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Abstract 

Several activities in service oriented computing, such as automatic composition, monitoring, and 
adaptation, can benefit from knowing properties of a given service composition before executing 
them. Among these properties we will focus on those related to execution cost and resource usage, 
in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we 
formulate execution costs / resource usage as functions on input data (or appropriate abstractions 
thereof) and show how these functions can be used to make better, more informed decisions when 
performing composition, adaptation, and proactive monitoring. We present an approach to, on one 
hand, synthesizing these functions in an automatic fashion from the definition of the different or­
chestrations taking part in a system and, on the other hand, to effectively using them to reduce the 
overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of fail­
ure. We validate our approach by means of simulations of scenarios needing runtime selection of 
services and adaptation due to service failure. A number of rebinding strategies, including the use of 
cost functions, are compared. 



Contents 

1 Introduction 1 

2 Cost Analysis and Service Networks 2 
2.1 An Example 2 
2.2 Cost Functions Under Consideration 4 
2.3 Costs for Service Networks 5 

3 Analysis of Orchestrations 6 
3.1 Overview of the Translation 6 
3.2 Restrictions on Input Orchestrations 8 
3.3 Type Translation and Data Handling 8 
3.4 Basic Service and Activity Translation 9 
3.5 Translation for Scopes and Flows 10 
3.6 Cost Functions for Closed-Source Services 11 

3.7 An Example of Translation and Analysis 11 

4 An Experiment on Adaptation 13 

5 Conclusions and Future Work 16 

A Raw data from experiments 18 

References 22 



1 Introduction 

Service Oriented Computing (SOC) is a well-established paradigm which aims at expressing and 
exploiting the computation possibilities of loosely coupled systems which interact remotely. In any 
case, such systems expose themselves as a service interface whose description may include oper­
ation signatures, behavioral descriptions, security policies, and other, while the implementation is 
completely hidden. Several services can be combined by calling the operations in their interfaces to 
accomplish more complex tasks than any of them in isolation through the process of service compo­
sition. Such compositions are usually expressed using either a general-purpose programming lan­
guage or, alternatively, a language with an ad-hoc design aimed at expressing SOC compositions [11]. 
These compositions can in turn present themselves as full-fledged services. 

One key distinguishing feature of SOC systems is that they are expected to live and be active dur­
ing long periods of time and span across geographical and administrative boundaries. This brings 
the need to include monitoring and adaptation capabilities at the heart of SOC. Monitoring checks 
the actual behavior of the system and compares it with the expected one. If deviations are too large, 
an adaptation process (which may involve, e.g., rebinding to different services with compatible se­
mantics and better behavior) may be necessary.1 When deviations are detected before they happen 
(i.e., they are predicted), both monitoring and adaptation can act ahead of time (and they are then 
classified as proactive). Of course, the technology involved in proactive adaptation is more complex 
but also more interesting and useful, as it performs prevention instead of healing. 

In any of these cases, it is necessary to have a model of the behavior of the composition against 
which the actual behavior is checked. Usual models try to capture for example service reliability or 
execution time, and use statistical analysis or log mining to find out values for these metrics. If the 
actual execution departs too much from the expected values, then a warning is issued. Additionally, 
if rebinding is needed in the course of an adaptation, then these characteristics can be used to select 
from among semantically equivalent candidate services. Needless to say, the more precise this model 
is, the better the adaptation / monitoring process can we expected to be. 

In this paper we will be dealing with a particular kind of models: those which try to increase accu­
racy by, on one hand, taking into account actual run-time data and, on the other hand, giving always 
a correct value for the model at hand or, at least, a safe approximation. An example of such a value is 
the number of messages sent / received, which can be related to, for example, execution time (useful 
to determine some QoS characteristics) by assuming that data related to network speed is available, 
or to monetary cost if bandwidth usage has a cost (as, for example, in the case of short cell phone 
messages). 

In this paper we will discuss how the ability to predict data-dependent execution characteristics 
can be of help in some situations (Section 2.1) and how the particular characteristics of SOC in re­
lation with traditional computing paradigms can be taken into account (Section 2.3). As part of the 
needs of this architectural proposal, we will sketch how the models we propose can be automatically 
derived from the actual composition code (Section 3) and we will report on the results of a series of 
simulations which use data-enhanced models to drive a particular case of adaptation (Section 4). 

See the entries of adaptation and monitoring at h t t p : //www. s-cube-network. eu/knowledge-model. 



Figure 1: Simplified car part reservation system. 

2 Cost Analysis and Service Networks 

Cost analysis aims at statically determining the cost (in terms of execution time, execution steps, 
number of instructions, or other general resources) of a computation for some input data, given the 
code which expresses the computation. It has been studied for functional languages [15], logic lan­
guages [8, 7], object-oriented languages [2, 13] and it is also of use for worst-case execution-time 
analysis [16]. There are also approaches which aim at providing common libraries and representa­
tions to make cost analysis easier across several languages [12,1]. 

To the best of the authors' knowledge, there has not been a similar study for SOC, although 
several approaches to automatically deriving QoS characteristics for compositions have been pro­
posed [5,4]. These have much in common with our proposal as they address the problem of working 
out aggregate costs for compositions. However, they do not fully treat data and do not relate cost 
estimation with actual input data sizes (they assume, for example, a statistically or otherwise fixed 
number of loop iterations). Also, aggregating QoS characteristics for complex networks using service 
compositions exposed as services (Section 2.3) is not treated. On the other hand, some proposals [3] 
aim at a global optimization, but ignore data-related issues. We will try to balance both dimensions 
(use of global information and data-sensitivity) while keeping the cost analysis automatic. 

2.1 An Example 

We illustrate with a simple and motivating example the benefit of taking actual data into account 
when generating QoS expressions for service compositions: 

Example 1 Figure 1 shows a simple car part reservation system. A car parts Provider needs to give a 
client a number of n (equivalent) car parts, and gets in touch with different part Makers' services to 
secure the shipment of these parts. The protocol is such that only a part can be reserved at a time from 
a maker using a service invocation. The Maker may answer OK if the part is available and not OK if 
it is not. In the latter case the Provider goes to the next Maker. If all the available Makers have been 
contacted and not all parts have been reserved, the Provider has to CANCEL all the reservations using 
the appropriate message. If some communication link is down or the maker service is not available, 
the communication is just not performed. 

We will assume that the Provider charges the client depending on the amount of CPU needed 
to fulfill a request (which we can approximate as the number of basic activities executed by the 
Provider) and that Makers charge the CPU provider per connection (which also should have an effect 
on the final price to the client). Additionally, both parameters should have an effect on the amount 



of time that the Provider takes to answer to the client due to the number of messages necessary 
to process a request for car parts. Therefore, a more precise announcement of the cost or time for 
the Provider service should take into account the size of the requests made, i.e., the costs should be 
expressed as functions on the data used for the initial invocation. Additionally, there are two possi­
ble cases we may want to explore (which result in different behaviors): either the communications 
and the services are perfect (they do not fail) or there is the possibility that attempting to invoke the 
Maker fails. 

The analysis is, often, non-trivial, even for these simple cases. The results depend, on one hand, 
on the internal logic of the service composition and, on the other hand, on the cost which each of 
the Makers charge the Provider for a given query. Section 3.7 shows how, for this particular example, 
we can automatically derive a number of cost-related functions which depend on data sizes (see Ta­
ble 2). In that example, for the sake of simplicity, we have neglected the cost incurred by the Makers, 
but it should remain clear that in more complex examples these costs (which can in turn depend on 
input data - see Section 2.3) would generate more complex cost functions for the Provider — such 
as, e.g., quadratic. 

We also want to highlight that, while in some cases these automatically generated cost functions 
are exact upper or lower bounds, in general, it can be expected that only safe upper and lower bounds 
of the actual costs are generated. These approximations arise either because of limitations of the 
static analysis, or because the actual cost depends on more parameters than data size, and, thus, an 
exact cost function based only on data sizes does not exist. 

By safe approximation (safe upper and lower bounds) we mean that an upper bound (c.f., a lower 
bound) is always guaranteed to be bigger (c.f., smaller) than the actual cost function. While this may 
seem to be a disadvantage when it comes to predicting actual costs,2 this upper or lower bounding of 
the actual cost is necessary when what is needed is to statically ensure that some QoS characteristic 
(e.g., from a contract) is met, or, conversely, to prove that some QoS characteristic will not be met. 

It is illustrating to compare safe approximating functions with probabilistic approximations, used 
in many approaches to QoS-driven service compositions. Statistical approximations which summa­
rize the cost characteristics in a single point, that is supposedly valid for all data within the input 
range, clearly cannot provide any behavior guarantee, as in general this point represents some kind 
of global average instead of a maximum or minimum. This can be extended in two directions: an 
interval can be used, where, in order for its bounds to be significant, they have to represent the max­
imum and minimum of the characteristic being measured across all the possible input data range. 
This is of course safe, but it is an overly gross approximation, as it does not take into account any 
correlation of the cost characteristic with the input data. The other direction corresponds to using 
functions which, for every input data, represent some average value of the characteristic. This can be 
more precise than using a single point, but it does not allow giving any guarantee. The combination 
of the two extensions proposed, i.e., the use functions which represent upper and lower bounds for 
different input data, makes it possible to provide more precise guarantees across the complete range 
of input data, and therefore allow, at least in principle, the possibility of making more informed ser­
vice selections. 

As an example, Figure 2 portrays the upper and lower bounds of two compositions for some QoS 
characteristics as a function of some input parameter. Depending on the meaning of these char­
acteristics we may want to make sure that we minimize them (for example, if we want to exchange 
a small number of messages) or maximize them (if we want to increase the throughput of the sys­
tem). The former case needs to consider the upper bound (as minimizing the upper bound the whole 

Note, however, that when the inferred upper and lower bounds coincide they are exact cost functions. 
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Figure 2: Upper and lower bounds for two services. 

function is necessarily minimized) and, conversely, the latter requires considering the lower bound. 
According to Figure 2, selecting one or another service depends on the particular data size at hand. 

2.2 Cost Functions Under Consideration 

The type of cost characteristics we will take into consideration are based on counting a number 
of relevant events. To this end, we follow the approach to resource-oriented analysis of [14, 13, 12]. 
The fundamental idea is to specify how much some basic operations in a program contribute to the 
usage of some resource, and derive cost functions based on that specification for the whole program 
using global analysis techniques. 

Higher level characteristics (expressed as compound cost functions) can be derived from these 
basic cost functions, which have a meaning on their own. For example, execution time can be built 
by aggregating the number of basic activities executed (for CPU time) and the number of messages 
exchanged taking into account the network latency and bandwidth. Functions built from upper 
bounds can be upper bounds as well (resp. lower bounds). Of course, if the aggregation of cost 
functions introduces noise (for example, by using inaccurate estimations of actual bandwidth), the 
resulting compound functions will not be accurate. However, as long as the noise is uniformly intro­
duced in all involved functions, comparing aggregated functions should be sound. 

Since inferring functions representing upper/lower bounds does not depend on what these func­
tions exactly represent, and comparing them is also independent from their meaning, we will assume 
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Figure 3: Invoking services with non-null cost, 

in what follows that they represent generic costs which, in general, we want to minimize. 

2.3 Costs for Service Networks 

In the previous sections we dealt with the cost of a single composition under the assumption that 
the services it binds to do not contribute to the cost of the compositions. In general this is not so, and 
when the definition of these accessed services (B, in Figure 3), which may be compositions them­
selves, is available, they can be analyzed together with the code of A to derive a global cost. If the 
code of some B, is not available or, for some reason, the owner of that service does not want to reveal 
it, the cost function for A can still be inferred if at least Bi publishes its cost functions (and a descrip­
tion of how the sizes of its input and output messages are related, given as a data size function) so 
that the analyzer can use them directly instead of working them out. Note that publishing these cost 
and size functions should not compromise the confidentiality of the service Bi itself. 

Assuming that cost functions are cumulative, an upper bound for the cost of A can be expressed, 
for the case of binding to only one service, in a form similar to 

TA{n) = EA{n) + g{n)S{f{n)) 

where EA is a structural cost function which accounts for the contribution of the code of A without 
taking into account the contribution of the services it may use, whose upper bound is summarized 
as S{f{n)). The function / represents the upper bound of the possible difference between the in­
put data for A and that which is passed on to the invoked service, and g is an upper bound on the 
number of times S is invoked. The cost for a given composition comes from replacing S with the B, 
corresponding to the selected service. This process may need to be repeated for the services used 
by A in order to generate a cost function which depends solely on the input parameters to A, but 
which is potentially different for every different binding of A to a service. For example, (the upper 
bound of) the costs corresponding to the composition A when binding to services B\ and B2 would 
be, respectively 

TA{n) = 2n + 3 + n{n + 5)= n2 + 7n + 3 forBi 
TA{n) = 2n + 3 + n{2n + 1) = 2n2+4n + 3 forB2 

Which one of them is bigger depends on the input data. 

Note also that this process may have to be repeatedly applied down the stream of invoked services 
— i.e., Bi may be a composition invoking other services and may need performing a cost analysis 
to provide closed cost functions. This is a consequence of the dynamicity of service-based appli­
cations which is not usually found in traditional software: since the precise components of a given 
application can change dynamically, the cost functions of a composition can only be completely de­
termined when this composition is completely known, including the exact services it binds to (or, at 
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least, their associated costs and size relations between input and output data). Therefore, since the 
application can change dynamically, in order to be up to date the cost of the compositions affected 
by that change has to be recomputed — preferably in an incremental fashion in order not to waste 
resources. 

A key question is how the functions expressing cost and data size relationships can be automat­
ically and effectively inferred for service compositions. As discussed before, this has been studied 
previously, but the role of input data has not been satisfactorily (and safely) taken into account so 
far. We will devote the next section to presenting our approach. Note that we assume that there is a 
point where services do not invoke other services (i.e., they are leaves in an invocation tree) and their 
cost bounds are either determined using an approach similar to the one we will present in Section 3 
or the ones in [14, 13]. Therefore, we will now focus on how cost functions can be inferred for a given 
service composition, with the understanding that they may be later subject to combination across a 
service network as previously shown. 

3 Analysis of Orchestrations 

Our approach is based on translating process definitions, via an intermediate language, to a logic 
program to be analyzed by existing tools (see Figure 4). In our case, the input language is a subset of 
BPEL 2.0 (for the process definitions - see Section 3.2) and WSDL (for the meta-information). This 
intermediate language (see Table 1) can notwithstanding be used (and, if necessary, expanded) to 
cover other orchestration languages.3 A set of BPEL processes which form a service network are 
taken as the input to the analysis and the result is a logic program where BPEL processes are mapped 
onto predicates which call each other to mimic service invocations. 

3.1 Overview of the Translation 

The declarations in Table 1 can describe namespace prefixes, XML-schema-derived data types 
for messages, service port types, and external services that are not analyzed, but have some trusted 
properties (in this case, related to cost analysis) that are either given by a human or result from a 
separate analysis. 

The activities supported by the intermediate language include generic constructs (empty, assign­
ment, sequence,...) which are common to many programming languages as well as specific con­
structs to model orchestration workflows: flow, f loat , scope/handler, and invoke. 

Although, understandably, currently it explicitly deals with BPEL constructs. 



Declarations and definitions 
Namespace prefix declaration 

Message or complex type definition 

Port type definition 

External service declaration 

Service definition 

- p r e f i x ( Prefix, NamespaceURI). 

- s t r u c t ( QName, Members) . 

- p o r t _ t y p e ( QName, Operations) . 

- s e r v i c e ( PortName, Operation, { 
rrusted properties } ) . 

s e r v i c e ( Port, Operation, InMsgl, OutMsgl) : -
Activity . 

Activities 
Do nothing 

Assignment to variable 1 part 

Service invocation 

Terminating with a response 

Sequence 

Conditional execution 

While loop 

Repeat-until loop 

For-each loop 

Scope 

Scope fault handler 

Parallel flow with dependencies 

Dependent activity in a flow 

empty 

VarExpr <- Expr 

invoke ( PortName, Operation, OutMsg, InMsg) 

r e p l y ( OutMsg) 

Activityj, Activity2 

i f ( Cond, Activityi, Activity^ 

w h i l e ( Cond, Activity) 

r e p e a t U n t i K Activity, Cond) 

fo rEach ( Counter, Start, End, Activity) 

scope ( VarDeclarations, Activities and Handlers) 

h a n d l e r ( Activity) 

h a n d l e r ( FaultName, Activity) 

f low( LinkDeclarations, Activities) 

f l o a t ( Attributes, Activity) 

Table 1: Elements of an abstract description of an orchestration in the intermediate language. 

In contrast to the structured workflow patterns expressed by UML activity/sequence diagrams, 
BPEL's flow construct can express a wider class of concurrent workflows, where concurrency and 
dependencies between activities are expressed by means of precondition formulas involving tri-state 
logical link variables, with optional dead-path elimination. The f loa t construct in the intermediate 
language annotates an activity within a flow with a description of outgoing links and their values, 
join conditions based on incoming links, and a specification of the behavior in case of a join failure. 

A BPEL process definition is translated into a service definition which associates a port name and 
an operation with a BPEL-style activity that represents the orchestration body. This intermediate 
representation is, in turn, translated into a logic programming language augmented with assertions 
(Ciao [10, 9]), which in our case are used to express types and modes (i.e., which arguments are input 
and output) as well as resource definitions and functions describing resource consumption bounds. 
The logic program resulting from the translation is fed to the resource consumption analyzer of the 
Ciao preprocessor (CiaoPP [9]), which is able to infer upper and lower bounds for the generalized 
cost / complexity of a logic program [6, 8, 14]. 

An important observation regarding the translation is that, in general, it is not necessary for the 
generated logic program to be strictly faithful to the operational semantics of the orchestration: it 
has to capture enough of it to ensure that the analyzers will infer correct information (i.e., safe ap­
proximations), with minimal precision loss due to the translation. However, in our case the trans­
lated program is executable (although not operationally equivalent to the BPEL process) and mirrors 
quite closely the operational semantics of the BPEL process under analysis. 



:- regtype ' f a c t o r y - > r e s D a t a ' / l . 
' f ac to ry->resData 'Cfac tory->resData ' (A, B, C) ) : -

num(A), num(B), l i s t ( C , ' f a c t o r y - > p a r t I n f o ' ) . 

:- regtype ' f a c t o r y - > p a r t l n f o ' / l . 
' f a c to ry ->pa r t In fo ' ( ' f a c to ry ->pa r t In fo ' (A , B ) ) : -

atm(A) , atm(B) . 

Figure 5: Translation of types. 

3.2 Restrictions on Input Orchestrations 

We restrict our analysis to orchestrations that follow a receive-reply interaction pattern, where pro­
cessing activities take place after reception of an initiating message and finish dispatching either a 
reply or a fault notification. Orchestrations that may accept several different initiating messages can 
be logically decomposed into orchestrations that correspond to individual web service operations. 

Another behavioral restriction is that we currently do not support analysis of stateful service call­
backs using correlation sets or WS-Addressing schemes. In future work, we plan to relaxboth restric­
tions by identifying orchestration fragments that correspond to the receive-reply pattern, isolating 
them into sub-processes, and analyzing them as now done for whole orchestrations. 

In our intermediate language, we support a variant of the scope construct, which, like its BPEL 
counterpart, introduces local variables, fault and compensation handlers. However, we do not fully 
support compensation handlers, which in BPEL contain logic that "undoes" effects of a successfully 
completed scope. The BPEL specification requires compensation handlers to use values of scope's 
variables that were recorded upon successful completion of the scope, which introduces problems 
for the analysis. Otherwise, compensation handlers can be treated as pseudo-subroutines on a scope 
level, and inlined at their invocation place. 

3.3 Type Translation and Data Handling 

Services communicate using complex XML data structures whose typing information is given by 
an XML Schema. The state of an executing orchestration consists of a number of variables that have 
simple or complex types, including variables that hold inbound and outgoing messages. For simplic­
ity reasons, we abstract the simple types in XML Schemata as three disjoint types: numbers, strings 
(represented by atoms), and booleans. 

WSDL message types and custom complex types from XML Schemata are translated into the in­
termediate representation and finally into the typing / assertion language of Ciao. These type defini­
tions are used to annotate the translated program and are eventually used by the analyzer. Figure 5 
shows an automatically obtained translation for the part reservation scenario in Example 1. The type 
name ' f actory->resData ' is a structure with the same name and with three fields: two numbers 
and a list of elements of type ' f actory->partInf o ' . Each of these elements is in turn a structure 
with two fields (atoms). 

We use a subset of XPath as the expression language, which allows node navigation only along the 
descendant and attribute axes, to ensure that navigation is statically decidable based on structural 
typing only. The expression ' $req. body/item [1] /<3qty' in the intermediate language refers to the 
attribute qty of the first item element in the body part of a message stored in variable req. We also 
support a set of standard XPath operators and basic functions, including pos i t ion () and l a s t () . 



To help the analyzer to track component values and correlate the changes made to them, we stat­
ically unfold XML structures in an environment into their components when necessary, and pass 
them around explicitly as predicate arguments from that point onwards. An unfolded structure no 
longer needs to be passed along with its components, since it can be reconstructed on demand (see 
Section 3.7 and Figure 3.7(c) for an example). The resulting code is less readable for a human, but 
more amenable to analysis.4 

3.4 Basic Service and Activity Translation 

The basic idea of the automatic translation from the intermediate language to a logic program is 
to keep track of the functional dependency between the message with which a service is invoked and 
the resulting response message. Thus, an orchestration S is translated into a predicate: 

s(Jc,y)-[A] I,(y) 

where x represents the input message (decomposed in its parts), y stands for the answer, and \A\Tj (y) 
is the translation of the orchestration body A within the initial service environment r\. An environ­
ment is a mapping from structured component names within the current scope to logical terms. 
Structured component names denote parts within a message, nested XML nodes (elements and at­
tributes), as well as heads and tails of lists. Each data structure is a tree of nodes rooted in a variable. 
Leaf nodes represent scalars and unfolded structured components. Since the internal nodes can be 
reconstructed from leaf nodes, the entire environment can be represented by its leaf nodes. Initially, 
the environment of an orchestration consists only of the input message (and its components). We 
write r\ in an argument position of a predicate to mean the leaf components from r\. In the above 
case, we could have written s{r\, y) instead of s{x, y). 

A sequence of activities {A\ C) consists of the activity A and the continuation C (which is also a 
sequence of activities). A special case is the empty sequence e. In general we consider the translation 
of a sequence, and abbreviate [(J4|C)] as [.A|C], and {A\ej as [A[. A sequence of two activities (Ai,Aj) 
is normalized by extending the continuation: 

[(Ai)A7)|C],O0-[Ail<4/|C>]),CK). 

Activity rep ly (v) terminates the orchestration and sends a reply, regardless of the continuation. 
The translation produces a unification: 

ireVly{v)\ClJ1{y)~y = r]{v) 

between the service result y and the value of v in the current environment. Another way to terminate 
a service is to signal a fault, which is translated into a failure of the logical program: 

|throw|C]^(y) — f a i l . 

For any activity Ai other than a sequence, empty, reply, and throw, the translation is: 

The alternative being writing in Prolog the counterparts for the supportedXPath operations and letting the analyzers deal 
directly with them. In our experience, this introduces too much precision loss in current analyzers, and therefore we opted 
for a more complex translation. 



where ai is a newly generated predicate whose structure depends on At, r\, and C. First, we exam­
ine the case when Ai = x < - e, i.e., the expression e is evaluated and assigned to the environment 
element x (a variable or its component). The generated clause consists of several steps: 

adV>y)^- [e:E]j1,[E/x]^,lCji]l{y). 

n' Where [e: E]^ stands for code that evaluates e into term E in environment r\, and [Elx]l stands for 

the assignment of E to x that transforms r\ into 77'. 

For an external service invocation, Ai = invoke(p, o, v, w), the generated clause has a similar 
structure: 

ai{rl,y)^spo{rl{v),Y),[Ylw]Jt],{Cln,{y), 

where spo is the translation of a service implementing operation o on port type p, v holds the input 
message, and w holds the reply. 

For Ai = if (c, Aj, A^), two clauses are generated: 

fli(»7,y) - [c?],,!, [̂ 71ClijCK) 

where [c?]^ stands for the code that succeeds if and only if the boolean condition c evaluates to t rue 
in rj. Likewise, Ai = while(c, Aj) generates: 

Other looping constructs, such as repeatUnt i l and f orEach reduce to while. 

3.5 Translation for Scopes and Flows 

The translation of scopes involves changing the environment on entry and exit, and has to 
ensure the execution of a fault handler unless the body scope ends successfully. In Ai = 
scopeiD, A, H\,H2,...,HN), D denotes new variable declarations, A is the body of the scope, and 
Hi are fault handlers. N + 1 clauses are generated for a,, one for A and each of the handlers. Each of 
the clauses uses cut to prevent execution of subsequent clauses in case that the scope body / han­
dler attached to the clause completes successfully. Since the process itself can be seen as a scope, 
and it normally needs a variable to hold the output message, in the intermediate language we use an 
abbreviation: 

service(p, o, x,y) <— A 

for: 
service(p, o,x) <— scope([y :ReplyType], {A, reply( '$y ' ) ) ) . 

The translation of a flow is done following the usual BPEL semantics, but without operationally 
parallelizing the execution. Instead, we are interested in total resource consumption of a flow con­
struct, irrespective of the actual number of available threads. Links are internally declared as Boolean 
variables, and f loa t s are ordered so that they follow dependencies on outgoing links from previous 
f loats . After reordering, a flow effectively translates to a sequence, and each f loa t CD, Aj) is trans-
formedinto: if(c,(A],'$o> <-true),F) 

where c is a join condition, o is the outgoing link, and F covers the case when c evalu­
ates to fa l se . When the suppresJoinFai lure property is disabled, we simply have F = 
throw(bpel: jo inFai lure) . Otherwise, F= ' $0 ' < - f a l s e . 



:- structC factory:resRequest, [ 

partC body): structC factory:resData)]). 

:- structC factory:resResponse, [ 

partC body): structC factory: resData)]). 

:- structC factory:resData, [ 

childC factory:partCount): number, 

childC factory:priceLimit): number, 

childC factory:part): 

listC structC factory:partInfo)) ]). 

:- structC factory:partInfo, [ 

attributeC '':partName): atom, 

attributeC '':variantName): atom, 

childC factory:partVendor): atom, 

childC factory:serialNo): number ]). 

:- portC factory:agent, [ 

reserveGroupC structC factory:resRequest)): 

structC factory:resResponse) ]). 

serviceC factory:agent, reserveGroup, '$req', '$resp') 

[ 

'$resp.body/factory:partCount'<-0, 

'$resp.body/factory:part'<-'$req.body/f actory:part', 

scopeC [i:number] , 

[ »$i» <- 1, 

whileC ' $req.body/factory:partCount>0', 

[ 

scopeC [p: structC factory:partInfo), 

r: structC factory:partInfo)], 

[ >$p><- >$req.body/factory:part[$i]', 

invokeC factory:sales, reservesingle, '$p 

ifC '$r/factory:unitNo>0>, 

'$resp.body/factory:part[$i]'<-'$r', 

throwC factory:unableToReserveGroup) ) , 

handlerC 

[ whileC '$i>l', 

[ >$i><- >$i - 1', 

'$p'<- '$resp.body/factory:part[$i] ', 

invokeC factory:sales, cancelReservation, 

>$p\>$r>)]), 

throwC factory:unableToCompleteRequest) ]) 

r>), 

:- portC factory:sales, [ 

reservesingleC structC factory:partInfo)): 

structC factory:partInfo), 

cancelReservationC structC factory:partInfo)): 

structC factory:partInfo) ]). 

] ) , 

»$i» <- »$i+i», 

'$req.body/factory:partCount' <-

'$req.body/factory:partCount 1' ]) ]) ]. 

Figure 6: Abstract representation of a group reservation process. 

3.6 Cost Functions for Closed-Source Services 

During the analysis we have assumed that the orchestration code of the service (s) to be analyzed 
is available. However, this may not be always the case (see Section 2.3). The proposed solution was 
to publish the cost functions plus the size relations among arguments to be used by the analyzers. 
Another possibility is to make available the code representing the abstraction of the services so that it 
can be downloaded and directly used in the analysis. Hopefully such code can be schematic enough 
not to reveal sensitive data about the actual service, but concrete enough to make inferring cost 
functions possible. 

3.7 An Example of Translation and Analysis 

We will illustrate the process of analysis by using a description of an orchestration, translating it 
into a logic program, and reasoning on the results of applying to it a resource usage analysis. 

We use a representation of a process that performs part reservation, along the lines (but slightly 
simplified, for space reasons) of the example used in Section 2.1. For compactness, we present the 
abstract description of this orchestration in our internal representation form instead of plain BPEL 
(see Figure 6). This representation contains information that is both found in the WSDL document 
(data types, interface descriptions) and in the process definition itself (the processing logic). 



:- ent ry ' service_factory->agent->reserveGroupV4 

:{gnd,num}*{gnd,num}*{gnd, ' l ist_of_factory->partInfo'}*var. 

'service_factory->agent->reserveGroup'(A,B,C,D) : -

ac t_ l ( A, B, C, 0, 0, [ ] , D). 

(a) Translation of the entry point to the process. 

act_4( A, B, C, D, E, F, G, H ) : -

(this is act_4:while('$req.body/factory:partCount>0')), 

A>0, !, act_5( A, B, C, D, E, F, G, H). 

act_4( _, _, _, D, E, F, _, ', factory->resResponse'( D, E, F)). 

(b) Translation of the main while loop. 

act_7( A, B, C, D, E, F, G, H, _, _, _, _, M ) : -

(this is act_7:invoke( factory:sales, reserveSingle, '$p', '$r')), 

H='factory->partInfo>(N, D, P, Q ) , 

'service_factory->sales->reserveSingle'( N, D, P, Q, R ) , 

act_8( A, B, C, D, E, F, G, N, D, P, Q, R, M). 

(c) Translation of an external service invocation. 

Figure 7: Translation into a logic program. 

The orchestration traverses the list of parts to reserve, external factory sales service.5 If that is not 
possible, or if a failure arises, a failure handler is activated that tries to cancel the reservations that 
were already made before signaling failure to the client. 

The translation of the orchestration produces an annotated logic program, some of whose parts 
we present in Figure 3.7. Part (a) shows the translation of the entry point of the service, along with 
an e n t r y annotation that helps the analyzer understand what the input arguments are. The input 
message is unfolded into the first three arguments {A, B, C), and D plays the role of y. Part (b) shows 
the translation of the main wh i l e loop, and the second clause finishes the process by constructing 
the answer from the current value of the response variable. Part (c) shows the translation of the 
service invocation, with previous unfolding of the outgoing message, and subsequent pruning of the 
response variable data tree. 

The resource analysis finds out how many times some specific operations will be called during the 
execution of the process. The resources we are interested in in this example are: the number of all ba­
sic activities performed (assignments, external invocations); the number of invocations of individual 
part reservations (operation r e s e r v e S i n g l e at the factory service); and the number of invocations 
of reservation cancellations (operation c a n c e l R e s e r v a t i o n at the factory service). From the num­
ber of invocations it is easy to deduce the number of messages exchanged during the execution of 
the process. The results are displayed in Table 2, where the estimated upper and lower bounds are 
expressed as a function of the initiating request. We differentiate explicitly two cases: one which 
has the possibility of failure, in which the associated fault handling is executed, which gives wider, 
more cautious estimates, and another one in which the execution is successful (i.e., without fault 
generation and handling). These two cases were obtained by means of different translations which 
explicitly generated or not Prolog code corresponding to the fault handling. 

This is a difference from Example 1: the orchestration does not query different factories. 



Resource 

Basic activities 
Single reservations 

Cancellations 

With fault handling 
lower bound upper bound 

2 
0 
0 

7 x n 

n 

n-\ 

Without fault handling 
lower bound upper bound 

5 x n + 2 
n 

0 

5 x n + 2 
n 

0 

Note: In the above formula, n stands for the value of the input argument $req.body/factory :partCount, 
taken as a non-negative integer. 

Table 2: Resource analysis results for the group reservation service. 
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Figure 8: Single-tier simulation setting. 

4 An Experiment on Adaptation 

We will study the effectiveness of applying our data-aware cost analysis to adaptation by simu­
lating several arrangements of service networks. We consider adaptation by means of dynamic (re-
)selection of partner services using several strategies (see later for more details). The goal is to as­
sess their relative efficiency (in terms of benefits) when considering worst-case execution scenarios, 
where service executions incur maximal costs under their stated upper bounds. 

In the simulations, we consider the cost in terms of number of messages exchanged. That is mean­
ingful in situations where the number of messages reflects the intensity of computation within the 
service network. However, as we argued before, the concrete meaning of the cost functions is not 
really relevant, and as long as they safely measure a characteristic which we want to maximize (min­
imize), the techniques and experiments herein presented can be applied to other characteristics. 

We also make the realistic assumption that the selected service may be unavailable or fail to fulfill 
the expected task within the limits set by the user or mandated by some Service-Level Agreement. 
In both cases, we continue with the selection and invocation of the "next-best" candidate from the 
partner pool. For the sake of simplicity, and although in reality failure probabilities vary from one 
service to another, in each simulation we adopt a single partner failure probability pf. 

Within the general setting of the car part reservation system (Section 2.1), we simulate the behavior 
of two arrangements of services. The first arrangement, shown in Figure 8, is a single tier of services 
that provide the reservation of particular car parts. There is a pool of N = 12 part provider services 
with different resource consumption features. The client invokes one of these services to reserve n 
units of a particular part type. Upper bounds for services in the pool are shown on Figure 9. For the 
input range of 0 to 50 requested units, the upper bounds are a family of curves that were chosen to 
maximize data-aware choice opportunities. The upper bound of the first service (marked as ub\{ri) 



Figure 9: Cost upper bounds for different ser­
vices, single-tier setting. 

Figure 10: Single-tier simulation results for 
pf = 0. 

Figure 11: Single-tier simulation results for 
pf = 0.5. 

Figure 12: Single-tier simulation results for 
pf = 0.8. 

on Figure 8) is quadratic on the input size n, and has the form: 

ub\ (n) = An2 + B, 

Other services from the pool have linear upper bounds of the form: 

J V - l i 

ubjcin) = k-a-n + f} ^ -, 
i=k * 

(k = 2..N) with choice of a = 1/2 and f} = 45. The underlying bold black line on Figure 9, marked with 
lu b, is the least upper bound for each given n in the input range — i.e., it describes the best possible 
case among the more pessimistic prediction for all the available services and for each n in the data 
range 

The simulation uses three selection strategies: (a) a random choice of service; (b) a data-aware 
cost-minimizingchoicebaseA on the input data, which selects service offering the least upper bound 
for a given n; and (c) fixed preferences over services, where the cost associated to every service is a 
constant corresponding to its actual cost for the input size n = 20. Each result obtained from the 
simulation is the average from one hundred simulations of service invocations. 

The simulation results for the single-tier setting with Pf = 0 (i.e., without failure) are shown in 
Figure 10. Unsurprisingly, the costs using the data-aware selection strategy closely follow the least 
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Figure 13: Two-tier simulation setting, 
upper bound curve from Figure 9 and, naturally, it meets the fixed preferences strategy at n = 20. 
Moving to the left or to the right the point chosen to create the fixed preferences would of course 
make this strategy loose precision on the other end. 

In terms of cost savings, the data-aware strategy is significantly better than random choice, and 
also beats fixed preferences. The simulation also shows that the advantage of the data-aware strategy 
is resilient to increments of the fault rate. In Figure 11, with pf = 0.5, which is a very high fault rate, 
the data-aware strategy on average maintains its benefits, which are close to be lost only at very high 
failure rates, such as pf = 0.8 (Figure 12). This experimental data supports the claim that taking into 
account actual data when performing service selection bring substantial gains. 

The second simulation arrangement, shown on Figure 13, consists of two tiers of services. The first 
tier, invoked by the client, consists of services that reserve a mix of M = 5 different types of parts for 
a lot of m vehicles. Each vehicle requires c, units of part type i, i = 1..M. These parts are obtained 
from the second tier of part providers, which behave in the same way as in the single-tier case. The 
upper bound cost (in terms of messages exchanged) UBj (m) of a lot reservation service j in the first 
tier is given as: 

M 

UBj (m) = Ej (m) +M+J^ub*{m- c{) 
i=\ 

where Ej{m) stands for the upper bound of the internal, structural cost of j , M is added for each 
invocation of a part reservation service, and wfo* stands for the upper bound of the cost of reserving 
m-Ci parts of type i. Under a data-aware selection strategy, wfo* corresponds to the second-tier 
service with lowest upper bound for the given n = m-ci that is selected by the first-tier service j . In 
the experiment we took the same number of N = 12 second- and first-tier services, and varied their 
structural complexity to have both the quadratic case: 

Ei(_m) = Cm2 + D, 

and linear cases: 
J V - l i 

Ei[m) = j • r • m + S V —, 
i=) l 

(J = 2..N) with y = 5/2 and S = 225. Thus, the relationship between different Ej {j = 1..N) is anal­
ogous to the relationship between different ub^ {k = 1..N) in Figure 9. The meaning of Ej is the 
number of messages exchanged between the first-tier service j and entities that are either passive 
(e.g., filing repositories or mail message recipients) or have a constant upper-bound cost function, 
that does not depend on a particular m. 

Client 



In the two-tier case we also have three selection strategies. Random selection, which applies both 
to invocations from the client to the first tier services, and to invocations from the first to the second 
service layer. Data-aware selection works in a more sophisticated manner, in order to account for 
costs incurred by services in both layers. In this particular simulation, we have taken the top-down 
approach, where first-tier services are queried for their total upper bound cost, including the costs 
of the second-tier services they invoke. In order to present their total upper bound cost, relative to 
a particular input value of m, the first-tier services perform pre-selection, i.e., advance planning of 
second-tier partner links, to which they stick if selected by the client. 

Although in our case the top-down pre-selection process ends with the second-tier services, in re­
ality it can extend until it either reaches the terminal points (atomic services that do the actual work), 
or detects a circular reference between services, in which case the tier-to-tier cost dependencies ef­
fectively turn into a set of recurrent relations that need to be solved using adequate mathematical 
methods. However, we argue that the existence of such circularities is not common, since service 
networks usually rely on back-ends of "worker" services that are atomic in the sense that they do not 
rely on the invocation of other external services. 

Another approach to select services based on data-related functions would be to approximate the 
cost bounds of a collection of connected services with the corresponding structural costs, which do 
not depend on bindings the orchestration may make. While we have explored this possibility, for 
space reasons we are not reporting. It amounts to saying that the structural cost is not necessarily 
a good predictor of the actual costs of a composition after partner binding and that, in any case, it 
cannot be used as real upper bound as it does not provide a guarantee for the real cost function. 

The third partner selection strategy in the two-tier setting is again fixed preferences over services 
in both tiers. This time, we form the preference over services in the first tier by minimizing their 
structural costs for the particular m = 20. 

The results of the simulation for the two-tier setting and Pf = 0 are shown in Figure 14. We again 
notice that the data-aware top-down approach with pre-planning beats (by far this time) both the 
random and fixed-preferences strategies. Again, the results are resilient to increments of the fault 
rate, and tend to deteriorate only at very high failure rates (Figures 15 and 16) which, again, gives a 
strong support to the use of cost functions in the cases where they can be applied. 

5 Conclusions and Future Work 

We have presented a resource analysis for orchestrations (using BPEL as a concrete example) 
which is based on a translation into Prolog, for which cost analyzers are available, via an intermedi­
ate programming language. These analyzers can be customized to focus on user-defined resources, 
thereby opening the possibility of generating cost functions for characteristics other than computa­
tion complexity, some of them relevant for SOC. As we argued and showed by simulations, automat­
ically inferring and applying these functions can be used as a core technology for some approaches 
to service adaptation and matchmaking. 

We sketched the core of the translation process, which approximates the behavior of the original 
process network in such a way that the analysis results are valid for the original network. Our trans­
lation is partial in the sense that some issues, like correlation sets, are not yet taken into account. 
A richer translation which we expect will take into account this (and other) issues is the subject of 
current work. 
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Figure 14: Two-tier simulation results for pf = 0. 
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Figure 15: Two-tier simulation results for 
pf = 0.5. 

Figure 16: Two-tier simulation results for 
Pf = 0.8. 

Finally, we performed a series of experiments with different adaptation strategies and services 
which support the usefulness of using data functions in the selection of services. 



A Raw data from experiments 

In order for the reviewers to have all the information coming from the experiments (which we 
depicted in Figures 10 to 12), we are including here tables for all the data points we generated. Note 
that in the figures we are not including the plot for the case with failure 0.25 (shown in Figure 3) as it 
is not very different from that for failure rate 0.5 (shown in Figure 11). 

The simulation results in Figure 3 show resilience of the data-aware selection strategy in the single-
tier setting, when a significant fraction (one quarter) of service calls fails. Compared to Figure 10 with 
Pf = 0, the shape of cost curves does not significantly change, except that they are slightly shifted 
upwards to account for repeated calls to second-best, third-best, etc. service in a row. The same 
applies to Figure 11 in comparison to 14. 
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Single-tier simulation results with pf = 0.25. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

rnd. 

40 
43 
46 
50 
53 
56 
60 
63 
66 
70 
73 
76 
80 
83 
87 
90 
94 
97 
101 
104 
108 
111 
115 
119 
122 
126 
130 
133 
137 
141 
144 
148 
152 
156 
159 
163 
167 
171 
175 
179 
183 
187 
191 
195 
198 
202 
207 
211 
215 
219 

Pf = 0.0 

fixed 

46 
49 
51 
54 
56 
59 
61 
64 
66 
69 
71 
74 
76 
79 
81 
84 
86 
89 
91 
94 
96 
99 
101 
104 
106 
109 
111 
114 
116 
119 
121 
124 
126 
129 
131 
134 
136 
139 
141 
144 
146 
149 
151 
154 
156 
159 
161 
164 
166 
169 

u.b. 

8 
14 
20 
26 
32 
38 
44 
50 
55 
59 
62 
65 
68 
71 
75 
79 
83 
87 
91 
94 
96 
99 
101 
103 
105 
107 
109 
111 
113 
115 
116 
118 
119 
121 
122 
124 
125 
127 
128 
130 
131 
133 
134 
136 
137 
138 
139 
140 
141 
142 

rnd. 

40 
43 
46 
49 
52 
55 
59 
62 
65 
69 
72 
75 
79 
82 
85 
89 
92 
96 
99 
103 
106 
110 
113 
117 
120 
124 
128 
131 
135 
139 
142 
146 
150 
154 
157 
161 
165 
169 
173 
177 
181 
185 
188 
192 
196 
200 
205 
209 
213 
217 

Pf = 0.25 

fixed 

46 
48 
51 
53 
56 
58 
61 
63 
66 
68 
71 
74 
76 
79 
81 
84 
87 
89 
92 
95 
97 
100 
103 
106 
108 
111 
114 
117 
120 
122 
125 
128 
131 
134 
137 
140 
142 
145 
148 
151 
154 
157 
160 
163 
166 
169 
172 
175 
178 
181 

u.b. 

10 
16 
21 
27 
33 
39 
45 
50 
56 
60 
63 
66 
70 
73 
77 
80 
84 
88 
92 
95 
97 
100 
102 
104 
106 
108 
110 
112 
114 
116 
118 
119 
121 
123 
124 
126 
127 
129 
130 
132 
133 
135 
136 
138 
139 
141 
142 
143 
144 
145 

rnd. 

41 
44 
48 
51 
54 
58 
61 
64 
68 
71 
74 
78 
81 
85 
88 
92 
95 
99 
102 
106 
109 
113 
117 
120 
124 
127 
131 
135 
139 
142 
146 
150 
154 
157 
161 
165 
169 
173 
177 
181 
184 
188 
192 
196 
200 
204 
208 
212 
216 
221 

Pf = 0.5 

fixed 

47 
49 
52 
54 
57 
59 
62 
64 
67 
69 
72 
75 
77 
80 
83 
86 
88 
91 
94 
97 
100 
103 
105 
108 
111 
114 
117 
120 
123 
126 
130 
133 
136 
139 
142 
145 
149 
152 
155 
158 
162 
165 
168 
172 
175 
179 
182 
185 
189 
192 

u.b. 

14 
19 
25 
30 
36 
41 
47 
52 
57 
62 
65 
69 
73 
76 
80 
83 
87 
90 
94 
97 
99 
102 
104 
107 
109 
111 
113 
115 
117 
119 
121 
123 
125 
127 
128 
130 
132 
134 
135 
137 
139 
140 
142 
144 
145 
147 
148 
150 
151 
153 

rnd. 

44 
47 
50 
53 
56 
60 
63 
66 
69 
72 
76 
79 
82 
86 
89 
92 
96 
99 
103 
106 
110 
113 
117 
120 
124 
127 
131 
135 
138 
142 
146 
149 
153 
157 
161 
164 
168 
172 
176 
180 
184 
188 
191 
195 
199 
203 
207 
211 
215 
219 

Pf = 0.8 

fixed 

50 
52 
55 
57 
60 
63 
65 
68 
71 
73 
76 
79 
82 
84 
87 
90 
93 
96 
99 
101 
104 
107 
110 
113 
116 
120 
123 
126 
129 
132 
135 
138 
142 
145 
148 
151 
155 
158 
161 
165 
168 
172 
175 
178 
182 
185 
189 
192 
196 
200 

u.b. 

32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
71 
75 
78 
81 
85 
88 
92 
95 
99 
101 
104 
107 
110 
113 
116 
119 
122 
125 
127 
130 
133 
136 
139 
142 
144 
147 
150 
153 
156 
159 
161 
164 
167 
169 
172 
175 
177 
180 
183 
185 

Table 3: The simulation data for the single-tier setting. 



n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

rnd. 

276 
327 
379 
432 
487 
542 
599 
657 
717 
777 
839 
902 
967 
1032 

1099 

1167 

1236 

1307 

1378 

1451 

1525 

1601 

1677 

1755 

1834 

1914 

1996 

2079 

2163 

2248 

2334 

2422 

2511 

2601 

2692 

2785 

2879 

2974 

3070 

3168 

3266 

3366 

3468 

3570 

3674 

3779 

3885 

3992 

4101 

4210 

Pf = 0.0 

fixed 

309 
349 
389 
429 
469 
509 
549 
589 
629 
669 
709 
749 
789 
829 
869 
909 
949 
989 
1029 

1069 

1109 

1149 

1189 

1229 

1269 

1309 

1349 

1389 

1429 

1469 

1509 

1549 

1589 

1629 

1669 

1709 

1749 

1789 

1829 

1869 

1909 

1949 

1989 

2029 

2069 

2109 

2149 

2189 

2229 

2269 

u.b. 

113 
206 
278 
345 
403 
452 
495 
536 
575 
606 
632 
656 
680 
704 
729 
752 
775 
799 
822 
842 
862 
882 
901 
919 
937 
955 
973 
991 
1009 

1027 

1044 

1061 

1078 

1095 

1112 

1129 

1146 

1163 

1180 

1197 

1214 

1231 

1248 

1265 

1282 

1298 

1314 

1330 

1346 

1362 

rnd. 

277 
330 
384 
440 
496 
553 
611 
670 
731 
792 
854 
917 
981 
1047 

1113 

1180 

1248 

1317 

1388 

1459 

1531 

1604 

1678 

1754 

1830 

1907 

1985 

2064 

2145 

2226 

2308 

2391 

2475 

2561 

2647 

2734 

2822 

2911 

3001 

3093 

3185 

3278 

3372 

3467 

3564 

3661 

3759 

3858 

3958 

4060 

Pf = 0.25 

fixed 

308 
349 
390 
431 
473 
515 
557 
600 
643 
687 
731 
776 
820 
866 
911 
958 
1004 

1051 

1098 

1146 

1194 

1242 

1291 

1340 

1390 

1440 

1491 

1542 

1593 

1644 

1697 

1749 

1802 

1855 

1909 

1963 

2017 

2072 

2128 

2183 

2239 

2296 

2353 

2410 

2468 

2526 

2584 

2643 

2702 

2762 

u.b. 

123 
214 
287 
353 
410 
459 
503 
543 
582 
615 
642 
669 
695 
721 
747 
772 
797 
823 
848 
870 
892 
914 
936 
956 
977 
998 
1018 

1039 

1059 

1080 

1099 

1119 

1139 

1159 

1178 

1198 

1218 

1237 

1257 

1276 

1296 

1315 

1335 

1354 

1374 

1393 

1411 

1430 

1449 

1468 

rnd. 

285 
337 
391 
445 
500 
556 
613 
671 
730 
790 
850 
912 
974 
1037 

1102 

1167 

1233 

1300 

1367 

1436 

1506 

1576 

1648 

1720 

1793 

1868 

1943 

2019 

2096 

2173 

2252 

2332 

2412 

2494 

2576 

2659 

2743 

2828 

2914 

3001 

3089 

3177 

3267 

3357 

3449 

3541 

3634 

3728 

3823 

3919 

Pf = 0.5 

fixed 

316 
356 
397 
439 
483 
527 
574 
622 
671 
721 
773 
826 
881 
937 
994 
1053 

1113 

1174 

1237 

1301 

1366 

1433 

1502 

1571 

1642 

1715 

1788 

1863 

1940 

2018 

2097 

2178 

2260 

2343 

2428 

2514 

2601 

2690 

2780 

2872 

2965 

3059 

3154 

3252 

3350 

3450 

3551 

3653 

3757 

3862 

u.b. 

142 
229 
303 
367 
424 
473 
518 
560 
600 
636 
668 
699 
730 
760 
790 
819 
848 
878 
907 
934 
961 
988 
1014 

1040 

1066 

1091 

1117 

1142 

1167 

1193 

1218 

1243 

1267 

1292 

1317 

1342 

1367 

1391 

1416 

1440 

1465 

1490 

1514 

1539 

1563 

1587 

1612 

1636 

1660 

1684 

rnd. 

377 
432 
488 
544 
602 
660 
719 
779 
840 
901 
964 
1027 

1091 

1156 

1221 

1288 

1355 

1424 

1493 

1563 

1633 

1705 

1777 

1851 

1925 

2000 

2075 

2152 

2229 

2307 

2386 

2466 

2547 

2629 

2711 

2794 

2878 

2963 

3049 

3135 

3223 

3311 

3400 

3490 

3581 

3672 

3765 

3858 

3952 

4047 

Pf = 0.8 

fixed 

374 
418 
463 
510 
558 
608 
659 
712 
766 
822 
879 
938 
998 
1059 

1122 

1187 

1253 

1321 

1390 

1460 

1532 

1606 

1680 

1757 

1835 

1914 

1995 

2077 

2161 

2246 

2333 

2421 

2511 

2602 

2695 

2789 

2885 

2982 

3081 

3181 

3282 

3385 

3490 

3596 

3703 

3812 

3923 

4035 

4148 

4263 

u.b. 

262 
335 
404 
469 
517 
571 
623 
678 
725 
768 
814 
859 
905 
950 
995 
1040 

1085 

1130 

1182 

1215 

1283 

1328 

1374 

1435 

1481 

1526 

1576 

1622 

1669 

1715 

1684 

1728 

1773 

1818 

1860 

1906 

1952 

1998 

2098 

2145 

2192 

2240 

2288 

2336 

2384 

2433 

2481 

2530 

2579 

2628 

Table 4: The simulation data for the two-tier setting. 
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