" abstraction in domain Absin t of variables Vars. I.e., it is the ab­
straction of a substitution on Vars in which all variables are unbound: free and unaliased.

collect_types_in_abs/4: PREDICATE
c o l l e c t _ t y p e s _ i n _ a b s (A S u b , A b s i n t , T y p e s , T a i l)

Collects the type symbols occurring in ASub of domain Absin t in a difference list Types-
T a i l .

114 The Ciao Preprocessor

rename_types_in_abs/4: PREDICATE
rename_types_in_abs(ASubO,Absint,Diet,ASubl)
Renames the type symbols occurring in ASubO of domain Absint for the corresponding
symbols as in (avl-tree) Diet yielding ASubl.

dom_sta t i s t i c s /2 : PREDICATE
dom_sta t is t ics(Absint , Info)
Obtains in list Info statistics about the results of the abstract interpreter Absint.

abstract_ ins tance /5 : PREDICATE
Usage: abst ract_ins tance(Absint ,Sgl ,Proj1 ,Sg2,Proj2)
The pair <Sgl,Projl> is an abstract instance of the pair <Sg2,Proj2>, i.e., the concretiza-
tion of <Sgl,Projl> is included in the concretization of <Sg2,Proj2>.

conta ins_parameters /2 : PREDICATE
contains_parameters(Absint,Subst)
True if an abstract substitution Subst contains type parameters

13.3 Documentation on multifiles (domains)

a i d o m a i n / 1 : PREDICATE
aidomain(Absint)
Declares that Absint identifies an abstract domain. The predicate is multifile.

13.4 Documentation on internals (domains)

success_bui l t in /7: PREDICATE
success_buil t in(Absint,Type,Sv,Condvars,HvFv_u,Call,Succ)
Succ is the success substitution on domain Absint for a call Call to a goal of a "builtin"
(domain dependent) type Type with variables Sv. Condvars can be used to transfer some
information from spec i a l_bu i l t i n /5 .

cal l_to_success_built in/7: PREDICATE
cal l_ to_success_bui l t in(Absint ,Type,Sg,Sv,Call ,Proj ,Succ)
Succ is the success substitution on domain Absint for a call Call to a goal Sg with vari­
ables Sv considered of a "builtin" (domain dependent) type Type. Proj is Call projected
on Sv.

Chapter 13: Plug-in points for abstract domains 115

input_interface /5: PREDICATE
input_interface(Absint,Prop,Kind,StrucO,Strue1)
Prop is a native property that is relevant to domain Absint (i.e., the domain knows how
to fully -+Kind=perfect- or approximately —Kind=approx- abstract it) and Struct 1
is a (domain defined) structure resulting of adding the (domain dependent) information
conveyed by Prop to structure StructO. This way, the properties relevant to a domain
are being accumulated.

input_user_interface/4: PREDICATE
input_user_interface(Absint,Struct,Qv,ASub)
ASub is the abstraction in Absint of the information collected in Struct (a domain defined
structure) on variables Qv.

13.5 Known bugs and planned improvements (domains)

• When interpreting assertions (and native) should take into account things like
sourcename(X):- atom(X) and true pred atom(X) => atm(X).

• body_succ_built in/9 seems to introduce spurious choice-points.
• Property covered/2 is not well understood by the domains.
• Operation amgu/5 is missing.

116 The Ciao Preprocessor

Chapter 14: Simple groundness abstract domain 117

14 Simple groundness abstract domain
Author(s): Claudio Vaucheret.
This module implements the abstract operations of a simple groundness domain for the PLAI

framework of abstract interpretation. An abstract substitution is a list of Var/Mode elements,
where Var is a variable and Mode is "any", "g" or "ng".

The abstract domain lattice is:
any

/ \
/ \

(ground) g ng (not ground)

\ /
\ /

$bottom

14.1 Usage and interface (gr)

f -

• Library usage:
:- use_module(library(gr)).

• Exports:
— Predicates:

gr_call_to_entry/8, gr_exit_to_prime/7, gr_project/3, gr_extend/4, gr_
compute_lub/2, gr_glb/3, gr_less_or_equal/2, gr_sort/2, gr_call_to_success_
fact/8, gr_special_builtin/4, gr_success_builtin/5, gr_call_to_success_
builtin/6, gr_input_interface/4, gr_input_user_interface/3, gr_asub_to_
native/3, gr_unknown_call/3, gr_unknown_entry/2, gr_empty_entry/2.

— Regular Types:
extrainfo/l.

• Imports:
— System library modules:

messages, sort, terms_vars, terms_check, sets .
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
compare, term_typing, hiord_rt, debugger_support.

— Packages:
prelude, nonpure, assertions, regtypes, basicmodes.

14.2 Documentation on exports (gr)

gr_call_to_entry/8: PREDICATE
Usage: gr_call_to_entry(Sv,Sg,Hv,Head,Fv,Proj,Entry,Extrainfo)
It obtains the abstract substitution Entry which results from adding the abstraction of
the Sg = Head to Pro j , later projecting the resulting substitution onto Hv. This is done
as follows:

118 The Ciao Preprocessor

• If Sg and Head are identical up to renaming it is just renaming Proj and adding the
Fv

• If Hv = [], Entry is just adding the Fv
• Otherwise, it will

• obtain in Binds the primitive equations corresponding to Sg=Head
• add to Proj the variables in Hv as not ground in Tempi
• update Tempi, grounding some variables obtaining Temp2
• insert Fv in Temp2 as 'any' obtaining Temp3
• projects Temp3 onto Hv + Fv obtaining Entry

The meaning of the variables is
• Sv is a list of subgoal variables.
• Sg is the subgoal being analysed.
• Head is the Head of the clause being analysed.
• Fv is a list of free variables in the body of the clause being considered.
• Proj is the abstract substitution Call projected onto Sv.
• Entry is the Abstract entry substitution (i.e. the abstract subtitution obtained after

the abstract unification of Sg and Head projected onto Hv + Fv).
• Extralnfo Info computed during the call_to_entry that can be reused during the

exit_to_prime step.
— The following properties should hold at call time:

Sv is currently a term which is not a free variable. (nonvar/l)
Sg is currently a term which is not a free variable. (nonvar/l)
Hv is currently a term which is not a free variable. (nonvar/l)
Head is currently a term which is not a free variable. (nonvar/l)
Fv is currently a term which is not a free variable. (nonvar/l)
Proj is currently a term which is not a free variable. (nonvar/l)
Entry is a free variable. (va r / l)
Extralnfo is a free variable. (va r / l)
Sv is a list. (l i s t / 1)
Sg is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
Hv is a list. (l i s t / 1)
Head is a term which represents a goal, i.e., an atom or a structure. (ca l lab le /1)
Fv is a list. (l i s t / 1)
Proj is an abstract substitution (absu/l)
Entry is an abstract substitution (absu/l)
Extralnfo is a par (absu,binds) (extrainfo/l)

gr_exit_to_prime/7: PREDICATE
Usage: gr_exit_to_prime(Sg,Hv,Head,Sv,Exit,Extralnfo,Prime)
It computes the prime abstract substitution Prime, i.e. the result of going from the
abstract substitution over the head variables Exit, to the abstract substitution over the
variables in the subgoal. It will:

• If Exit is '$bottom', Prime will be also '$bottom'.

Chapter 14: Simple groundness abstract domain 119

If Flag = yes (Head and Sg identical up to renaming) it is just renaming Exit %
If Hv = [], Prime = { X/g | forall X in Sv }
Otherwise: it will

• obtain the primitive equations corresponding to Sg=Head from Extrainf o.
projects Exit onto Hv obtaining BPrime.
merge Proj from Extrainfo and BPrime obtaining TempPrime.
update TempPrime, grounding some variables obtaining NewTempPrime.

• projects NewTempPrime onto Sv obtaining Prime.
The following properties should hold at call time:
Sg is currently a term which is not a free variable.
Hv is currently a term which is not a free variable.
Head is currently a term which is not a free variable.
Sv is currently a term which is not a free variable.
Exit is currently a term which is not a free variable.
Extrainf o is a free variable.
Prime is a free variable.
Sg is a list.
Hv is a list.
Head is a term which represents a goal, i.e., an atom or a structure.
Sv is a term which represents a goal, i.e., an atom or a structure.
Exit is an abstract substitution
Extrainf o is a par (absu,binds)

(nonvar/l)

(nonvar/l)

(nonvar/l)

(nonvar/l)

(nonvar/l)

(var/1)

(var/1)

(list/1)

(list/1)

(callable/1)

(callable/1)

(absu/1)

(extrainfo/l)

Prime is an abstract substitution (absu/1)

gr_projec t /3 : PREDICATE
Usage: gr_proj ect(Asub,Vars,Proj)
Proj is the result of eliminating from Asub all X/Value such that X is not in Vars

— The following properties should hold at call time:
Asub is currently a term which is not a free variable. (nonvar/l)
Vars is currently a term which is not a free variable. (nonvar/l)
Proj is a free variable. (var/1)
Asub is an abstract substitution (absu/1)
Vars is a list. (l i s t / 1)
Proj is an abstract substitution (absu/1)

g r _ e x t e n d / 4 : PREDICATE
Usage: gr_extend(Prime,Sv,Call,Succ)
If Prime = '$bottom', Succ = '$bottom'. If Sv = [], Call = Succ. Otherwise, Succ is
computed updating the values of Call with those in Prime

— The following properties should hold at call time:
Prime is currently a term which is not a free variable. (nonvar/l)
Sv is currently a term which is not a free variable. (nonvar/l)

120 The Ciao Preprocessor

Call is currently a term which is not a free variable.
Succ is a free variable.
Prime is an abstract substitution
Sv is a list.
Call is an abstract substitution
Succ is an abstract substitution

(nonvar/l)

(var/1)

(absu/1)

(list/1)

(absu/1)

(absu/1)

gr_compute_ lub/2 : PREDICATE
Usage: gr_compute_lub(ListASub,Lub)
It computes the least upper bound of a set of abstract substitutions. For each two abstract
substitutions ASubl and ASub2 in ListASub, obtaining the lub is just:
foreach X/Valuel in ASubl and X/Value2 in ASub2:

• if Valuel = = Value2, X/Valuel in Lub
• otherwise, X/any in Lub
— The following properties should hold at call time:

ListASub is currently a term which is not a free variable. (nonvar/l)
Lub is a free variable. (va r / l)
ListASub is a list of absus. (l i s t / 2)
Lub is an abstract substitution (absu/1)

gr_glb/3:
Usage: gr_glb(ASubO,ASubl,Gib)
Gib is the great lower bound of ASubO and ASubl

— The following properties should hold at call time:
ASubO is currently a term which is not a free variable.
ASubl is currently a term which is not a free variable.
Gib is a free variable.
ASubO is an abstract substitution
ASubl is an abstract substitution
Gib is an abstract substitution

PREDICATE

(nonvar/l)
(nonvar/l)

(var/1)
(absu/1)
(absu/1)
(absu/1)

gr_less_or_equal/2: PREDICATE
Usage: gr_less_or_equal(ASubO,ASubl)
Succeeds if ASubl is more general or equal to ASubO. it's assumed the two abstract
substitutions are defined on the same variables

— The following properties should hold at call time:
ASubO is currently a term which is not a free variable. (nonvar/l)
ASubl is currently a term which is not a free variable. (nonvar/l)
ASubO is an abstract substitution (absu/1)
ASubl is an abstract substitution (absu/1)

Chapter 14: Simple groundness abstract domain 121

gr_sort /2 :
Usage: gr_sort(Asub,Asub_s)
It sorts the set of X/Value in Asub ontaining Asub_s

— The following properties should hold at call time:
Asub is currently a term which is not a free variable.
Asub_s is a free variable.
Asub is an abstract substitution
Asub_s is an abstract substitution

PREDICATE

(nonvar/l)
(var/1)

(absu/1)
(absu/1)

gr_call_to_success_fact/8:
Usage: gr_call_to_success_fact(Sg,Hv,Head,Sv,Call ,Proj ,Prime,
Specialized version of call_to_entry + exit_to_prime + extend for facts

— The following properties should hold at call time:
Sg is currently a term which is not a free variable.
Hv is currently a term which is not a free variable.
Head is currently a term which is not a free variable.
Sv is currently a term which is not a free variable.
Call is currently a term which is not a free variable.
Proj is currently a term which is not a free variable.
Prime is a free variable.
Succ is a free variable.
Sg is a term which represents a goal, i.e., an atom or a structure.
Hv is a list.
Head is a term which represents a goal, i.e., an atom or a structure.
Sv is a list.
Call is an abstract substitution
Proj is an abstract substitution
Prime is an abstract substitution
Succ is an abstract substitution

PREDICATE
Succ)

(nonvar/l)
(nonvar/l)
(nonvar/l)
(nonvar/l)
(nonvar/l)
(nonvar/l)

(var/1)
(var/1)

(ca l lab le /1)
(l i s t / 1)

(callable/1)

(list/1)

(absu/1)

(absu/1)

(absu/1)

(absu/1)

gr_special_bui l t in/4: PREDICATE
Usage: gr_special_builtin(SgKey,Sg,Type,Condvars)
Satisfied if the builtin does not need a very complex action. It divides builtins into groups
determined by the flag returned in the second argument + some special handling for some
builtins:

1. new-ground if the builtin makes all variables ground whithout imposing any condition
on the previous freeness values of the variables

2. old-ground if the builtin requires the variables to be ground
3. old-new-ground if the builtin requires some variables to be ground and grounds the

rest
4. unchanged if we cannot infer anything from the builtin, the substitution remains

unchanged and there are no conditions imposed on the previous freeness values of the
variables.

122 The Ciao Preprocessor

5. some if it makes some variables ground without imposing conditions
6. Sgkey, special handling of some particular builtins
— The following properties should hold at call time:

SgKey is currently a term which is not a free variable.
Sg is currently a term which is not a free variable.
Type is a free variable.
Condvars is a free variable.
SgKey is a Name/Arity structure denoting a predicate name:

predname(P/A) : -
atm(P),
nnegint(A).

Sg is a term which represents a goal, i.e., an atom or a structure.
Type is an atom.
Condvars is any term.

(nonvar/l)

(nonvar/l)

(var/1)

(var/1)

(predname/l)

(callable/1)

(atm/1)

(term/1)

gr_success_bui l t in/5: PREDICATE
Usage: gr_success_builtin(Type,Sv_u,Condv,Call,Succ)
Obtains the success for some particular builtins:

• If Type = new_ground, it updates Call making all vars in Sv_u ground
• If Type = bottom, Succ = '$bottom'
• If Type = unchanged, Succ = Call
• If Type = some, it updates Call making all vars in Condv ground
• If Type = old_ground, if grouds all variables in Sv and checks that no free variables

has becomed ground
• If Type = old-ground, if grounds all variables in OldG and checks thatno free variables

has becomed ground. If so, it grounds all variables in NewG
• Otherwise Type is the SgKey of a particular builtin for each the Succ is computed
— The following properties should hold at call time:

Type is currently a term which is not a free variable. (nonvar/l)
Sv_u is currently a term which is not a free variable. (nonvar/l)
Condv is currently a term which is not a free variable. (nonvar/l)
Call is currently a term which is not a free variable. (nonvar/l)
Succ is a free variable. (var/1)
Type is an atom. (atm/l)
Sv_u is a list. (l i s t / 1)
Condv is any term. (term/1)
Call is an abstract substitution (absu/l)
Succ is an abstract substitution (absu/l)

gr_call_to_success_built in/6:
Usage: gr_cal l_to_success_buil t in(SgKey,Sh,Sv,Call ,Proj ,Succ)
Handles those builtins for which computing Proj is easier than Succ

PREDICATE

Chapter 14: Simple groundness abstract domain 123

The following properties should hold at call time:
SgKey is currently a term which is not a free variable.
Sh is currently a term which is not a free variable.
Sv is currently a term which is not a free variable.
Call is currently a term which is not a free variable.
Proj is currently a term which is not a free variable.
Succ is a free variable.
SgKey is a Name/Arity structure denoting a predicate name:

predname(P/A) : -
atm(P),
nnegint(A).

Sh is a term which represents a goal, i.e., an atom or a structure.
Sv is a list.
Call is an abstract substitution
Proj is an abstract substitution
Succ is an abstract substitution

nonvar/l)

nonvar/l)

nonvar/l)

nonvar/l)

nonvar/l)

(var/1)

(predname/l)

(callable/1)

(list/1)

(absu/1)

(absu/1)

(absu/1)

gr_input_interface/4: PREDICATE
Usage: gr_input_interface(Prop,Kind,StrucO,Strue1)
Adds native property Prop to the structure accumulating the properties relevant to this
domain, namely: ground/1, free/1, and not_ground/l.

— The following properties should hold at call time:
Prop is currently a term which is not a free variable. (nonvar/l)
StrucO is currently a term which is not a free variable. (nonvar/l)
S t rucl is currently a term which is not a free variable. (nonvar/l)

gr_input_user_interface/3: PREDICATE
Usage: gr_input_user_interface(InputUser,Qv,ASub)
Obtains the abstract substitution for gr from the native properties found in the user
supplied info.

— The following properties should hold at call time:
InputUser is currently a term which is not a free variable. (nonvar/l)
Qv is currently a term which is not a free variable. (nonvar/l)
ASub is currently a term which is not a free variable. (nonvar/l)
InputUser is any term. (term/1)
Qv is a list. (list/1)
ASub is an abstract substitution (absu/1)

gr_asub_to_native/3: PREDICATE
Usage: gr_asub_to_native(ASub,Qv,ASub_user)
The user friendly format consists in extracting the ground variables and the nonground
variables

124 The Ciao Preprocessor

The following properties should hold at call time:
ASub is currently a term which is not a free variable. (nonvar/l)
Qv is currently a term which is not a free variable. (nonvar/l)
ASub_user is a free variable. (var/l)
ASub is an abstract substitution (absu/l)
Qv is a list. (l i s t / 1)
ASub_user is any term. (term/1)

gr_unknown_cal l /3: PREDICATE
Usage: gr_unknown_call(Call,Vars,Succ)
Gives the "top" value for the variables involved in a literal whose definition is not present,
and adds this top value to Call

— The following properties should hold at call time-
Call is currently a term which is not a free variable. (nonvar/l)
Vars is currently a term which is not a free variable. (nonvar/l)
Succ is a free variable. (va r / l)
Call is an abstract substitution (absu/l)
Vars is a list. (l i s t / 1)
Succ is an abstract substitution (absu/l)

gr_unknown_entry /2: PREDICATE
Usage: gr_unknown_entry(Qv,Call)
Gives the "top" value for the variables involved in a literal whose definition is not present,
and adds this top value to Call. In this domain the top value is X/any forall X in the set
of variables

— The following properties should hold at call time:
Qv is currently a term which is not a free variable. (nonvar/l)
Call is a free variable. (va r / l)
Qv is a list. (l i s t / 1)
Call is an abstract substitution (absu/l)

gr_empty_entry /2 : PREDICATE
Usage: gr_empty_entry(Vars,Entry)
Gives the "empty" value in this domain for a given set of variables Vars, resulting in
the abstract substitution Entry. I.e., obtains the abstraction of a substitution in which
all variables Vars are unbound: free and unaliased. In this domain the empty value is
equivalent to the unknown value

— The following properties should hold at call time:
Vars is currently a term which is not a free variable. (nonvar/l)
Entry is a free variable. (va r / l)
Vars is a list. (l i s t / 1)
Entry is an abstract substitution (absu/l)

Chapter 14: Simple groundness abstract domain 125

extrainfo/1:
Usage: extrainfo(E)
E is a par (absu,binds)

REGTYPE

14.3 Documentation on internals (gr)

absu/1:
Usage: absu (A)
A is an abstract substitution

REGTYPE

absu_elem/l:
Usage: absu_elem(E)
E is a single substitution

REGTYPE

gr_mode/l:
Usage: gr_mode(M)
M is g (ground), ng (nonground), or any

REGTYPE

binds/1:
Usage: binds (B)
B is a list of bindings

REGTYPE

binding/1: REGTYPE
Usage: binding(B)
B is a triple (X,Term,Vars), where X is a variable, Term is a term and Vars is the set of
variables in Term

126 The Ciao Preprocessor

References 127

References

[APG06] E. Albert, G. Puebla, and J. Gallagher.
Non-Leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Pred­
icates.
In 15th International Symposium on Logic-based Program Synthesis and Transfor­
mation (LOPSTR'05), number 3901 in LNCS, pages 115-132. Springer-Verlag,
April 2006.

[BCC04] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lopez-Garcia, and G. Puebla-
(Eds.).
The Ciao System. Reference Manual (vl.10).
Technical report, School of Computer Science (UPM), 2004.
Available at http://www.ciaohome.org.

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla.
Global Analysis of Standard Prolog Programs.
In European Symposium on Programming, number 1058 in LNCS, pages 108-124,
Sweden, April 1996. Springer-Verlag.

[BGH94] F. Bueno, M. Garcia de la Banda, and M. Hermenegildo.
The PLAI Abstract Interpretation System.
Technical Report CLIP2/94.0, Computer Science Dept., Technical U. of Madrid
(UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain,
February 1994.

[BLGH04] F. Bueno, P. Lopez-Garcia, and M. Hermenegildo.
Multivariant Non-Failure Analysis via Standard Abstract Interpretation.
In 1th International Symposium on Functional and Logic Programming (FLOPS
2004), number 2998 in LNCS, pages 100-116, Heidelberg, Germany, April 2004.
Springer-Verlag.

[BLGPH06]
F. Bueno, P. Lopez-Garcia, G. Puebla, and M. Hermenegildo.
A Tutorial on Program Development and Optimization using the Ciao Preproces­
sor.
Technical Report CLIP2/06, Technical University of Madrid (UPM), Facultad de
Informatica, 28660 Boadilla del Monte, Madrid, Spain, January 2006.

[CH94] D. Cabeza and M. Hermenegildo.
Extracting Non-strict Independent And-parallelism Using Sharing and Freeness In­
formation.
In 1994 International Static Analysis Symposium, number 864 in LNCS, pages 297-
313, Namur, Belgium, September 1994. Springer-Verlag.

[CMB93] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda, and M.
Hermenegildo.
Improving Abstract Interpretations by Combining Domains.
In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based
Program Manipulation, pages 194-206. ACM, June 1993.

[COS96] The COSYTEC Team.
CHIP System Documentation, April 1996.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni.
Prolog: The Standard.
Springer-Verlag, 1996.

http://www.ciaohome.org

128 The Ciao Preprocessor

[DL93] S. K. Debray and N. W. Lin.
Cost Analysis of Logic Programs.
ACM Transactions on Programming Languages and Systems,
November 1993.

15(5):826-875,

[DLGH97] S.K. Debray, P. Lopez-Garcia, and M. Hermenegildo.
Non-Failure Analysis for Logic Programs.
In 1997 International Conference on Logic Programming, pages 48-62, Cambridge,
MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL97]
S. K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs.
In 1997 International Logic Programming Symposium, pages 291-305. MIT Press,
Cambridge, MA, October 1997.

[Dum94] Veroniek Dumortier.
Freeness and Related Analyses of Constraint Logic Programs Using Abstract Inter­
pretation.
PhD thesis, K.U.Leuven, Dept. of Computer Science, October 1994.

[GdW94] J.P. Gallagher and D.A. de Waal.
Fast and precise regular approximations of logic programs.
In Pascal Van Hentenryck, editor, Proc. of the 11th International Conference on
Logic Programming, pages 599-613. MIT Press, 1994.

[GHM00] M. Garcia de la Banda, M. Hermenegildo, and K. Marriott.
Independence in CLP Languages.
ACM Transactions on Programming Languages and Systems, 22(2):269-339, March
2000.

[Her99] M. Hermenegildo.
A Documentation Generator for Logic Programming Systems.
Technical Report CLIP10/99.0, Facultad de Informatica, UPM, September 1999.

[HPMS00] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey.
Incremental Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 22(2):187-223, March
2000.

[HR95] M. Hermenegildo and F. Rossi.
Strict and Non-Strict Independent And-Parallelism in Logic Programs: Correctness,
Efficiency, and Compile-Time Conditions.
Journal of Logic Programming, 22(l):l-45, 1995.

[JB92] G. Janssens and M. Bruynooghe.
Deriving Descriptions of Possible Values of Program Variables by means of Abstract
Interpretation.
Journal of Logic Programming, 13(2 and 3):205-258, July 1992.

[JL88] D. Jacobs and A. Langen.
Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284-297, 1988.

[Knu84] D. Knuth.
Literate programming.
Computer Journal, 27:97-111, 1984.

[Leu98] M. Leuschel.
On the Power of Homeomorphic Embedding for Online Termination.

References 129

In Giorgio Levi, editor, Proceedings of SAS'98, volume 1503 of LNCS, pages 230-
245, Pisa, Italy, September 1998. Springer-Verlag.

[LGHD96a]
P. Lopez-Garcia, M. Hermenegildo, and S. K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
J. of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
21:715-734, 1996.

[LGHD96b]
P. Lopez-Garcia, M. Hermenegildo, and S. K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
21(4-6):715-734, 1996.

[MBdlBH99]
K. Muthukumar, F. Bueno, M. Garcia de la Banda, and M. Hermenegildo.
Automatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism.
Journal of Logic Programming, 38(2):165-218, February 1999.

[MH89a] K. Muthukumar and M. Hermenegildo.
Determination of Variable Dependence Information at Compile-Time Through Ab­
stract Interpretation.
Technical Report ACA-ST-232-89, Microelectronics and Computer Technology Cor­
poration (MCC), Austin, TX 78759, March 1989.

[MH89b] K. Muthukumar and M. Hermenegildo.
Determination of Variable Dependence Information at Compile-Time Through Ab­
stract Interpretation.
In 1989 North American Conference on Logic Programming, pages 166-189. MIT
Press, October 1989.

[MH91] K. Muthukumar and M. Hermenegildo.
Combined Determination of Sharing and Freeness of Program Variables Through
Abstract Interpretation.
In International Conference on Logic Programming (ICLP 1991), pages 49-63. MIT
Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo.
Compile-time Derivation of Variable Dependency Using Abstract Interpretation.
Journal of Logic Programming, 13(2/3):315-347, July 1992.

[MS94] K. Marriott and P. Stuckey.
Approximating Interaction Between Linear Arithmetic Constraints.
In 1994 International Symposium on Logic Programming, pages 571-585. MIT
Press, 1994.

[PAH04] G. Puebla, E. Albert, and M. Hermenegildo.
Abstract Interpretation with Specialized Definitions.
Technical Report CLIP12/2004.0, Technical University of Madrid, School of Com­
puter Science, UPM, September 2004.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu­
alization Tools for Constraint Programming, number 1870 in LNCS, pages 23-61.
Springer-Verlag, September 2000.

130 The Ciao Preprocessor

[PRO] The PROLOG IV Team.
PROLOG IV Manual.

[SG94] H. Saglam and J. Gallagher.
Approximating Logic Programs Using Types and Regular Descriptions.
Technical Report CSTR-94-19, Department of Computer Science, University of Bris­
tol, Bristol BS8 1TR, 1994.

[Son86] H. S0ndergaard.
An application of abstract interpretation of logic programs: occur check reduction.
In European Symposium on Programming, LNCS 123, pages 327-338. Springer-
Verlag, 1986.

[VB02] C. Vaucheret and F. Bueno.
More Precise yet Efficient Type Inference for Logic Programs.
In International Static Analysis Symposium, volume 2477 of Lecture Notes in Com­
puter Science, pages 102-116. Springer-Verlag, September 2002.

[VHCL95] P. Van Hentenryck, A. Cortesi, and B. Le Charlier.
Type analysis of prolog using type graphs.
Journal of Logic Programming, 22(3):179-209, 1995.

Library/Module Index 131

Library/Module Index

A
adding_new_domain 105

assertions 47

assertions_props 57

auto_interface 11

B
basic_props 69

c
ciaopp 19

D

debugging_in_ciaopp 37

domains 107

G
gr 117

N
native_props 87

R
regtypes 63

rtchecks 101

132 The Ciao Preprocessor

Predicate/Method Index 133

Predicate/Method Index

A
abs_sort/3 110

abs_subset/3 Ill

abstract_instance/5 114

acheck/0 22

again/0 14

aidomain/1 114

amgu/5 108

analyze/1 22

asub_to_info/5 112

asub_to_native/5 112

augment_asub/4 Ill

augment_two_asub/4 Ill

auto_analyze/l 12

auto_analyze/2 13

auto_check_assert/l 12

auto_check_assert/2 13

auto_optimize/l 12

auto_optimize/2 13

B
body_succ_builtin/9 Ill

c
call_to_entry/9 109

call_to_success_builtin/7 114

call_to_success_fact/9 Ill

check/1 54

clean_aux_f iles/1 14

collect_types_in_abs/4 113

compute_lub/3 110

concrete/4 112

contains_parameters/2 114

current_pp_f lag/2 19

customize/0 13

customize/1 13

customize_and_preprocess/0 13

customize_and_preprocess/l 13

customize_and_preprocess_java/l 14

customize_but_dont_save/l 14

customize.java/1 14

D
dom_statistics/2 114

E
eliminate_equivalent/3 Ill

empty_entry/3 113

exit_to_prime/8 109

extend/5 109

F
false/1 55

full_info_to_asub/4 112

G
get_menu_conf igs/l 14

glb/4 110

gr_asub_to_native/3 123

gr_call_to_entry/8 117

gr_call_to_success_builtin/6 122

gr_call_to_success_fact/8 121

gr_compute_lub/2 120

gr_empty_entry/2 124

gr_exit_to_prime/7 118

gr_extend/4 119

gr_glb/3 120

gr_input_interf ace/4 123

gr_input_user_interface/3 123

gr_less_or_equal/2 120

gr_project/3 119

gr_sort/2 120

gr_special_builtin/4 121

gr_success_builtin/5 122

gr_unknown_call/3 124

gr_unknown_entry/2 124

H
help/0 24

hook_menu_check_f lag_value/3 16

hook_menu_default_option/3 16

hook_menu_f lag_help/3 16

hook_menu_f lag_values/3 16

I
identical_abstract/3 110

identical_proj/5 110

identical_proj_l/7 110

info_to_asub/5 112

init_abstract_domain/2 108

input_interf ace/5 114

134 The Ciao Preprocessor

input_user_interf ace/4 115

L
less_or_equal/3 110

less_or_equal_proj/5 110

M
module/1 22

multi_part_conc/4 112

N
normalize_asub/3 110

o
obtain_info/5 112

output/0 23

output/1 23

P
part_conc/5 112

pop_pp_flag/l 20

pp_flag/1 20

project/5 109

push_pp_flag/2 20

R
remove_menu_conf ig/1 15

rename_types_in_abs/4 113

restore_menu_conf ig/1 15

s
save_menu_conf ig/1 14

select_modules/l 14

set_pp_f lag/2 19

show_menu_conf ig/1 15

show_menu_conf igs/0 15

special_builtin/6 Ill

success_builtin/7 114

T
transform/1 22

true/1 55

trust/1 54

u
unknown_call/4 113

unknown_call/5 113

unknown_entry/3 113

unknown_entry/4 113

w
widen/4 109

widencall/4 109

Property Index 135

Property Index

A
analysis/1 25

B
bind_ins/l 85

c
clique/1 87

clique_l/l 88

compat/1 88

compat/2 81

constraint/1 88

covered/1 88

covered/2 89

D
deprecated/1 82

docstring/1 62

E
equiv/2 85

error_free/l 85

eval/1 85

exception/1 89

exception/2 89

F
fails/1 89

filter/2 85

finite_solutions/l 89

H
have_choicepoints/l 89

head_pattern/l 58

I
indep/1 90

indep/2 90

inst/2 81

instance/1 90

instance/2 99

is_det/l 90

iso/1 81

L
linear/1 90

M
member/2 77

memo/1 85

mshare/1 91

mut_exclusive/l 91

N
nabody/l 60

native/1 83

native/2 83

no_choicepoints/l 91

no_exception/l 92

no_exception/2 92

no_rtcheck/l 84

no_signal/l 92

no_signal/2 92

non_det/l 92

nonground/1 92

not_covered/l 92

not_fails/l 93

not_further_inst/2 82

not_mut_exclusive/l 93

num_solutions/2 93

P
pe_type/l 85

possibly_fails/l 93

possibly_nondet/l 94

R
regtype/l 83

relations/2 94

rtcheck/1 83

rtcheck/2 84

m
r+
(l>

T1
ra
I
M
rr
\ to

m
r+
(l>

T1
ra
\ M

CO

<) M
P
r+
H-
o
P
ra
to

m
H-
N
<l>
1

e rr
^ M

m
H-
N
<l>
1

<) ^ M

m
H-
N
(I)
1
B
(I)
c+
l-l

m
H-
N
(I)
1
B
(I)
c+
l-l

m
H-
N
<l>
1
M
rr
^ M

m
H-
N
(l>

^ (H

m
H-
N
<l>

^ M

m
H-

TO
P
f»
M
ra
^ M

m
H-

TO
P
f»
M

^ M

m
H-

TO
P
f»
M

^ I-1-

m
H-
(i
<l>
H>
H>
1
ra
<)

m
H-
(i
(l>
H>
H>
1
T1
P
l-(

m
H-
(i
(l>
H>
H>
1
P*
P>
l-(

m
H-
(i
(l>
H>
H>

^ M

cc 00
OS

CO
- J

TO

<

1

a
\ Vei (1)
to •n c+

(0 <B

m m m

P
rr

cr

CD

9
o
TJ
i-i
CD
^3
<-i
O
o
CD

Regular Type Index 137

Regular Type Index

A
absu/l 125

absu_elem/l 125

assrt_body/l 57

assrt_status/l 61

assrt_type/l 62

atm/1 72

atm_or_atm_lis t / l 80

B
binding/1 125

binds/1 125

c
c_assrt_body/l 60

callable/1 75

character_code/l 79

complex_arg_property/l 59

complex_goal_property/l 59

constant/1 74

D
dictionary/1 60

E
extrainf o/l 125

F
f lag_value/l 21

flag_values/l 85

flt/1 71

G
g_assrt_body/l 61

gnd/1 73

gndstr/1 74

gr_mode/l 125

I
int/1 70

L
list/1 76

list/2 76

N
nlist/2 77

nnegint/1 70

num/1 72

num_code/l 80

o
operator_specifier/1 75

P
predfunctor/1 62

predname/1 80

property_conjunction/l 59

property_starterm/l 59

prop functor/1 62

s
s_assrt_body/l 60

sequence/2 78

sequence_or_list/2 78

string/1 79

struct/1 73

T
term/1 69

138 The Ciao Preprocessor

Declaration Index 139

Declaration Index

C P
calls/1 49 pred/1 48

calls/2 50 pred/2 49

comment/2 54 prop/1 51

comp/1 51 prop/2 52

comp/2 51

R
regtype/l 66

decl/1 53 regtype/2 67

decl/2 53

doc/2 53

E
entry/1 52

exit/1 52

exit/2 53

s
success/1 50

success/2 50

T
test/1 50

test/2 50

texec/1 49

modedef/l 53 texec/2 49

M

140 The Ciao Preprocessor

Concept Index 141

Concept Index

A
acceptable modes 58
assertion body syntax 57, 60, 61
assertion checking 7

c
calls assertion 49, 50
check assertion 54
comment assertion 54
comments, machine readable 47
comp assertion 51
compatibility properties 63

D
data declaration 43
debugging 7
decl assertion 53
dynamic declaration 43

E
entry assertion 52
entry declaration 43
exit assertion 52

F
false assertion 55
formatting commands 47

H
hard side-effects 94

I
instantiation properties 63
ISO-Prolog 37

M
module declaration 44

P
parametric type functor 66

pred assertion 48, 49

program transformations 7

prop assertion 51, 52

properties of computations 63

properties of execution states 63

properties, basic 69

properties, native 87

R
regtype assertion 66, 67

regular type expression 67

run-time tests 7

s
sharing sets 91

soft side-effects 95

specifications 7

static debugging 7

success assertion 50

T
test assertion 50, 51

texec assertion 49

true assertion 55

trust assertion 54

trust assertions 42

142 The Ciao Preprocessor

Author Index

A u t h o r I n d e x

C
Claudio Vaucheret 117

D
Daniel Cabeza 69
David Trallero Mena 11

E
Edison Mera 87, 101

F
Francisco Bueno 37, 47, 63, 87, 107

G
German Puebla 47

M
Manuel Hermenegildo 47, 57, 63, 69, 87
Maria Garcia de la Banda 107

P
Pedro Lopez 63, 87

T
The CLIP Group 9, 19, 33, 35, 103, 105

144 The Ciao Preprocessor

Global Index 145

Global Index
This is a global index containing pointers to places where concepts, predicates, modes, prop­

erties, types, applications, etc., are referred to in the text of the document.

\'/2.

*

*/2 ...

::/2.

-II.
=>/2

+

+/1
+/2

78

59

48

91

48

58

58

abs_sort/3 108, 110

abs_subset/3 108, 111

abstract_instance/5 108, 114

absu/1 118, 119, 120, 121, 122, 123, 124, 125

absu_elem/l 125

acceptable modes 58

acheck/0 22

acheck_summary/l 22

adding_new_domain 105

again/0 12,14

aggregates 12

aidomain/1 108, 114

amgu/5 108

analysis/1 23, 25

analyze/1 22

analyzer output 55

api(api_menu) 12

argnames 12

arithmetic . . 12, 19, 48, 49, 57, 69, 87, 102, 108, 117

assertion body syntax 57, 60, 61

assertion checking 7

assertion language 1,3

assertion status 49, 50, 51, 53

assertions . . 12, 19, 47, 48, 57, 66, 69, 87, 102, 108,

117

assertions/assertions_props 48, 66

assertions/native_props 69, 108

assertions_props 57

assrt_body/l 48, 49, 52, 53, 57, 67

assrt_status/l 49, 50, 51, 52, 53, 57, 61, 67

assrt_type/l 57, 62

asub_to_info/5 108, 112

asub_to_native/5 108, 112

atm/1 15, 69, 72, 73, 122

atm_or_atm_list/l 69, 80, 81

atom/1 14

atomic.basic ... 12, 19, 48, 57, 69, 87, 102, 108, 117

augment_asub/4 108, 111

augment_two_asub/4 108, 111

auto_analyze/l 11, 12, 13

auto_analyze/2 12, 13

auto_check_assert/l 11, 12, 13

auto_check_assert/2 12, 13

auto_check_assrt/l 13

auto_interface 11, 23, 24

auto_interface(auto_help) 19

auto_interface(auto_interface) 19

auto_interface(optim_comp) 12

auto_optimize/l 11, 12, 13

auto_optimize/2 12, 13

B
basic.props 12, 19, 48, 57, 69, 87, 102, 108, 117

basic_props.pl 101

basic_props:regtype/l 63

basiccontrol ... 12, 19, 48, 57, 69, 87, 102, 108, 117

basicmodes 117

bind_ins/l 69, 72, 77, 85

binding/1 125

binds/1 125

body_succ_builtin/9 108, 111, 115

bzip2 5

http://basic_props.pl

146 The Ciao Preprocessor

49, 50, 52, 57, 60

60

102

108, 109

c
c_assrt_body/l

call/1

call_rtc/l

call_to_entry/9

call_to_success_builtin/7 114

call_to_success_fact/9 108, 111

callable/1. . . . 69, 75, 82, 84, 93, 118, 119, 121, 122,

123

calls assertion 49, 50

calls/1 48, 49, 50, 52

calls/2 48, 50

character string 47

character_code/l 69, 79

check assertion 54

Check(X) 93

check/1 48, 54, 55

checking the assertions 1,3

ciaopp 19, 87

ciaopp (driver) 12, 19

ciaopp(infercost(infercost_register)) 19

ciaopp(p_unit(p_dump)) 12

ciaopp (plai (f ixpo_ops)) 12

ciaopp(preprocess_flags) 12, 19, 108

ciaopp (printer) 12, 19

ciaopp(resources(resources_register)) 19

ciaopp_options 19

Claudio Vaucheret 117

clean_aux_f iles/1 12, 14, 24

clique/1 87

clique_l/l 87, 88

collect_types_in_abs/4 108, 113

comment assertion 54

comment string 58, 60, 61

comment/2 48, 54

comments, machine readable 47

comp assertion 51

comp/1 48, 51, 61

comp/2 48, 51

compat/1 87, 88

compat/2 69, 81

compatibility properties 63

compatible 57

complex argument property 57, 58, 59, 60, 61

complex goal property 58, 60, 61

complex_arg_property/l 57, 58, 59, 60, 61

complex_goal_property/l 57, 58, 59, 61

computational cost 1,3

compute_lub/3 108, 110

concrete/4 108, 112

condcomp 19

constant/1 69, 74

constraint/1 87, 88

contains_parameters/2 108, 114

covered/1 87, 88

covered/2 87, 89

ctcheck_sum/l 22

current_pp_f lag/2 19

customize/0 12, 13, 24

customize/1 12, 13

customize_and_preprocess/0 12, 13, 24

customize_and_preprocess/l 11, 12, 13, 14

customize_and_preprocess_java/l 12, 14, 24

customize_but_dont_save/l 12, 14

customize_java/l 12, 14, 24

D
Daniel Cabeza 69

data declaration 43

data.facts 12, 19, 48, 57, 69, 87, 102, 108, 117

David Trallero Hena 11

dcg 57

debugger.support. . . 12, 19, 48, 57, 69, 87, 102, 108,

117

debugging 7

debugging_in_ciaopp 37

decl assertion 53

decl/1 48, 53, 57

decl/2 48, 53

deprecated/1 69, 82

determinacy 1,3

dictionary/1 57, 60

doc/2 48, 53, 54

docstring/1 47, 54, 57, 58, 60, 61, 62

dom_statistics/2 108, 114

domain(aeq_top) 108

domain (bshare(bshare)) 108

domain(def) 108

domain(deftypes) 108

domain(depthk) 108

domain(detplai) 108

domain(eterms) 108

domain(fd) 108

domain(fr_top) 108

C D C D C D C D C D C D C D C D C D
M M
d 13
(0 O
P

k j k j k j k j k j k j k j
KS KS KS KS KS KS KS

o
00

o
CO

d- d- d- d-

P>
co
co

13

o
00 ^

00
h^ "
O Cn
CO CO

o o o

C D C D C D C D C D C D C D C D
<j hj ,D p p p " " " "
(1) hj p

d
H-
O
P

to

CO

C n

a>

CO

0 0
- J

o
to

• o

ai oi H oo GO
CO CO -J CO CO

(0

a> en

Cn

-J

oo

00

o

d

CL
(l>
n
M

3
f?

P>
to
m
(B

d
H

I
£

p
d

M
CL
H-
co
o
P

O . O 00
oo oo -j

-J - -

C O O D © ^ O I P P H O
C n c n o C o l N j C O K ^ K ^ K ^

H
p <

a 1 1 g . g . g . g g g g g. 1 1 1 1 1 1 g g g g g g g
o
I
13

p*

p*
p>

p
OP

CO CO CO CO CO CO

<
d

p* p*

OP
p>
p>

p- p- p- p- d
£ £ £ £ %

o
p
C D C O C D C D C D C D C D C D

CO 13 13 13 13

OO
P

pJ

(0

a"

<<:
13
(0

co

PJ

p
M
d s

OP

Q

cr

0
CD

^ t O
C O I > O ~ J 0

0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P

co
o
i-(
d

1 3
l-(

<) (_ l .

F
o
(i
CD

M
(I)
to

co

H -

P
13
p

H -

P
1 3

p

np
M

rr

^

(I)

M
d
CD

(I)

M
H
d

CD O O O O

\ U \
CO O I-1-

d •

\ • 00 •
hJ

K^

' ' ;
:

-̂ *
h^ h^ '
- J - j .

0
-i

u
a
p
3)

-1
^ •O

d

p
Jl
U

-(
- J .

P
d
U

d

->• P
d
U

-(- b
31
O
U

-(\ - b
3)
O
U

\

-̂
-̂ - J

JO

-̂
-̂ - J

£»

-̂
-̂ - J

JO P

^ \

-̂
-̂ - J

£>

<<: d
0

1 3
-i

u
p
d

-(- j . < < !

P
d
U

—' P

cr
3 \ \
u
^

-̂
-̂ - J

• s

-̂
-̂ - J

S j

-̂
-̂ - J

S j

d
0

J]
P
O
O
U
J]
J]

- b
3)
O
d

\

-̂
-̂ - J

X

-̂
-̂ - J

d
0

J]
i
O
O
U
J]
J]

cr i

—i
d

P

—L
- j

I

p>
en
P
cr
i
d
O
I
P

n n OP OP OP OP OP
S S P P h-1 <B <B
C3 C3 fL fL cr d d

op : d

p
(0

p>

M

1 3

&

d=> B

00 OP
CO

CO ^

o
CO - J CO
CO CO -

H> o <L

H, f"

p>
CO
CO

d
I
cr
o

o

d
o
CO

t o a>

o
00

CO

CO

p p
CD CD

CD CD

p I
CO CO
CD CD

^ p>
CO

H H O p S G O t O G O l B H I B O l O l ©

^

* . O N 5 I O S S H C n H t 0 0 1 K 5 -) 0 1 0 \ P

148 The Ciao Preprocessor

gr_special_builtin/4 117, 121

gr_success_builtin/5 117, 122

gr_unknown_call/3 117, 124

gr_unknown_entry/2 117, 124

granularity control 1,3

ground/1.... 73, 74, 76, 77, 78, 79, 80, 81, 87, 88, 91

gunzip 5

H
hard side-effects 94

have_choicepoints/l 87, 89

head pattern 57, 58, 61

head_pattern/l 54, 57, 58, 61

help/0 19, 24

hiord 87

hiord.rt 12, 19, 48, 57, 69, 87, 102, 108, 117

hiordlib 87

hook_menu_check_f lag_value/3 12, 16

hook_menu_default_option/3 12, 16

hook_menu_flag_help/3 12, 16

hook_menu_f lag_values/3 12, 16

io.basic 12, 19, 48, 57, 69, 87, 102, 108, 117

is_det/l 70, 71, 72, 73, 74, 75, 76, 87, 90

ISO-Prolog 37

iso/1 69, 81

L=[[A],[p(A)]]

L=[[A],[p(B)]]

less_or_equal/3

less_or_equal_proj/5

library(basicmodes) ..

library(isomodes)

linear/1

91

91

108, 110

108, 110

58

58

. . 87, 90

list/1 69, 76, 77, 78, 81, 93, 118, 119, 120, 121,

122, 123, 124

list/2 14, 22, 59, 69, 76, 120

lists 12, 48, 51, 87

literal 102

long 102

lpdoc 1, 3, 47, 54, 58, 62

identical_abstract/3

identical_proj/5

identical_proj_l/7...

indep/1

indep/2

108, 110

108, 110

108, 110

87, 88, 90, 91

87, 88, 90, 91

infer(infer_db) 12

infer(infer_dom) 12

inf er(low_level_props) 108

Inference of properties 1,3

inf o_to_asub/5 108, 112

init_abstract_domain/2 108

inner 101

input_interf ace/5 114

input_user_interf ace/4 115

inst/2 69, 81

instance/1 87, 90

instance/2 99

instantiation properties 63

int/1 69, 70, 93

integer/1 59

inter-modular analysis 30

internals 87

io_aux 12, 19, 48, 57, 69, 87, 102, 108, 117

M
make

Manuel Hermenegildo

Maria Garcia de la Banda .

member/2

memo/1

47, 57, 63, 69, 87

107

69, 77, 82

69, 85

menu/menu 12

menu/menu_generator 12

menu/menu_rt 12

menu_branch/3 16, 23, 24

menu_branch/4 16, 23, 24

menu_generator 15, 16

menu_rt 16

messages 12, 19, 108, 117

mode 48, 58

modedef/l 48, 53, 58

modes 1,3

module declaration 44

module/1 22

mshare/1 87, 91

multi_part_conc/4 108, 112

mut_exclusive/l 87, 91

Global Index 149

N
n_assrt_body/5 60, 61

nabody/1 57, 60

native/1 ... 69, 70, 71, 72, 73, 74, 83, 88, 89, 91, 93,

98, 99

native/2 69, 83, 88, 90, 91, 92

native_props 87

nativeprops 69

nativeprops.pl 101

nlist/1 77

nlist/2 69, 77

nnegint/1 69, 70, 71

no 101, 102

no_choicepoints/l 23, 87, 91

no_exception/l 87, 92

no_exception/2 87, 92

no_rtcheck/l . . 69, 82, 83, 84, 88, 89, 90, 91, 94, 95,

96, 97, 98

no_signal/l 87, 92

no_signal/2 87, 92

non-failure 1,3

non_det/l 87, 92

nonground/1 87, 92

nonpure 12, 19, 48, 57, 69, 87, 102, 108, 117

nonvar/1 ... 22, 23, 70, 71, 72, 73, 74, 75, 76, 78, 79,

118, 119, 120, 121, 122, 123, 124

normalize_asub/3 108, 110

nortchecks 69

not_covered/l 87, 92

not_fails/l 23, 87, 91, 93

not_further_inst/l 60

not_further_inst/2 69, 82

not_mut_exclusive/l 87, 93

num/1 69, 72

num_code/l 69, 80

num_solutions/2 87, 93

o
obtain_info/5

odd

operator_specifier/1.

output/0

output/1

output/2

. 108, 112

87

69, 75, 76

23

23

23

parametric type functor 66

part_conc/5 108, 112

Partial deduction 32

partial evaluation 1, 3, 32

pe_type/l 69, 85

Pedro Lopez 63, 87

plai (acc_ops) 12

plai(fixpo_ops) 108

plai(intermod) 12

plai(plai_errors) 108

pop_pp_f lag/1 20

possibly_fails/l 87, 93

possibly_nondet/l 87, 94

pp_flag/1 19, 20, 21

pred assertion 48, 49

pred/1 48, 49, 50, 51, 53, 57, 60

pred/2 48, 49

predfunctor/1 57, 62

predicate 102

predname/1 58, 69, 80, 122, 123

prelude 12, 19, 48, 57, 66, 69, 87, 102, 108, 117

printer 23

program assertions 47

program parallelization 1,3

program specialization 1,3

program transformations 1, 3, 7

program(assrt_db) 12

program(aux_filenames) 12

program(itf_db) 12

program(p_asr) 19

program (p_unit) 12, 108

project/5 108, 109

prolog.flags ... 12, 19, 48, 57, 69, 87, 102, 108, 117

prolog_sys 12

prompt 12

prop assertion 51, 52

prop/1 48, 51, 52

prop/2 48, 52

properties of computations 63

properties of execution states 63

properties, basic 69

properties, native 87

property 51

property compatibility 81

property_conjunction/l 54, 55, 57, 59

property_starterm/l 57, 59

http://nativeprops.pl

150 The Ciao Preprocessor

propfunctor/l 57, 62

providing information to the compiler 52, 54

pure 66

push_pp_flag/2 20

R
regtype assertion 66, 67

regtype/1 66, 67, 69, 83

regtype/2 66, 67

regtypes 57, 63, 108, 117

regular type 66

regular type definitions 63

regular type expression 67

regular types 63

relations/2 76, 87, 94

remove_menu_conf ig/1 15

rename_types_in_abs/4 108, 113

restore_menu_conf ig/1 15

rtc_status/l 84

rtcheck/1 69, 83

rtcheck/2 69, 84, 88, 91, 92, 93, 94, 95, 99

rtchecks 101

rtchecks/rtchecks_send 87

rtchecks_abort_on_error 102

rtchecks_asrloc 101

rtchecks_callloc 102

rtchecks_entry 101

rtchecks_exit 101

rtchecks_inline 101

rtchecks_level 101

rtchecks_namefmt 102

rtchecks_predloc 101

rtchecks_rt.pi 101

rtchecks_test 101

rtchecks_trust 101

run-time checks 51

run-time tests 1, 3, 7

s_assrt_body/l 50, 51, 52, 53, 57, 60

save_menu_conf ig/1 14, 15

select_modules/l 12, 14, 24

sequence/2 69, 78

sequence_or_list/2 69, 78

set_menu_f lag/3 11, 15, 16

set_pp_f lag/2 19

sets 108, 117

sharing sets 91

short

87,

87,

87,

87,

87,

87,

87,

87,

87,

87,

87,

87,

87,

94

94

95

95

95

95

95

96

96

96

97

96

96

102

show_menu_conf ig/1 15

show_menu_conf igs/0 15

sideff/2 ... 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84

sideff_hard/l

sideff_pure/l

sideff_soft/l

signal/1

signal/2

signals/2

size/2

size/3

size_lb/2

size_metric/3

size_metric/4

size_o/2

size_ub/2

sizes of terms 1,3

soft side-effects 95

solutions/2 87, 93

sort 87, 108, 117

sourcename/1 22

special_builtin/6 108, 111

specifications 1, 3, 7, 47

static debugging 1, 3, 7

steps/2 87, 97

steps_lb/2 87, 97

steps_o/2 87, 97

steps_ub/2 87, 98

streams 87

streams.basic . . 12, 19, 48, 57, 69, 87, 102, 108, 117

string/1 69, 79, 80

stringcommand/1 54, 58, 60, 61, 62

struct/1 69, 73

succeeds/1 87, 97

success assertion 50

success/1 48, 50, 52

success/2 48, 50

success_builtin/7 114

system 12, 19, 87

system.info 12, 19, 48, 57, 69, 87, 102, 108, 117

Global Index 151

T
t a u / l 87, 98

term/1 69, 77, 122, 123, 124

term.basic . . 12, 19, 48, 57, 66, 69, 87, 102, 108, 117

term.compare . . . 12, 19, 48, 57, 69, 87, 102, 108, 117

term.typing 12, 19, 48, 57, 69, 87, 102, 108, 117

te rmina tes /1 87, 98

terms.check 69, 87, 108, 117

terms.vars 87, 108, 117

t e s t a s se r t i on 50, 51

t e s t / 1 48, 50, 51

t e s t / 2 48, 50

t e s t_ type /2 70, 71, 72, 73, 74, 87, 98

texec a s se r t i on 49

t exec /1 48, 49

t exec /2 48, 49

The CLIP Group 9, 19, 33, 35, 103, 105

throws/2 87, 99

transform/1 22

transformation/1 22, 27

true assertion 55

true/1 16, 23, 24, 48, 55

true/2 16, 23, 24

trust assertion 54

trust assertions 42

trust/1 48, 54

types 1,3

typeslib(typeslib) 19

u
unknown_call/4 108, 113

unknown_call/5 108, 113

unknown_entry/3 108, 113

unknown_entry/4 108, 113

usage 48

user_output/2 87, 99

V
valid_flag_value/2 19, 20, 21

var/1. . . . 14, 22, 23, 59, 118, 119, 120, 121, 122, 123,

124

variable instantiation 1, 3, 6

variable names 47

w
widen/4 108, 109

widencall/4 108, 109

Y
yes 101, 102

152 The Ciao Preprocessor

