
Towards Data-Aware Cost-Driven Adaptation
for Service Orchestrations

facultad de informatica

universidad politecnica de madrid

Dragan Ivanovic
Manuel Carro

Vlanuel Hermenegildo
Pedro Lopez-Garcia

Edison Mera

Authors

Dragan Ivanovic
i d r a g a n @ c l i p . d i a . f i . u p m . e s
Computer Science School
Universidad Politecnica de Madrid (UPM)

Manuel Carro
m c a r r o S f i . u p m . e s
Computer Science School
Universidad Politecnica de Madrid (UPM)

Manuel Hermenegildo
he rmeSf i .upm.es
Computer Science School
Universidad Politecnica de Madrid (UPM)
and IMDEA Software, Spain

Pedro Lopez
p e d r o . l o p e z S i m d e a . o r g
Computer Science School
Universidad Politecnica de Madrid (UPM)
and IMDEA Software, Spain

Edison Mera
e d i s o n S f d i . u c m . e s
Facultad de Informatica
Universidad Complutense de Madrid (UCM)

Keywords

Service Orchestrations, Resource Analysis, Data-Awareness, Monitoring, Adaptation

mailto:idragan@clip.dia.fi.upm.es

Abstract

Several activities in service oriented computing, such as automatic composition, monitoring, and
adaptation, can benefit from knowing properties of a given service composition before executing
them. Among these properties we will focus on those related to execution cost and resource usage,
in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we
formulate execution costs / resource usage as functions on input data (or appropriate abstractions
thereof) and show how these functions can be used to make better, more informed decisions when
performing composition, adaptation, and proactive monitoring. We present an approach to, on one
hand, synthesizing these functions in an automatic fashion from the definition of the different or­
chestrations taking part in a system and, on the other hand, to effectively using them to reduce the
overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of fail­
ure. We validate our approach by means of simulations of scenarios needing runtime selection of
services and adaptation due to service failure. A number of rebinding strategies, including the use of
cost functions, are compared.

Contents

1 Introduction 1

2 Cost Analysis and Service Networks 2
2.1 An Example 2
2.2 Cost Functions Under Consideration 4
2.3 Costs for Service Networks 5

3 Analysis of Orchestrations 6
3.1 Overview of the Translation 6
3.2 Restrictions on Input Orchestrations 8
3.3 Type Translation and Data Handling 8
3.4 Basic Service and Activity Translation 9
3.5 Translation for Scopes and Flows 10
3.6 Cost Functions for Closed-Source Services 11

3.7 An Example of Translation and Analysis 11

4 An Experiment on Adaptation 13

5 Conclusions and Future Work 16

A Raw data from experiments 18

References 22

1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at expressing and
exploiting the computation possibilities of loosely coupled systems which interact remotely. In any
case, such systems expose themselves as a service interface whose description may include oper­
ation signatures, behavioral descriptions, security policies, and other, while the implementation is
completely hidden. Several services can be combined by calling the operations in their interfaces to
accomplish more complex tasks than any of them in isolation through the process of service compo­
sition. Such compositions are usually expressed using either a general-purpose programming lan­
guage or, alternatively, a language with an ad-hoc design aimed at expressing SOC compositions [11].
These compositions can in turn present themselves as full-fledged services.

One key distinguishing feature of SOC systems is that they are expected to live and be active dur­
ing long periods of time and span across geographical and administrative boundaries. This brings
the need to include monitoring and adaptation capabilities at the heart of SOC. Monitoring checks
the actual behavior of the system and compares it with the expected one. If deviations are too large,
an adaptation process (which may involve, e.g., rebinding to different services with compatible se­
mantics and better behavior) may be necessary.1 When deviations are detected before they happen
(i.e., they are predicted), both monitoring and adaptation can act ahead of time (and they are then
classified as proactive). Of course, the technology involved in proactive adaptation is more complex
but also more interesting and useful, as it performs prevention instead of healing.

In any of these cases, it is necessary to have a model of the behavior of the composition against
which the actual behavior is checked. Usual models try to capture for example service reliability or
execution time, and use statistical analysis or log mining to find out values for these metrics. If the
actual execution departs too much from the expected values, then a warning is issued. Additionally,
if rebinding is needed in the course of an adaptation, then these characteristics can be used to select
from among semantically equivalent candidate services. Needless to say, the more precise this model
is, the better the adaptation / monitoring process can we expected to be.

In this paper we will be dealing with a particular kind of models: those which try to increase accu­
racy by, on one hand, taking into account actual run-time data and, on the other hand, giving always
a correct value for the model at hand or, at least, a safe approximation. An example of such a value is
the number of messages sent / received, which can be related to, for example, execution time (useful
to determine some QoS characteristics) by assuming that data related to network speed is available,
or to monetary cost if bandwidth usage has a cost (as, for example, in the case of short cell phone
messages).

In this paper we will discuss how the ability to predict data-dependent execution characteristics
can be of help in some situations (Section 2.1) and how the particular characteristics of SOC in re­
lation with traditional computing paradigms can be taken into account (Section 2.3). As part of the
needs of this architectural proposal, we will sketch how the models we propose can be automatically
derived from the actual composition code (Section 3) and we will report on the results of a series of
simulations which use data-enhanced models to drive a particular case of adaptation (Section 4).

See the entries of adaptation and monitoring at h t t p : //www. s-cube-network. eu/knowledge-model.

Figure 1: Simplified car part reservation system.

2 Cost Analysis and Service Networks

Cost analysis aims at statically determining the cost (in terms of execution time, execution steps,
number of instructions, or other general resources) of a computation for some input data, given the
code which expresses the computation. It has been studied for functional languages [15], logic lan­
guages [8, 7], object-oriented languages [2, 13] and it is also of use for worst-case execution-time
analysis [16]. There are also approaches which aim at providing common libraries and representa­
tions to make cost analysis easier across several languages [12,1].

To the best of the authors' knowledge, there has not been a similar study for SOC, although
several approaches to automatically deriving QoS characteristics for compositions have been pro­
posed [5,4]. These have much in common with our proposal as they address the problem of working
out aggregate costs for compositions. However, they do not fully treat data and do not relate cost
estimation with actual input data sizes (they assume, for example, a statistically or otherwise fixed
number of loop iterations). Also, aggregating QoS characteristics for complex networks using service
compositions exposed as services (Section 2.3) is not treated. On the other hand, some proposals [3]
aim at a global optimization, but ignore data-related issues. We will try to balance both dimensions
(use of global information and data-sensitivity) while keeping the cost analysis automatic.

2.1 An Example

We illustrate with a simple and motivating example the benefit of taking actual data into account
when generating QoS expressions for service compositions:

Example 1 Figure 1 shows a simple car part reservation system. A car parts Provider needs to give a
client a number of n (equivalent) car parts, and gets in touch with different part Makers' services to
secure the shipment of these parts. The protocol is such that only a part can be reserved at a time from
a maker using a service invocation. The Maker may answer OK if the part is available and not OK if
it is not. In the latter case the Provider goes to the next Maker. If all the available Makers have been
contacted and not all parts have been reserved, the Provider has to CANCEL all the reservations using
the appropriate message. If some communication link is down or the maker service is not available,
the communication is just not performed.

We will assume that the Provider charges the client depending on the amount of CPU needed
to fulfill a request (which we can approximate as the number of basic activities executed by the
Provider) and that Makers charge the CPU provider per connection (which also should have an effect
on the final price to the client). Additionally, both parameters should have an effect on the amount

of time that the Provider takes to answer to the client due to the number of messages necessary
to process a request for car parts. Therefore, a more precise announcement of the cost or time for
the Provider service should take into account the size of the requests made, i.e., the costs should be
expressed as functions on the data used for the initial invocation. Additionally, there are two possi­
ble cases we may want to explore (which result in different behaviors): either the communications
and the services are perfect (they do not fail) or there is the possibility that attempting to invoke the
Maker fails.

The analysis is, often, non-trivial, even for these simple cases. The results depend, on one hand,
on the internal logic of the service composition and, on the other hand, on the cost which each of
the Makers charge the Provider for a given query. Section 3.7 shows how, for this particular example,
we can automatically derive a number of cost-related functions which depend on data sizes (see Ta­
ble 2). In that example, for the sake of simplicity, we have neglected the cost incurred by the Makers,
but it should remain clear that in more complex examples these costs (which can in turn depend on
input data - see Section 2.3) would generate more complex cost functions for the Provider — such
as, e.g., quadratic.

We also want to highlight that, while in some cases these automatically generated cost functions
are exact upper or lower bounds, in general, it can be expected that only safe upper and lower bounds
of the actual costs are generated. These approximations arise either because of limitations of the
static analysis, or because the actual cost depends on more parameters than data size, and, thus, an
exact cost function based only on data sizes does not exist.

By safe approximation (safe upper and lower bounds) we mean that an upper bound (c.f., a lower
bound) is always guaranteed to be bigger (c.f., smaller) than the actual cost function. While this may
seem to be a disadvantage when it comes to predicting actual costs,2 this upper or lower bounding of
the actual cost is necessary when what is needed is to statically ensure that some QoS characteristic
(e.g., from a contract) is met, or, conversely, to prove that some QoS characteristic will not be met.

It is illustrating to compare safe approximating functions with probabilistic approximations, used
in many approaches to QoS-driven service compositions. Statistical approximations which summa­
rize the cost characteristics in a single point, that is supposedly valid for all data within the input
range, clearly cannot provide any behavior guarantee, as in general this point represents some kind
of global average instead of a maximum or minimum. This can be extended in two directions: an
interval can be used, where, in order for its bounds to be significant, they have to represent the max­
imum and minimum of the characteristic being measured across all the possible input data range.
This is of course safe, but it is an overly gross approximation, as it does not take into account any
correlation of the cost characteristic with the input data. The other direction corresponds to using
functions which, for every input data, represent some average value of the characteristic. This can be
more precise than using a single point, but it does not allow giving any guarantee. The combination
of the two extensions proposed, i.e., the use functions which represent upper and lower bounds for
different input data, makes it possible to provide more precise guarantees across the complete range
of input data, and therefore allow, at least in principle, the possibility of making more informed ser­
vice selections.

As an example, Figure 2 portrays the upper and lower bounds of two compositions for some QoS
characteristics as a function of some input parameter. Depending on the meaning of these char­
acteristics we may want to make sure that we minimize them (for example, if we want to exchange
a small number of messages) or maximize them (if we want to increase the throughput of the sys­
tem). The former case needs to consider the upper bound (as minimizing the upper bound the whole

Note, however, that when the inferred upper and lower bounds coincide they are exact cost functions.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
3 4 5 6 7 8 9 10

Figure 2: Upper and lower bounds for two services.

function is necessarily minimized) and, conversely, the latter requires considering the lower bound.
According to Figure 2, selecting one or another service depends on the particular data size at hand.

2.2 Cost Functions Under Consideration

The type of cost characteristics we will take into consideration are based on counting a number
of relevant events. To this end, we follow the approach to resource-oriented analysis of [14, 13, 12].
The fundamental idea is to specify how much some basic operations in a program contribute to the
usage of some resource, and derive cost functions based on that specification for the whole program
using global analysis techniques.

Higher level characteristics (expressed as compound cost functions) can be derived from these
basic cost functions, which have a meaning on their own. For example, execution time can be built
by aggregating the number of basic activities executed (for CPU time) and the number of messages
exchanged taking into account the network latency and bandwidth. Functions built from upper
bounds can be upper bounds as well (resp. lower bounds). Of course, if the aggregation of cost
functions introduces noise (for example, by using inaccurate estimations of actual bandwidth), the
resulting compound functions will not be accurate. However, as long as the noise is uniformly intro­
duced in all involved functions, comparing aggregated functions should be sound.

Since inferring functions representing upper/lower bounds does not depend on what these func­
tions exactly represent, and comparing them is also independent from their meaning, we will assume

TBl{n) = n + 5 f B [

TA{n) = 2n + 3 + nS{n)

Figure 3: Invoking services with non-null cost,

in what follows that they represent generic costs which, in general, we want to minimize.

2.3 Costs for Service Networks

In the previous sections we dealt with the cost of a single composition under the assumption that
the services it binds to do not contribute to the cost of the compositions. In general this is not so, and
when the definition of these accessed services (B, in Figure 3), which may be compositions them­
selves, is available, they can be analyzed together with the code of A to derive a global cost. If the
code of some B, is not available or, for some reason, the owner of that service does not want to reveal
it, the cost function for A can still be inferred if at least Bi publishes its cost functions (and a descrip­
tion of how the sizes of its input and output messages are related, given as a data size function) so
that the analyzer can use them directly instead of working them out. Note that publishing these cost
and size functions should not compromise the confidentiality of the service Bi itself.

Assuming that cost functions are cumulative, an upper bound for the cost of A can be expressed,
for the case of binding to only one service, in a form similar to

TA{n) = EA{n) + g{n)S{f{n))

where EA is a structural cost function which accounts for the contribution of the code of A without
taking into account the contribution of the services it may use, whose upper bound is summarized
as S{f{n)). The function / represents the upper bound of the possible difference between the in­
put data for A and that which is passed on to the invoked service, and g is an upper bound on the
number of times S is invoked. The cost for a given composition comes from replacing S with the B,
corresponding to the selected service. This process may need to be repeated for the services used
by A in order to generate a cost function which depends solely on the input parameters to A, but
which is potentially different for every different binding of A to a service. For example, (the upper
bound of) the costs corresponding to the composition A when binding to services B\ and B2 would
be, respectively

TA{n) = 2n + 3 + n{n + 5)= n2 + 7n + 3 forBi
TA{n) = 2n + 3 + n{2n + 1) = 2n2+4n + 3 forB2

Which one of them is bigger depends on the input data.

Note also that this process may have to be repeatedly applied down the stream of invoked services
— i.e., Bi may be a composition invoking other services and may need performing a cost analysis
to provide closed cost functions. This is a consequence of the dynamicity of service-based appli­
cations which is not usually found in traditional software: since the precise components of a given
application can change dynamically, the cost functions of a composition can only be completely de­
termined when this composition is completely known, including the exact services it binds to (or, at

i
WSDL

BPEL

I

Intermediate
language

s
1

>

Feedback

Logic
program

1. Analysis
results

Figure 4: The overall process.

least, their associated costs and size relations between input and output data). Therefore, since the
application can change dynamically, in order to be up to date the cost of the compositions affected
by that change has to be recomputed — preferably in an incremental fashion in order not to waste
resources.

A key question is how the functions expressing cost and data size relationships can be automat­
ically and effectively inferred for service compositions. As discussed before, this has been studied
previously, but the role of input data has not been satisfactorily (and safely) taken into account so
far. We will devote the next section to presenting our approach. Note that we assume that there is a
point where services do not invoke other services (i.e., they are leaves in an invocation tree) and their
cost bounds are either determined using an approach similar to the one we will present in Section 3
or the ones in [14, 13]. Therefore, we will now focus on how cost functions can be inferred for a given
service composition, with the understanding that they may be later subject to combination across a
service network as previously shown.

3 Analysis of Orchestrations

Our approach is based on translating process definitions, via an intermediate language, to a logic
program to be analyzed by existing tools (see Figure 4). In our case, the input language is a subset of
BPEL 2.0 (for the process definitions - see Section 3.2) and WSDL (for the meta-information). This
intermediate language (see Table 1) can notwithstanding be used (and, if necessary, expanded) to
cover other orchestration languages.3 A set of BPEL processes which form a service network are
taken as the input to the analysis and the result is a logic program where BPEL processes are mapped
onto predicates which call each other to mimic service invocations.

3.1 Overview of the Translation

The declarations in Table 1 can describe namespace prefixes, XML-schema-derived data types
for messages, service port types, and external services that are not analyzed, but have some trusted
properties (in this case, related to cost analysis) that are either given by a human or result from a
separate analysis.

The activities supported by the intermediate language include generic constructs (empty, assign­
ment, sequence,...) which are common to many programming languages as well as specific con­
structs to model orchestration workflows: flow, f loat , scope/handler, and invoke.

Although, understandably, currently it explicitly deals with BPEL constructs.

Declarations and definitions
Namespace prefix declaration

Message or complex type definition

Port type definition

External service declaration

Service definition

- p r e f i x (Prefix, NamespaceURI).

- s t r u c t (QName, Members) .

- p o r t _ t y p e (QName, Operations) .

- s e r v i c e (PortName, Operation, {
rrusted properties }) .

s e r v i c e (Port, Operation, InMsgl, OutMsgl) : -
Activity .

Activities
Do nothing

Assignment to variable 1 part

Service invocation

Terminating with a response

Sequence

Conditional execution

While loop

Repeat-until loop

For-each loop

Scope

Scope fault handler

Parallel flow with dependencies

Dependent activity in a flow

empty

VarExpr <- Expr

invoke (PortName, Operation, OutMsg, InMsg)

r e p l y (OutMsg)

Activityj, Activity2

i f (Cond, Activityi, Activity^

w h i l e (Cond, Activity)

r e p e a t U n t i K Activity, Cond)

fo rEach (Counter, Start, End, Activity)

scope (VarDeclarations, Activities and Handlers)

h a n d l e r (Activity)

h a n d l e r (FaultName, Activity)

f low(LinkDeclarations, Activities)

f l o a t (Attributes, Activity)

Table 1: Elements of an abstract description of an orchestration in the intermediate language.

In contrast to the structured workflow patterns expressed by UML activity/sequence diagrams,
BPEL's flow construct can express a wider class of concurrent workflows, where concurrency and
dependencies between activities are expressed by means of precondition formulas involving tri-state
logical link variables, with optional dead-path elimination. The f loa t construct in the intermediate
language annotates an activity within a flow with a description of outgoing links and their values,
join conditions based on incoming links, and a specification of the behavior in case of a join failure.

A BPEL process definition is translated into a service definition which associates a port name and
an operation with a BPEL-style activity that represents the orchestration body. This intermediate
representation is, in turn, translated into a logic programming language augmented with assertions
(Ciao [10, 9]), which in our case are used to express types and modes (i.e., which arguments are input
and output) as well as resource definitions and functions describing resource consumption bounds.
The logic program resulting from the translation is fed to the resource consumption analyzer of the
Ciao preprocessor (CiaoPP [9]), which is able to infer upper and lower bounds for the generalized
cost / complexity of a logic program [6, 8, 14].

An important observation regarding the translation is that, in general, it is not necessary for the
generated logic program to be strictly faithful to the operational semantics of the orchestration: it
has to capture enough of it to ensure that the analyzers will infer correct information (i.e., safe ap­
proximations), with minimal precision loss due to the translation. However, in our case the trans­
lated program is executable (although not operationally equivalent to the BPEL process) and mirrors
quite closely the operational semantics of the BPEL process under analysis.

:- regtype ' f a c t o r y - > r e s D a t a ' / l .
' f ac to ry->resData 'Cfac tory->resData ' (A, B, C)) : -

num(A), num(B), l i s t (C , ' f a c t o r y - > p a r t I n f o ') .

:- regtype ' f a c t o r y - > p a r t l n f o ' / l .
' f a c to ry ->pa r t In fo ' (' f a c to ry ->pa r t In fo ' (A , B)) : -

atm(A) , atm(B) .

Figure 5: Translation of types.

3.2 Restrictions on Input Orchestrations

We restrict our analysis to orchestrations that follow a receive-reply interaction pattern, where pro­
cessing activities take place after reception of an initiating message and finish dispatching either a
reply or a fault notification. Orchestrations that may accept several different initiating messages can
be logically decomposed into orchestrations that correspond to individual web service operations.

Another behavioral restriction is that we currently do not support analysis of stateful service call­
backs using correlation sets or WS-Addressing schemes. In future work, we plan to relaxboth restric­
tions by identifying orchestration fragments that correspond to the receive-reply pattern, isolating
them into sub-processes, and analyzing them as now done for whole orchestrations.

In our intermediate language, we support a variant of the scope construct, which, like its BPEL
counterpart, introduces local variables, fault and compensation handlers. However, we do not fully
support compensation handlers, which in BPEL contain logic that "undoes" effects of a successfully
completed scope. The BPEL specification requires compensation handlers to use values of scope's
variables that were recorded upon successful completion of the scope, which introduces problems
for the analysis. Otherwise, compensation handlers can be treated as pseudo-subroutines on a scope
level, and inlined at their invocation place.

3.3 Type Translation and Data Handling

Services communicate using complex XML data structures whose typing information is given by
an XML Schema. The state of an executing orchestration consists of a number of variables that have
simple or complex types, including variables that hold inbound and outgoing messages. For simplic­
ity reasons, we abstract the simple types in XML Schemata as three disjoint types: numbers, strings
(represented by atoms), and booleans.

WSDL message types and custom complex types from XML Schemata are translated into the in­
termediate representation and finally into the typing / assertion language of Ciao. These type defini­
tions are used to annotate the translated program and are eventually used by the analyzer. Figure 5
shows an automatically obtained translation for the part reservation scenario in Example 1. The type
name ' f actory->resData ' is a structure with the same name and with three fields: two numbers
and a list of elements of type ' f actory->partInf o ' . Each of these elements is in turn a structure
with two fields (atoms).

We use a subset of XPath as the expression language, which allows node navigation only along the
descendant and attribute axes, to ensure that navigation is statically decidable based on structural
typing only. The expression ' $req. body/item [1] /<3qty' in the intermediate language refers to the
attribute qty of the first item element in the body part of a message stored in variable req. We also
support a set of standard XPath operators and basic functions, including pos i t ion () and l a s t () .

To help the analyzer to track component values and correlate the changes made to them, we stat­
ically unfold XML structures in an environment into their components when necessary, and pass
them around explicitly as predicate arguments from that point onwards. An unfolded structure no
longer needs to be passed along with its components, since it can be reconstructed on demand (see
Section 3.7 and Figure 3.7(c) for an example). The resulting code is less readable for a human, but
more amenable to analysis.4

3.4 Basic Service and Activity Translation

The basic idea of the automatic translation from the intermediate language to a logic program is
to keep track of the functional dependency between the message with which a service is invoked and
the resulting response message. Thus, an orchestration S is translated into a predicate:

s(Jc,y)-[A] I,(y)

where x represents the input message (decomposed in its parts), y stands for the answer, and \A\Tj (y)
is the translation of the orchestration body A within the initial service environment r\. An environ­
ment is a mapping from structured component names within the current scope to logical terms.
Structured component names denote parts within a message, nested XML nodes (elements and at­
tributes), as well as heads and tails of lists. Each data structure is a tree of nodes rooted in a variable.
Leaf nodes represent scalars and unfolded structured components. Since the internal nodes can be
reconstructed from leaf nodes, the entire environment can be represented by its leaf nodes. Initially,
the environment of an orchestration consists only of the input message (and its components). We
write r\ in an argument position of a predicate to mean the leaf components from r\. In the above
case, we could have written s{r\, y) instead of s{x, y).

A sequence of activities {A\ C) consists of the activity A and the continuation C (which is also a
sequence of activities). A special case is the empty sequence e. In general we consider the translation
of a sequence, and abbreviate [(J4|C)] as [.A|C], and {A\ej as [A[. A sequence of two activities (Ai,Aj)
is normalized by extending the continuation:

[(Ai)A7)|C],O0-[Ail<4/|C>]),CK).

Activity rep ly (v) terminates the orchestration and sends a reply, regardless of the continuation.
The translation produces a unification:

ireVly{v)\ClJ1{y)~y = r]{v)

between the service result y and the value of v in the current environment. Another way to terminate
a service is to signal a fault, which is translated into a failure of the logical program:

|throw|C]^(y) — f a i l .

For any activity Ai other than a sequence, empty, reply, and throw, the translation is:

The alternative being writing in Prolog the counterparts for the supportedXPath operations and letting the analyzers deal
directly with them. In our experience, this introduces too much precision loss in current analyzers, and therefore we opted
for a more complex translation.

where ai is a newly generated predicate whose structure depends on At, r\, and C. First, we exam­
ine the case when Ai = x < - e, i.e., the expression e is evaluated and assigned to the environment
element x (a variable or its component). The generated clause consists of several steps:

adV>y)^- [e:E]j1,[E/x]^,lCji]l{y).

n' Where [e: E]^ stands for code that evaluates e into term E in environment r\, and [Elx]l stands for

the assignment of E to x that transforms r\ into 77'.

For an external service invocation, Ai = invoke(p, o, v, w), the generated clause has a similar
structure:

ai{rl,y)^spo{rl{v),Y),[Ylw]Jt],{Cln,{y),

where spo is the translation of a service implementing operation o on port type p, v holds the input
message, and w holds the reply.

For Ai = if (c, Aj, A^), two clauses are generated:

fli(»7,y) - [c?],,!, [̂ 71ClijCK)

where [c?]^ stands for the code that succeeds if and only if the boolean condition c evaluates to t rue
in rj. Likewise, Ai = while(c, Aj) generates:

Other looping constructs, such as repeatUnt i l and f orEach reduce to while.

3.5 Translation for Scopes and Flows

The translation of scopes involves changing the environment on entry and exit, and has to
ensure the execution of a fault handler unless the body scope ends successfully. In Ai =
scopeiD, A, H\,H2,...,HN), D denotes new variable declarations, A is the body of the scope, and
Hi are fault handlers. N + 1 clauses are generated for a,, one for A and each of the handlers. Each of
the clauses uses cut to prevent execution of subsequent clauses in case that the scope body / han­
dler attached to the clause completes successfully. Since the process itself can be seen as a scope,
and it normally needs a variable to hold the output message, in the intermediate language we use an
abbreviation:

service(p, o, x,y) <— A

for:
service(p, o,x) <— scope([y :ReplyType], {A, reply('$y '))) .

The translation of a flow is done following the usual BPEL semantics, but without operationally
parallelizing the execution. Instead, we are interested in total resource consumption of a flow con­
struct, irrespective of the actual number of available threads. Links are internally declared as Boolean
variables, and f loa t s are ordered so that they follow dependencies on outgoing links from previous
f loats . After reordering, a flow effectively translates to a sequence, and each f loa t CD, Aj) is trans-
formedinto: if(c,(A],'$o> <-true),F)

where c is a join condition, o is the outgoing link, and F covers the case when c evalu­
ates to fa l se . When the suppresJoinFai lure property is disabled, we simply have F =
throw(bpel: jo inFai lure) . Otherwise, F= ' $0 ' < - f a l s e .

:- structC factory:resRequest, [

partC body): structC factory:resData)]).

:- structC factory:resResponse, [

partC body): structC factory: resData)]).

:- structC factory:resData, [

childC factory:partCount): number,

childC factory:priceLimit): number,

childC factory:part):

listC structC factory:partInfo))]).

:- structC factory:partInfo, [

attributeC '':partName): atom,

attributeC '':variantName): atom,

childC factory:partVendor): atom,

childC factory:serialNo): number]).

:- portC factory:agent, [

reserveGroupC structC factory:resRequest)):

structC factory:resResponse)]).

serviceC factory:agent, reserveGroup, '$req', '$resp')

[

'$resp.body/factory:partCount'<-0,

'$resp.body/factory:part'<-'$req.body/f actory:part',

scopeC [i:number] ,

[»$i» <- 1,

whileC ' $req.body/factory:partCount>0',

[

scopeC [p: structC factory:partInfo),

r: structC factory:partInfo)],

[>$p><- >$req.body/factory:part[$i]',

invokeC factory:sales, reservesingle, '$p

ifC '$r/factory:unitNo>0>,

'$resp.body/factory:part[$i]'<-'$r',

throwC factory:unableToReserveGroup)) ,

handlerC

[whileC '$i>l',

[>$i><- >$i - 1',

'$p'<- '$resp.body/factory:part[$i] ',

invokeC factory:sales, cancelReservation,

>$p\>$r>)]),

throwC factory:unableToCompleteRequest)])

r>),

:- portC factory:sales, [

reservesingleC structC factory:partInfo)):

structC factory:partInfo),

cancelReservationC structC factory:partInfo)):

structC factory:partInfo)]).

]) ,

»$i» <- »$i+i»,

'$req.body/factory:partCount' <-

'$req.body/factory:partCount 1'])])].

Figure 6: Abstract representation of a group reservation process.

3.6 Cost Functions for Closed-Source Services

During the analysis we have assumed that the orchestration code of the service (s) to be analyzed
is available. However, this may not be always the case (see Section 2.3). The proposed solution was
to publish the cost functions plus the size relations among arguments to be used by the analyzers.
Another possibility is to make available the code representing the abstraction of the services so that it
can be downloaded and directly used in the analysis. Hopefully such code can be schematic enough
not to reveal sensitive data about the actual service, but concrete enough to make inferring cost
functions possible.

3.7 An Example of Translation and Analysis

We will illustrate the process of analysis by using a description of an orchestration, translating it
into a logic program, and reasoning on the results of applying to it a resource usage analysis.

We use a representation of a process that performs part reservation, along the lines (but slightly
simplified, for space reasons) of the example used in Section 2.1. For compactness, we present the
abstract description of this orchestration in our internal representation form instead of plain BPEL
(see Figure 6). This representation contains information that is both found in the WSDL document
(data types, interface descriptions) and in the process definition itself (the processing logic).

:- ent ry ' service_factory->agent->reserveGroupV4

:{gnd,num}*{gnd,num}*{gnd, ' l ist_of_factory->partInfo'}*var.

'service_factory->agent->reserveGroup'(A,B,C,D) : -

ac t_ l (A, B, C, 0, 0, [] , D).

(a) Translation of the entry point to the process.

act_4(A, B, C, D, E, F, G, H) : -

(this is act_4:while('$req.body/factory:partCount>0')),

A>0, !, act_5(A, B, C, D, E, F, G, H).

act_4(_, _, _, D, E, F, _, ', factory->resResponse'(D, E, F)).

(b) Translation of the main while loop.

act_7(A, B, C, D, E, F, G, H, _, _, _, _, M) : -

(this is act_7:invoke(factory:sales, reserveSingle, '$p', '$r')),

H='factory->partInfo>(N, D, P, Q) ,

'service_factory->sales->reserveSingle'(N, D, P, Q, R) ,

act_8(A, B, C, D, E, F, G, N, D, P, Q, R, M).

(c) Translation of an external service invocation.

Figure 7: Translation into a logic program.

The orchestration traverses the list of parts to reserve, external factory sales service.5 If that is not
possible, or if a failure arises, a failure handler is activated that tries to cancel the reservations that
were already made before signaling failure to the client.

The translation of the orchestration produces an annotated logic program, some of whose parts
we present in Figure 3.7. Part (a) shows the translation of the entry point of the service, along with
an e n t r y annotation that helps the analyzer understand what the input arguments are. The input
message is unfolded into the first three arguments {A, B, C), and D plays the role of y. Part (b) shows
the translation of the main wh i l e loop, and the second clause finishes the process by constructing
the answer from the current value of the response variable. Part (c) shows the translation of the
service invocation, with previous unfolding of the outgoing message, and subsequent pruning of the
response variable data tree.

The resource analysis finds out how many times some specific operations will be called during the
execution of the process. The resources we are interested in in this example are: the number of all ba­
sic activities performed (assignments, external invocations); the number of invocations of individual
part reservations (operation r e s e r v e S i n g l e at the factory service); and the number of invocations
of reservation cancellations (operation c a n c e l R e s e r v a t i o n at the factory service). From the num­
ber of invocations it is easy to deduce the number of messages exchanged during the execution of
the process. The results are displayed in Table 2, where the estimated upper and lower bounds are
expressed as a function of the initiating request. We differentiate explicitly two cases: one which
has the possibility of failure, in which the associated fault handling is executed, which gives wider,
more cautious estimates, and another one in which the execution is successful (i.e., without fault
generation and handling). These two cases were obtained by means of different translations which
explicitly generated or not Prolog code corresponding to the fault handling.

This is a difference from Example 1: the orchestration does not query different factories.

Resource

Basic activities
Single reservations

Cancellations

With fault handling
lower bound upper bound

2
0
0

7 x n

n

n-\

Without fault handling
lower bound upper bound

5 x n + 2
n

0

5 x n + 2
n

0

Note: In the above formula, n stands for the value of the input argument $req.body/factory :partCount,
taken as a non-negative integer.

Table 2: Resource analysis results for the group reservation service.

[Si j ubi(n)

/ / ^^-*\ ^2) ub2(n)

Client ^ \ •

7 SJV) ubf](n)

Part group reservation tier

Figure 8: Single-tier simulation setting.

4 An Experiment on Adaptation

We will study the effectiveness of applying our data-aware cost analysis to adaptation by simu­
lating several arrangements of service networks. We consider adaptation by means of dynamic (re-
)selection of partner services using several strategies (see later for more details). The goal is to as­
sess their relative efficiency (in terms of benefits) when considering worst-case execution scenarios,
where service executions incur maximal costs under their stated upper bounds.

In the simulations, we consider the cost in terms of number of messages exchanged. That is mean­
ingful in situations where the number of messages reflects the intensity of computation within the
service network. However, as we argued before, the concrete meaning of the cost functions is not
really relevant, and as long as they safely measure a characteristic which we want to maximize (min­
imize), the techniques and experiments herein presented can be applied to other characteristics.

We also make the realistic assumption that the selected service may be unavailable or fail to fulfill
the expected task within the limits set by the user or mandated by some Service-Level Agreement.
In both cases, we continue with the selection and invocation of the "next-best" candidate from the
partner pool. For the sake of simplicity, and although in reality failure probabilities vary from one
service to another, in each simulation we adopt a single partner failure probability pf.

Within the general setting of the car part reservation system (Section 2.1), we simulate the behavior
of two arrangements of services. The first arrangement, shown in Figure 8, is a single tier of services
that provide the reservation of particular car parts. There is a pool of N = 12 part provider services
with different resource consumption features. The client invokes one of these services to reserve n
units of a particular part type. Upper bounds for services in the pool are shown on Figure 9. For the
input range of 0 to 50 requested units, the upper bounds are a family of curves that were chosen to
maximize data-aware choice opportunities. The upper bound of the first service (marked as ub\{ri)

Figure 9: Cost upper bounds for different ser­
vices, single-tier setting.

Figure 10: Single-tier simulation results for
pf = 0.

Figure 11: Single-tier simulation results for
pf = 0.5.

Figure 12: Single-tier simulation results for
pf = 0.8.

on Figure 8) is quadratic on the input size n, and has the form:

ub\ (n) = An2 + B,

Other services from the pool have linear upper bounds of the form:

J V - l i

ubjcin) = k-a-n + f} ^ -,
i=k *

(k = 2..N) with choice of a = 1/2 and f} = 45. The underlying bold black line on Figure 9, marked with
lu b, is the least upper bound for each given n in the input range — i.e., it describes the best possible
case among the more pessimistic prediction for all the available services and for each n in the data
range

The simulation uses three selection strategies: (a) a random choice of service; (b) a data-aware
cost-minimizingchoicebaseA on the input data, which selects service offering the least upper bound
for a given n; and (c) fixed preferences over services, where the cost associated to every service is a
constant corresponding to its actual cost for the input size n = 20. Each result obtained from the
simulation is the average from one hundred simulations of service invocations.

The simulation results for the single-tier setting with Pf = 0 (i.e., without failure) are shown in
Figure 10. Unsurprisingly, the costs using the data-aware selection strategy closely follow the least

*(Si j ubi(n)

fl S2) ulfyin)

{ PN) •{ SJV J ubf]{n)

UBN(m)

Tier 1: Lot reservation Tier 2: Part group reservation

Figure 13: Two-tier simulation setting,
upper bound curve from Figure 9 and, naturally, it meets the fixed preferences strategy at n = 20.
Moving to the left or to the right the point chosen to create the fixed preferences would of course
make this strategy loose precision on the other end.

In terms of cost savings, the data-aware strategy is significantly better than random choice, and
also beats fixed preferences. The simulation also shows that the advantage of the data-aware strategy
is resilient to increments of the fault rate. In Figure 11, with pf = 0.5, which is a very high fault rate,
the data-aware strategy on average maintains its benefits, which are close to be lost only at very high
failure rates, such as pf = 0.8 (Figure 12). This experimental data supports the claim that taking into
account actual data when performing service selection bring substantial gains.

The second simulation arrangement, shown on Figure 13, consists of two tiers of services. The first
tier, invoked by the client, consists of services that reserve a mix of M = 5 different types of parts for
a lot of m vehicles. Each vehicle requires c, units of part type i, i = 1..M. These parts are obtained
from the second tier of part providers, which behave in the same way as in the single-tier case. The
upper bound cost (in terms of messages exchanged) UBj (m) of a lot reservation service j in the first
tier is given as:

M

UBj (m) = Ej (m) +M+J^ub*{m- c{)
i=\

where Ej{m) stands for the upper bound of the internal, structural cost of j , M is added for each
invocation of a part reservation service, and wfo* stands for the upper bound of the cost of reserving
m-Ci parts of type i. Under a data-aware selection strategy, wfo* corresponds to the second-tier
service with lowest upper bound for the given n = m-ci that is selected by the first-tier service j . In
the experiment we took the same number of N = 12 second- and first-tier services, and varied their
structural complexity to have both the quadratic case:

Ei(_m) = Cm2 + D,

and linear cases:
J V - l i

Ei[m) = j • r • m + S V —,
i=) l

(J = 2..N) with y = 5/2 and S = 225. Thus, the relationship between different Ej {j = 1..N) is anal­
ogous to the relationship between different ub^ {k = 1..N) in Figure 9. The meaning of Ej is the
number of messages exchanged between the first-tier service j and entities that are either passive
(e.g., filing repositories or mail message recipients) or have a constant upper-bound cost function,
that does not depend on a particular m.

Client

In the two-tier case we also have three selection strategies. Random selection, which applies both
to invocations from the client to the first tier services, and to invocations from the first to the second
service layer. Data-aware selection works in a more sophisticated manner, in order to account for
costs incurred by services in both layers. In this particular simulation, we have taken the top-down
approach, where first-tier services are queried for their total upper bound cost, including the costs
of the second-tier services they invoke. In order to present their total upper bound cost, relative to
a particular input value of m, the first-tier services perform pre-selection, i.e., advance planning of
second-tier partner links, to which they stick if selected by the client.

Although in our case the top-down pre-selection process ends with the second-tier services, in re­
ality it can extend until it either reaches the terminal points (atomic services that do the actual work),
or detects a circular reference between services, in which case the tier-to-tier cost dependencies ef­
fectively turn into a set of recurrent relations that need to be solved using adequate mathematical
methods. However, we argue that the existence of such circularities is not common, since service
networks usually rely on back-ends of "worker" services that are atomic in the sense that they do not
rely on the invocation of other external services.

Another approach to select services based on data-related functions would be to approximate the
cost bounds of a collection of connected services with the corresponding structural costs, which do
not depend on bindings the orchestration may make. While we have explored this possibility, for
space reasons we are not reporting. It amounts to saying that the structural cost is not necessarily
a good predictor of the actual costs of a composition after partner binding and that, in any case, it
cannot be used as real upper bound as it does not provide a guarantee for the real cost function.

The third partner selection strategy in the two-tier setting is again fixed preferences over services
in both tiers. This time, we form the preference over services in the first tier by minimizing their
structural costs for the particular m = 20.

The results of the simulation for the two-tier setting and Pf = 0 are shown in Figure 14. We again
notice that the data-aware top-down approach with pre-planning beats (by far this time) both the
random and fixed-preferences strategies. Again, the results are resilient to increments of the fault
rate, and tend to deteriorate only at very high failure rates (Figures 15 and 16) which, again, gives a
strong support to the use of cost functions in the cases where they can be applied.

5 Conclusions and Future Work

We have presented a resource analysis for orchestrations (using BPEL as a concrete example)
which is based on a translation into Prolog, for which cost analyzers are available, via an intermedi­
ate programming language. These analyzers can be customized to focus on user-defined resources,
thereby opening the possibility of generating cost functions for characteristics other than computa­
tion complexity, some of them relevant for SOC. As we argued and showed by simulations, automat­
ically inferring and applying these functions can be used as a core technology for some approaches
to service adaptation and matchmaking.

We sketched the core of the translation process, which approximates the behavior of the original
process network in such a way that the analysis results are valid for the original network. Our trans­
lation is partial in the sense that some issues, like correlation sets, are not yet taken into account.
A richer translation which we expect will take into account this (and other) issues is the subject of
current work.

:.000

4000

3000

2000 -

1000

— I

random i
lixed x

data-aware *

• x * '
, x X '

t * ; « « ; l ********
* * * * * *

* * * * * * * * * * * * * * * * * * x x * * "

¥ 5 *
• iS" * 8 * "

¥ I K

10 20 ::HN 40 50

Figure 14: Two-tier simulation results for pf = 0.

4000

3000

2000

1000

* • £ *

—

+ + ; x *
x *

. . « - " " " "

-

+ + *x
1 <

;-

J™ ;

.**

„*****"

20 30 40 50

Figure 15: Two-tier simulation results for
pf = 0.5.

Figure 16: Two-tier simulation results for
Pf = 0.8.

Finally, we performed a series of experiments with different adaptation strategies and services
which support the usefulness of using data functions in the selection of services.

A Raw data from experiments

In order for the reviewers to have all the information coming from the experiments (which we
depicted in Figures 10 to 12), we are including here tables for all the data points we generated. Note
that in the figures we are not including the plot for the case with failure 0.25 (shown in Figure 3) as it
is not very different from that for failure rate 0.5 (shown in Figure 11).

The simulation results in Figure 3 show resilience of the data-aware selection strategy in the single-
tier setting, when a significant fraction (one quarter) of service calls fails. Compared to Figure 10 with
Pf = 0, the shape of cost curves does not significantly change, except that they are slightly shifted
upwards to account for repeated calls to second-best, third-best, etc. service in a row. The same
applies to Figure 11 in comparison to 14.

•>-J.I

200

1 SO

100

50

random i
fixed x

data-aware *

: H i *
> x

* x >; * : * * * :

20 30 40 .:.IJ

Single-tier simulation results with pf = 0.25.

— I
random i

fixed x
data-aware *

¥ * * '

* * * * * * * * * !
. * * * *

X * * X X * ** !;

10 20 ::HN 40 .:.IJ

Two-tier simulation results with p f = 0.25.

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

rnd.

40
43
46
50
53
56
60
63
66
70
73
76
80
83
87
90
94
97
101
104
108
111
115
119
122
126
130
133
137
141
144
148
152
156
159
163
167
171
175
179
183
187
191
195
198
202
207
211
215
219

Pf = 0.0

fixed

46
49
51
54
56
59
61
64
66
69
71
74
76
79
81
84
86
89
91
94
96
99
101
104
106
109
111
114
116
119
121
124
126
129
131
134
136
139
141
144
146
149
151
154
156
159
161
164
166
169

u.b.

8
14
20
26
32
38
44
50
55
59
62
65
68
71
75
79
83
87
91
94
96
99
101
103
105
107
109
111
113
115
116
118
119
121
122
124
125
127
128
130
131
133
134
136
137
138
139
140
141
142

rnd.

40
43
46
49
52
55
59
62
65
69
72
75
79
82
85
89
92
96
99
103
106
110
113
117
120
124
128
131
135
139
142
146
150
154
157
161
165
169
173
177
181
185
188
192
196
200
205
209
213
217

Pf = 0.25

fixed

46
48
51
53
56
58
61
63
66
68
71
74
76
79
81
84
87
89
92
95
97
100
103
106
108
111
114
117
120
122
125
128
131
134
137
140
142
145
148
151
154
157
160
163
166
169
172
175
178
181

u.b.

10
16
21
27
33
39
45
50
56
60
63
66
70
73
77
80
84
88
92
95
97
100
102
104
106
108
110
112
114
116
118
119
121
123
124
126
127
129
130
132
133
135
136
138
139
141
142
143
144
145

rnd.

41
44
48
51
54
58
61
64
68
71
74
78
81
85
88
92
95
99
102
106
109
113
117
120
124
127
131
135
139
142
146
150
154
157
161
165
169
173
177
181
184
188
192
196
200
204
208
212
216
221

Pf = 0.5

fixed

47
49
52
54
57
59
62
64
67
69
72
75
77
80
83
86
88
91
94
97
100
103
105
108
111
114
117
120
123
126
130
133
136
139
142
145
149
152
155
158
162
165
168
172
175
179
182
185
189
192

u.b.

14
19
25
30
36
41
47
52
57
62
65
69
73
76
80
83
87
90
94
97
99
102
104
107
109
111
113
115
117
119
121
123
125
127
128
130
132
134
135
137
139
140
142
144
145
147
148
150
151
153

rnd.

44
47
50
53
56
60
63
66
69
72
76
79
82
86
89
92
96
99
103
106
110
113
117
120
124
127
131
135
138
142
146
149
153
157
161
164
168
172
176
180
184
188
191
195
199
203
207
211
215
219

Pf = 0.8

fixed

50
52
55
57
60
63
65
68
71
73
76
79
82
84
87
90
93
96
99
101
104
107
110
113
116
120
123
126
129
132
135
138
142
145
148
151
155
158
161
165
168
172
175
178
182
185
189
192
196
200

u.b.

32
36
40
44
48
52
56
60
64
68
71
75
78
81
85
88
92
95
99
101
104
107
110
113
116
119
122
125
127
130
133
136
139
142
144
147
150
153
156
159
161
164
167
169
172
175
177
180
183
185

Table 3: The simulation data for the single-tier setting.

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

rnd.

276
327
379
432
487
542
599
657
717
777
839
902
967
1032

1099

1167

1236

1307

1378

1451

1525

1601

1677

1755

1834

1914

1996

2079

2163

2248

2334

2422

2511

2601

2692

2785

2879

2974

3070

3168

3266

3366

3468

3570

3674

3779

3885

3992

4101

4210

Pf = 0.0

fixed

309
349
389
429
469
509
549
589
629
669
709
749
789
829
869
909
949
989
1029

1069

1109

1149

1189

1229

1269

1309

1349

1389

1429

1469

1509

1549

1589

1629

1669

1709

1749

1789

1829

1869

1909

1949

1989

2029

2069

2109

2149

2189

2229

2269

u.b.

113
206
278
345
403
452
495
536
575
606
632
656
680
704
729
752
775
799
822
842
862
882
901
919
937
955
973
991
1009

1027

1044

1061

1078

1095

1112

1129

1146

1163

1180

1197

1214

1231

1248

1265

1282

1298

1314

1330

1346

1362

rnd.

277
330
384
440
496
553
611
670
731
792
854
917
981
1047

1113

1180

1248

1317

1388

1459

1531

1604

1678

1754

1830

1907

1985

2064

2145

2226

2308

2391

2475

2561

2647

2734

2822

2911

3001

3093

3185

3278

3372

3467

3564

3661

3759

3858

3958

4060

Pf = 0.25

fixed

308
349
390
431
473
515
557
600
643
687
731
776
820
866
911
958
1004

1051

1098

1146

1194

1242

1291

1340

1390

1440

1491

1542

1593

1644

1697

1749

1802

1855

1909

1963

2017

2072

2128

2183

2239

2296

2353

2410

2468

2526

2584

2643

2702

2762

u.b.

123
214
287
353
410
459
503
543
582
615
642
669
695
721
747
772
797
823
848
870
892
914
936
956
977
998
1018

1039

1059

1080

1099

1119

1139

1159

1178

1198

1218

1237

1257

1276

1296

1315

1335

1354

1374

1393

1411

1430

1449

1468

rnd.

285
337
391
445
500
556
613
671
730
790
850
912
974
1037

1102

1167

1233

1300

1367

1436

1506

1576

1648

1720

1793

1868

1943

2019

2096

2173

2252

2332

2412

2494

2576

2659

2743

2828

2914

3001

3089

3177

3267

3357

3449

3541

3634

3728

3823

3919

Pf = 0.5

fixed

316
356
397
439
483
527
574
622
671
721
773
826
881
937
994
1053

1113

1174

1237

1301

1366

1433

1502

1571

1642

1715

1788

1863

1940

2018

2097

2178

2260

2343

2428

2514

2601

2690

2780

2872

2965

3059

3154

3252

3350

3450

3551

3653

3757

3862

u.b.

142
229
303
367
424
473
518
560
600
636
668
699
730
760
790
819
848
878
907
934
961
988
1014

1040

1066

1091

1117

1142

1167

1193

1218

1243

1267

1292

1317

1342

1367

1391

1416

1440

1465

1490

1514

1539

1563

1587

1612

1636

1660

1684

rnd.

377
432
488
544
602
660
719
779
840
901
964
1027

1091

1156

1221

1288

1355

1424

1493

1563

1633

1705

1777

1851

1925

2000

2075

2152

2229

2307

2386

2466

2547

2629

2711

2794

2878

2963

3049

3135

3223

3311

3400

3490

3581

3672

3765

3858

3952

4047

Pf = 0.8

fixed

374
418
463
510
558
608
659
712
766
822
879
938
998
1059

1122

1187

1253

1321

1390

1460

1532

1606

1680

1757

1835

1914

1995

2077

2161

2246

2333

2421

2511

2602

2695

2789

2885

2982

3081

3181

3282

3385

3490

3596

3703

3812

3923

4035

4148

4263

u.b.

262
335
404
469
517
571
623
678
725
768
814
859
905
950
995
1040

1085

1130

1182

1215

1283

1328

1374

1435

1481

1526

1576

1622

1669

1715

1684

1728

1773

1818

1860

1906

1952

1998

2098

2145

2192

2240

2288

2336

2384

2433

2481

2530

2579

2628

Table 4: The simulation data for the two-tier setting.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost Relation Systems: a Language-Independent
Target Language for Cost Analysis. In Spanish Conference on Programming and Computer Lan­
guages (PROLE'08), volume 17615 of ENTCS. Elsevier, October 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Ramirez, and D. Zanardini. The COSTA cost and
termination analyzer for Java bytecode and its web interface (tool demo). In Anna Philippou,
editor, 22nd European Conference on Object-Oriented Programming (ECOOP'08), July 2008.

3. Mohammad Alrifai and Thomass Risse. Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition. In International World Wide Web Conference, pages
881-890. ACM, April 2009.

4. J. Cardoso. About the Data-Flow Complexity of Web Processes. In 6th International Workshop on
Business Process Modeling, Development, and Support: Business Processes and Support Systems:
Design for Flexibility, pages 67-74, 2005.

5. J. Cardoso. Complexity analysis of BPEL web processes. Software Process: Improvement and
Practice, 12(l):35-49, 2007.

6. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions on Programming
Languages and Systems, 15(5):826-875, November 1993.

7. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.
In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages
174-188. ACM Press, June 1990.

8. S. K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation
for Logic Programs. In 1997 International Logic Programming Symposium, pages 291-305. MIT
Press, Cambridge, MA, October 1997.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program Debugging, Ver­
ification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1-2):115-140, October 2005.

10. M. V Hermenegildo, F. Bueno, M. Carro, P. Lopez, J.F. Morales, and G. Puebla. An Overview of The
Ciao Multiparadigm Language and Program Development Environment and its Design Philoso­
phy. In Jose Meseguer Pierpaolo Degano, Rocco De Nicola, editor, Festschrift for Ugo Montanari,
number 5065 in LNCS, pages 209-237. Springer-Verlag, June 2008.

11. D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guizar, N. Kartha, C. Kevin Liu, R. Khalaf, D. Konig, M. Marin, V Mehta, S. Thatte,
D. van der Rijn, P. Yendluri, and A. Yiu. Web Services Business Process Execution Language Ver­
sion 2.0. Technical report, IBM, Microsoft, BEA, Intalio, Individual, Adobe Systems, Systinet, Ac­
tive Endpoints, JBoss, Sterling Commerce, SAP Deloitte, TIBCO Software, webMethods, Oracle,
2007.

12. M. Mendez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the Anal­
ysis of Object-Oriented Programs. In 17th International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR 2007), number 4915 in LNCS, pages 154-168. Springer-
Verlag, August 2007.

13. J. Navas, M. Mendez-Lojo, and M. HermenegUdo. User-Definable Resource Usage Bounds Anal­
ysis for lava Bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification, Anal­
ysis and Transformation (BYTECODE09), Electronic Notes in Theoretical Computer Science. El­
sevier - North HoUand, March 2009.

14. J. Navas, E. Mera, P. Lopez-Garcia, and M. HermenegUdo. User-Definable Resource Bounds Anal­
ysis for Logic Programs. In International Conference on Logic Programming (ICLP), volume 4670
of LNCS, pages 348-363. Springer-Verlag, September 2007.

15. A. Rebon PortUlo, K. Hammond, H-W. Loidl, and P. Vasconcelos. Cost Analysis Using Auto­
matic Size and Time Inference. In Proceedings of the International Workshop on Implementa­
tion of Functional Languages, volume 2670 of Lecture Notes in Computer Science, pages 232-247,
Madrid, Spain, September 2002. Springer-Verlag.

16. R. WUhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. WhaUey, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. The
Worst-Case Execution-Time Problem - Overview of Methods And Survey of Tools. ACM Trans­
actions on Embedded Computing Systems, 7(36), 2008.

