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Abs t r ac t 

Performance studies of actual parallel systems usually tend to concéntrate on the effectiveness 
of a given implementation. This is often done in the absolute, without quantitave reference to the 
potential parallelism contained in the programs from the point of view of the execution paradigm. We 
feel that studying the parallelism inherent to the programs is interesting, as it gives information about 
the best possible behavior of any implementation and thus allows contrasting the results obtained. 

We propose a method for obtaining ideal speedups for programs through a combination of sequen-
tial or parallel execution and simulation, and the algorithms that allow implementing the method. 
Our approach is novel and, we argüe, more accurate than previously proposed methods, in that a 
crucial part of the data - the execution times of tasks - is obtained from actual executions, while 
speedup is computed by simulation. This allows obtaining speedup (and other) data under controlled 
and ideal assumptions regarding issues such as number of processor, scheduling algorithm and over-
heads, etc. The results obtained can be used for example to evalúate the ideal parallelism that a 
program contains for a given model of execution and to compare such "perfect" parallelism to that 
obtained by a given implementation of that model. 

We also present a tool, IDRA, which implements the proposed method, and results obtained with 
IDRA for benchmark programs, which are then compared with those obtained in actual executions 
on real parallel systems. 

1 Introduction 
In recent years a number of parallel implementations of logic programming languages, and, in particular, 
of Prolog, have been proposed (some examples are [HG90, AK90, SCWY90, She92, Lus90]). Relatively 
extensive studies have been performed regarding the performance of these systems. However, these studies 
generally report only the absolute data obtained in the experiments including at most a comparison with 
other actual systems implementing the same paradigm. This is understandable and appropriate in that 
usually what these studies try to asses is the effectiveness of a given implementation against state-of-
the-ar t sequential Prolog implementations or against similar parallel systems. 

In this paper, and in line with [SH91], we pose and try to answer a different question: given a (parallel) 
execution paradigm, how large is the máximum benefit tha t can be obtained from executing a program 
in parallel in a system designed according to that paradigm? What are the resources (for example, 
processors) needed to exploit all parallelism available in a program? (we will refer to this as "máximum 
parallelism") How much parallelism can be ideally exploited for a given set of resources (e.g. a given 
number of processors)? (we will refer to this as "ideal parallelism"). The answers to these questions 
can be very useful in order to evalúate actual implementations, or even parts of them, such as, for 
example, parallelizing compilers. However, it is clear that such answers cannot be obtained from actual 
implementations, either because of limitations of the implementation itself or because of limitations of 
the underlying machinery, such as, for example, the number of processors or the available memory. It 
appears that any approach for obtaining such an answer has to resort to a greater or lesser extent to 
simulations. 



There has been some previous work in the área of ideal parallel performance determination through 
simulation, in particular, the work of Shen [SH91] and Sehr [SK92]. These approaches are similar in spirit 
and objective to ours, but differ in the approach (and the results). 

In [SH91] a method is proposed for the evaluation of potential parallelism. The program is first 
executed by a high-level meta-interpreter/simulator which computes ideal speedups for independent 
and-parallelism, or-parallelism, and combinations thereof. Such speedups can be obtained for different 
numbers of processors. 

This work is interesting, firstly in that it proposed the idea of obtaining ideal performance data 
through simulations in order to be able to evalúate the performance of actual systems by contrasting 
them with this ideal and, second, because it provides ideal speedup data for a good number of programs. 
However, the simulator proposed does suffer from some drawbacks. The first one is that all calculations 
are performed using as t ime unit a resolution step - i.e. all resolution steps are approximated as taking 
the same amount of t ime. This approximation makes the simulation either conservative or optimistic in 
programs with (respectively) small or large head unifications. To somewhat compénsate for this, and to 
simúlate actual overheads in the machine, extra t ime can be added at the start and end of each task. 
The second drawback is that the meta-interpretive method used for running the programs limits the size 
of the executions which can be studied due to the t ime and memory consumption implied. 

In [SK92] a different approach was used, in order to overeóme the limitations of the method presented 
above. The Prolog program is instrumented to count the number of WAM instructions executed at 
each point, assuming a constant cost for each WAM instruction. Only "maximal" speedup is provided. 
Or-parallel execution is simulated by detecting the critical (longest) path and comparing the length 
of this path with the sequential execution length. Independent and-parallel execution is handled in a 
similar way by explicitly taking care of the dependencies in the program. Although this method can 
be more aecurate than that of [SH91] it also has some drawbacks. One is the fact mentioned above 
that only maximal speedups are computed, although this could presumably be solved with a back-end 
implementing scheduling algorithms such as the ones that we will present. Other is tha t the type of 
instrumentation performed on the source code does not allow taking control instructions into account. 
Also, a good knowledge of the particular compiler being used is needed in order to mimic its encoding of 
clauses. Furthermore, many WAM instructions take different amounts of t ime depending on the actual 
variable bindings appearing at run-time, and this would be costly and complicated to take into account. 
Finally, the problem of being able to simúlate large problems is only solved in part by this approach, 
since running the transformed programs involves non-trivial overheads over the original ones. 

The approach that we propose tries to overeóme the limitations of previous approaches by using 
precise t iming information, rather than approximations, and allowing gathering information for much 
larger executions. We do that by placing the splitting point between actual execution and simulation 
at a different location: sequential tasks are not simulated or transformed but rather executed directly 
in real systems. Timing data is gathered, only at the minimal number of points, by a modified Prolog 
implementation. The part tha t is simulated regards the possible (alternative) schedulings of those se­
quential tasks (while respecting the precedences among the tasks). We argüe that this allows obtaining 
more precise data when compared to previous methods. The modification to the Prolog implementation 
is minimal and also data gathering has negligible effeets on execution t ime. 

The paper is structured as follows: Section 2 describes more in depth our approach and the techniques 
used in its implementation. Sections 3 and 4 show how the máximum and ideal parallelism are calculated. 
In Section 5 an overview of IDRA, the actual tool, is given. Section 6 contains examples of simulations 
made using IDRA and comparisons of actual implementations with the results of the simulation. 

2 Parallelism and Trace Files 

As we said before, we want to simúlate alternative schedulings of parallel executions. To do this, we 
use a description of the execution which contains the relationships and dependencies which hold among 
the tasks (used to simúlate new correct schedulings, i.e., executions where the precedence relationships 
are met) , and the length (in time) of each task. This description can be produced by executions in 
actual implementations (not necessarily parallel ones: only the description of the concurreney in the 
execution and each task's length must appear, the parallelism among tasks being introduced by means of 
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Start of the whole execution 
End of the whole execution 
The task (corresponding to a goal) starts 
The task (corresponding to a goal) ends 
Execution splits in several branches 
Different branches join 
A task is suspended 
A task is restarted 

Table 1: Some common observables for parallel execution of logic programs 

the simulation) or even using other high-level simulators able to produce information about dependencies 
in the program and an estimation of the (relative) cost of executing each sequential task. 

Among the information we can extract from these descriptions, the following may be of interest: 

• Máximum parallelism: this corresponds to the parallelism obtained with an unbound number of 
processors, assuming no scheduling overheads. 

• Ideal parallelism: this corresponds to the speedup ideally attainable with a fixed number of proces­
sors. The tasks-processors mapping here decides the actual speedups attained. Optimal scheduling 
algorithms and currently implemented algorithms are clear candidates to be studied. 

Máximum parallelism is useful in order to find out the absolute máximum performance of a program. 
This would serve to compare different programs: for example, different parallelizations/sequentializations 
of a given program (i.e., when different annotators [MH90] for parallelism are being used) or different 
parallel algorithms proposed for a given problem. Ideal parallelism is useful in order to compare a given 
implementation against its ideal behavior for a given number of processors. This will allow, for example, 
checking how the performance evolves with an increasing number of processors. 

In the following sections we will give a small review of o r - and restricted independent and-parallelism, 
before we focus on the structure of the execution description and how it is used to créate an execution 
graph which describes the execution in a more tractable manner. 



2.1 The Description of the Execution 

The descriptions of the executions are stored in the form of traces, which are series of events. These 
events are gathered at run- t ime by the system under study. The events reflect observables (interesting 
points in the execution), and allow the reconstruction of a skeleton of the parallel execution. The types of 
events used, along with a brief description, are shown in Table 1. Each event has enough information to 
establish the dependencies with other events from the same execution and to know details of the sequential 
tasks in the computation. Figures 1 and 2 show, respectively, a representation of an and-parallel and an 
or-parallel execution, with some events marked at point where they occur. 

2.2 Restr icted And—parallelism 

Restricted and-parallelism (RAP) refers to the execution of independent goals in the body of a clause 
using a fork and join paradigm. 1 In this case dependencies exist among the goals before and after the 
parallel execution and the goals executed in parallel. Consider the ¿¿-Prolog [HG90] program below, 
where the "&" operator, in place of the comma operator, stands for and-parallel execution (a . . .g are 
assumed to be sequential): 

m a i n : - a , c & b , g . 
c : - d & e & f. 

A (simplified) dependency graph for this program is depicted in Figure 1. In the RAP model there is 
a JOIN corresponding to each FORK (failures are not seen at this level of abstraction), and FORKS are 
followed by START_GOALs of the tasks originated. In turn, JOlNs are preceded by FINISH_GOALS. In the 
case of nested FORKs, the corresponding JOlNs will appear in reverse order to that of the FORKs. The 
START_GOAL and FlNlSH_GOAL events (note that finish can also be caused by ul t imate goal failure) must 
appear balanced by pairs. Under these conditions, a RAP execution can be depicted by a directed acyclic 
planar graph, where and-parallel executions appear nested. 

2.3 Or—parallelism 

Or-parallelism corresponds to the parallel execution of different alternatives of a given predicate. Since 
each alternative belongs conceptually to a different "universe" there are (in principie) no dependencies 
among alternatives. However, each alternative does depend on the fork that creates it. In fact, additional 
dependencies arise in real systems due to the particular way in which common parts of alternatives are 
shared and due to side-effects. Consider for example the following program which has three alternatives 
for predicates p and q: 

m a i n : - p . 
m a i n : - q. q : - . . . 
p : - . . . q : - . . . 
p : - . . . q : - . . . 
p : - . . . 

A possible graph depicting an execution of this predicate is the one shown in Figure 2. Note that the 
rightmost branch in the execution is suspended at some point and then restarted. In fact, this suspensión 
is probably caused by its sibling, because a side-effect predicate or a cut would impose a serialization 
of the execution. One common important feature of the or-parallel execution is that branches do not 
join. In terms of dependencies among events, FORKs do not need to be balanced by JOlNs. The resulting 
graph is thus a tree.2 We are assuming that p and q's alternatives are sequential. Otherwise a similar 
representation would be recursively applied. 

Non—restricted Independent and—parallelism allows execution structures which cannotbe describedby FORK—JOIN events. 
Such structures are generated, for example, by Conery's or Lin and Kumar's models [Con83, LK88] and by <fc—Prolog when 
wait is used. 

Although all—solutions predicates can be depicted using this paradigm, the resulting representation is not natural. A 



Figure 3: Execution graph, and-parallelism Figure 4: Execution graph, or-parallelism 

2.4 The Execution Graph 

Traces are converted into execution graphs, which are used by the simulator as its first structure. An 
execution graph is a directed weighted graph G(X, U, T) where: 

X = {xo, x\, . . ., i „ _ i } is a set of nodes 

U = {UÍJ, 0 < i < j < n) is the set of edges connecting node x¡ to node x¡. 

T = { í¿ j , 0 < i < j < n) is the set of weights corresponding to each M¿J. 

In the execution graph each node corresponds to an event, and each edge to a dependency between 
the events the nodes represent. Each node x £ X has an associated type type-of(x) and the point 
in t ime in which the corresponding event has occured, time(x). The weight in each edge represents 
the t ime elapsed between the events represented by the nodes that edge connects. Among these edges 
we distinguish two types: those which represent sequential execution and those which represent delays 
introduced by scheduling. The edges fall, thus, in one of the following two categories: 

S c h e d u l i n g : FORK t o START_GOAL, FINISH_GOAL t o JOIN. 

E x e c u t i o n : START_GOAL t o FINISH_GOAL, START_GOAL t o FORK, JOIN t o FINISH_GOAL, JOIN t o FORK. 

The events SUSPEND and RESTART do not appear in the lists above; their t reatment will be discussed 
later, as they are handled in a special way. The JOIN event, and its associated node, only appears in 
and-parallel executions. In Figures 3 and 4 the execution graphs corresponding to the traces depicted in 
Figures 1 and 2 are shown. 

In the next section we will see how the execution graph can be used to find out the máximum 
parallelism inherent in an execution. 

3 Máximum Parallelism 

As we said in Section 2, to calcúlate máximum parallelism we assume a nuil scheduling t ime and an 
infinite number of processors, so that newly generated parallel tasks can be started without any delay at 
all. Two interesting results we can obtain from a simulation with these characteristics are the máximum 
speedup attainable and the minimum number of processors needed to achieve it. 

visualization closer to the user's intuition for these predicates needs structures similar to those of Restricted and—parallelism. 
Furthermore, depiction of dependencies due to side—effects leads to arbitrary graphs. This is also the case for and—parallelism. 



It is clear that these figures are theoretical limits, only possible to obtain through simulation, but they 
can serve as reference to compare alternative parallelizations of a program, without the possible biases 
and limitations that actual executions can impose. Data about speedup and number of processors can 
be obtained by building a new graph in which the labels of the edges are modified as follows: 

• The t ime of each FORK-START_GOAL edge is set to zero, to eliminate scheduling times. 

• The t ime of each FINISH-GOAL-JOIN edge (for and-parallelism) is set to zero for the longest task 
among a set of siblings, and the t ime for the FINISH-JOIN edge of its siblings is changed so that all 
of them perform the JOIN at once. 

Whit this rewriting, the length of every path from START-EXECUTION to END_EXECUTlON will give 
the shortest execution t ime. Let us assume that the node corresponding to the START-EXECUTION is xo, 
and that the node corresponding to the END_EXECUTlON is xn_\. The rewriting process is as follows: 

S t e p 1 Va;¿, Xj G X s.t. í¿ j G T and type-of(xi) = FORK and type-of(xj) = START_GOAL, set í¿ j = 0. 

S t e p 2 (calcúlate labels): 

Step 2.1 Set t0 = 0. 

Step 2.2 
MXÍ G X s.t. i > 1 and type-of(xi) ^ JOIN, set time(xi) = time(xj) + í j¿ , where í j¿ £ T 

MXÍ G X s.t. i > 1 and type-of(xi) = JOIN, set time(xi) = max^ ^x,u • ,eu(time(%j))-

S t e p 3 MXÍ,XJ G X s.t. UÍJ G U,type-of(xi) = FINISH-GOAL and type-of(xj) = JOIN, set í¿ j = 
time(xj) — time(xi). 

The minimum time in which the program could be executed is time(xn-i). The minimum number 
of processors needed to achieve this minimum execution t ime is the máximum number of tasks N(t) 
simultaneously actives at a given t ime t, i.e., N(t) is the number of nodes x¡ G X such that type-of(xi) = 
START_GOAL or type-of(xi) = JOIN and Mx¡ G X such that 3M¿J G U, time(xi) < t < time(xj). The 
minimum number of processors needed to execute without delays is the máximum of N(t), Vi such that 
time(xo) <t< time(xn-i). 

This algorithm is suitable both for o r - and and-parallel execution graphs; for or-parallel execution 
graphs an additional minor step has to be done, to consider the END_EXECUTlON event as a global JOIN, 
where the total t ime of the execution is stored. 

The above tells us how much parallelism there is in a program and how many processors would be 
necessary to exploit it. High speedups do not mean that the program is necessarily a good candidate for 
parallel execution: it depends on the number of processors at which the máximum parallelism is achieved. 
A high number of processors in a small problem usually indicates that the execution consists of a large 
number of small tasks, thus requiring some sort of granularity control to obtain the best results in real 
executions. 

The SUSPEND and RESTART events can be generated when a sequential task is temporarily suspended 
and restarted afterwards. This happens, for example, when or-parallel systems wait for a branch to be 
leftmost in order to execute side-effect predicates, and can also be generated by and-parallel systems if 
dependencies appear among parallel branches which are being executed in parallel. A complete simulation 
would take these events into account, but we decided not to do so for a single reason: in practical systems 
the generation of these events depends completely on the actual execution, and may or may not be 
present in a given execution, depending on how the scheduling has been performed. Thus, for a complete 
simulation, all the possible dependencies in any possible correct scheduling would have to be provided. 
The actual approach is to consider the SUSPEND and RESTART events as non existent, so effectively 
incorporating the t ime taken by them into the task execution t ime. This is also done for the ideal 
(Section 4) parallelism as well. 



4 Ideal Parallelism 
When determining ideal parallelism, the possible differences come from the scheduling algorithm utilized, 
since we only take into account the relationships among the tasks and their length. Scheduling algo-
ri thms can be classified depending on whether they are deterministic (used when all data pertaining the 
execution is available [MC69, LL74, Hu61]) or non deterministic (in which random variables with known 
characteristic function are used to model non available data [HB88]). Our case is the first one. 

From a high level point of view, the ideal parallelism simulation takes: 

• an execution graph G(X, U, T), 

• a scheduling algorithm P, and 

• a number of processors N, 

and returns the máximum speedup attainable using that algorithm with the execution description as 
input data. The execution graph is internally transformed into a job graph, because job graphs are used 
to formúlate most of the existing scheduling algorithms. This is done in order to facilítate the addition 
of other algorithms to the implementation. In the job graph each node represents a sequential task, and 
the edges between them represent the dependencies in the execution. 

4.1 The Job Graph 

A job graph G(X, U) consists of a set of nodes X = {xo, • • •, * n - i } and a set of edges U = {«¿j : 0 < i < 
j < n), where each UÍJ represents an edge from node x¡ to x¡. The graph contains a node for each task 
in the execution and an edge for each dependency between tasks. Each node has a unique identifier (an 
integer from 0 to n — 1) as well as information related to the task it represents, such as its length. There 
is a partial ordering -< among the tasks in X given by the the dependencies present in the execution. We 
will say that x¡ -< Xj iff «¿j G U. The ideal parallelism problem for a fixed number of processors can be 
stated as finding the starting t ime of each task, i.e., a function a : X —• Z+ such that : 

(a) No more than m tasks are active at a t ime: 

VM > 0 \{x G X s.t. <J(X) < u < <J(X) + length(x)}\ < m 

(b ) No task starts before its predecessors have finished: 

Va?i, X'¿ G X : x\ -< X'¿ —• G(X\) + length(xi) < <r{x2) 

(c) a finds the minimum overall t ime: let L = maxx^x(c'(x) + length(x)) for a given a'. Then a is such 
that L is the minimum for all possible functions a' tha t meet (a) and ( b ) . 

Such a gives the starting t ime for each task. From it, a processor-task mapping is straightforward, 
since it is required that no more than m processors be active at a t ime. Each time a processor is freed, 
the task with the nearest starting t ime can be assigned to i t .3 

The construction of the job graph is slightly different for a n d - and or-parallelism, because of the non 
existence of JOIN events in or-parallelism. Figures 5 and 6 show the two job graphs for the examples we 
have been using throughout the paper. 

4.2 Scheduling Algorithms 

It is interesting to find out absolute upper bounds for speedups achievable with a perfect scheduling and a 
given number of processors. Unfortunately, obtaining an optimal task/processor allocation is, in general, 
an NP complete problem [GJ79]. Since we want to deal with sizeable, non trivial, programs, this option 
is too computationally expensive to be used. Instead, we will employ a scheduling algorithm which does 

Under the implicit assumption that any processor is able to execute any task. 



Figure 5: Job graph for and-parallelism Figure 6: Job graph for or-parallelism 

not always find out the best task/processor allocation, but which is much more amenable to run and 
which gives an adequate (able to compute a reasonable answer for a typical input) , but not appropriate 
(every processor is attached to a sequential task until this task is finished) scheduling. The algorithm 
we implemented to find out quasi-optimal schedulings is the so-called subsets algorithm. This algorithm 
in fact gives optimal results under certain conditions (which are, however, not met in our more general 
case). The reader is referred to [HB88] for more information on this issue. 

Although a (quasi-)optimal scheduling gives an estimation of the máximum speedup for a given 
execution and number of processors, this scheduling is not likely to be found in a real system. Tha t 
is why we also implemented an approximate versión of the scheduling scheme found in the ¿¿-Prolog 
system [HG91, Her87]. We expect the comparison of the actual ¿¿-Prolog system speedups and the 
results obtained from IDRA to serve as an assessment of the accuracy of our technique, whereas the 
comparison among a (quasi-)optimal scheduling and a real one would serve to estimate the performance 
of the actual system. 

The variation of the inherent parallelism with the size of the problem is also a topic of interest. 
Frequently one wants more performance not only to solve existing problems faster, but also to be able 
to tackle larger problems in a reasonable amount of t ime. In simple problems the number of parallel 
tasks and the expected attainable speedups can be calculated, but in non-tr ivial examples it may not be 
so easy to estimate tha t . A problem in which the number of parallel tasks generated does not increase 
accordingly with the size of the problem would not benefit from a larger machine. In Section 6 runs using 
real traces to find out máximum performances are given. 

4.2.1 T h e S u b s e t s A l g o r i t h m 

The s u b s e t s algorithm avoids performing a global scheduling by splitting the nodes in the job graph into 
disjoint subsets. The nodes in each subset are independent among them, and so they are candidates for 
parallel execution. The initial subset 5o is the starting node, and for each S¿, S¿+i is the set of nodes 
which can start once all the nodes in Si have finished. Once the graph is split, each subset is scheduled 
separately. In Figure 5 the subsets in an and-parallel job graph are shown inside dashed rectangles. 

Once the graph has been partit ioned into p subsets So, • • • ,Sp-i, each subset is scheduled almost 
independently. If the tasks in 5¿+i started after the last task in Si finish, the subsets could have been 
scheduled independently. Since a given task in 5¿+i may depend only on some of the tasks in Si, we 
set the starting t ime of each task in 5¿+i to be the t ime in which all their predecessor tasks in Si have 
finished. In each subset Si = {ti, . . . ,t}¡}, the scheduling algorithm assigns one tj to one processor from 
P = {To, . . . , T p _ i } . Each processor j is modeled as a number Tj which represents the moment from 
which it is free to execute new work. The first subset is 5o = {*o}, and for each subset S ^ So, the 
algorithm performs as follows: 



For each task tj G S do: 

S t e p 1 Let Timej = m a x i e x , i ^ í ( í ) - This is the earliest t ime in which tj can start . 

S t e p 2 If there is any processor Tp <E P such that Tp < Timej, assign processor p to task tj and set 
Tp = Tp + length(tj). 

S t e p 3 Otherwise, find Tq = m i n ^ g p ( T ¿ ) . Assign task tj to processor q and set Tg = Tq + length(tj). 

Tasks are assigned to free processors. If no free processor exists at a given moment, the first processor 
to become idle is chosen. The non-determinism in Step 2 is one of the sources of the non optimality of 
the algorithm, since it is possible that non optimal schedulings will be performed in a subset. In Step 3, 
Tq is chosen using a heuristic that tries to increase the occupation t ime of the processors. 

4.2.2 T h e A n d p A l g o r i t h m 

The a n d p scheduling algorithm tries to mimic the behavior of a ¿¿-Prolog scheduler. For each processor, 
¿¿-Prolog has the notion of local and non local work: local work is the work generated by a given processor, 
and it is preferably assigned to it. The dependencies among tasks are used to find out which work is to 
be considered as local by a processor. To keep track of the local work of each processor, the definition 
of a processor is augmented to be the 2-tuple (Tp, Lp) where Tp is as before, and Lp is the list of tasks 
generated by processor p. Roughly speaking, the scheduling algorithm tries first to execute tasks locally; 
if this is not possible, a task is stolen from another processor's stack. 

The andp scheduling algorithm can be split into two different parts: the first one takes care of obtaining 
work available in the system, and the second one generates new work and stores it in the processor's local 
stack. The part of the scheduling algorithm that is in charge of getting work is as follows: 

S t e p 1 Set Lo = {to} and assign xo to processor 0. 

S t e p 2 If V(T¿, Li) G P, L% = 0, finish. Otherwise select the processor p such that Tp = n i in /T i ¿ i \ e p(T¿) 

S t e p 3 If Lp ¿̂ 0 assign the first task x G Lp to processor p and go to Step 2. 

S t e p 4 If Lp = 0, let N = {(T¿,_L¿) s.t. (T¿,_L¿) G P, Li ^ 0} and find the processor q such that 
Tq = mmij;,Lt}£N(Ti). Assign the first task x G Lq to processor p and go to Step 2. 

The generation of new work, after task x¡ from the list of tasks Lq is assigned to processor p, is the 
following: 

S t e p 1 Set Lq = Lq — {XÍ}. 

S t e p 2 Set Tp = Tp + length(xi). 

S t e p 3 Set Lp = Lp U {XJ G X s.t. x¡ -< Xj}. 

5 Overview of the Tool 

A tool, named IDRA (IDeal Resource Allocation) has been implemented using the ideas and algorithms 
shown before. The traces used by IDRA are the same as those used by VisAndOr [CGH93], a tool to 
visualize parallel execution of logic programs, and thus it can be used to calcúlate ideal and máximum 
speedups for the systems VisAndOr can visualize (namely, the independent and-parallel system ¿¿-Prolog 
and the or-parallel systems Muse and Aurora; the deterministic dependent and-parallel system Andorra-I 
is not supported yet). 

The tool itself has been completely implemented in Prolog. In addition to the generation of máximum 
and ideal speedups, IDRA can genérate a new trace file for ideal parallelism, which can be visualized using 
VisAndOr and compared with the original one. IDRA can also be instructed to genérate automatically 
speedup data for a range of processors. This data is dumped in a format suitable for a tool like xgraph 
to read. 



The traces used with IDRA, as those used with VisAndOr, need not be generated by a real parallel 
system. Instead, it is possible to genérate them with a sequential system augmented to dump information 
about parallelism. The only requirement is tha t the dependencies among tasks be properly reflected, and 
that the timings be accurate. 

Accuracy in the timings has not been straightforward to obtain. Usual UNIX environments have a 
vague notion of what an accurate t iming is. We found that calis to s tandard OS routines to find out the 
current t ime either were not accurate enough for our purposes, or the t ime employed in such calis largely 
exceeded the total execution t ime of the benchmark, thus leading to incorrect results (sequential tasks 
being traced were much longer than without tracing). To obtain accurate timings we used the microsecond 
resolution clock available in some Sequent multiprocessors [Seq87]. This clock is not only very precise, 
but also memory mapped and can thus be accessed in the t ime corresponding to one memory access, 
with negligible effect on performance. We have also developed a technique for dealing with clocks with 
high but predictable access times, by subtracting the accumulated clock access t ime from the timings. 

6 Using IDRA 

In this section we will show examples of the use of IDRA on real execution traces. The traces we will 
use have been generated by the ¿¿-Prolog system, both for o r - and and-parallelism. The ones corre­
sponding to and-parallelism were generated by ¿¿-Prolog running programs parallelized for independent 
and-parallel execution. The generation of the traces corresponding to or-parallelism needed of a slight 
modification of ¿¿-Prolog to make it issue an event each t ime a choice-point is created. The reason to 
genérate or-parallel traces using ¿¿-Prolog was that or-parallel schedulers usually make work available to 
parallel execution when they find it worth, and not in every choice-point. This, in our approach, would 
not allow us to find out the máximum or ideal parallelism, since opportunities for performing work in 
parallel would be lost. 

The results of the simulations have been compared with actual executions in ¿¿-Prolog and MUSE, 
to assess the accuracy and stability of our simulation. 

6.1 Description of the Programs 

In this section we briefly describe the programs used to test the tool. This is included to help in 
understanding their behavior both in simulation and in execution. 

• Programs with and-parallelism 

p d e r i v performs symbolic derivation. 

occur counts occurrences in lists. 

tak computes the Takeuchi function. 

boyer is an adaptat ion of the Boyer-Moore theorem prover. 

m a t r i x performs square matr ix multiplications. 

quicksort is the s tandard quicksort program, here using append/3 instead of difference lists. 

b p e b p f calculates the number e, using the series e = Q7 + ir + 27 + ' ' ' A divide-and-conquer 
scheme is used both for the series and for each of the factorial calculations. This causes the 
generation of a very large number of tasks. 

b p e s f is similar to above, but each factorial is computed sequentially. The number of tasks is much 
smaller than above. 

pes f also calculates e using the same series, but here each factor is computed in parallel with the 
rest of the series, from left to right. 

• Programs with or-parallelism: 

d o m i n o calculates all the legal sequences of 7 dominóes. 

j u g s calculates all the solutions of 8 movements for the water jugs problem. 



queens computes all the solutions to the 5 queens problem. 

w i t t is a conceptual clustering program. 

l a n f o r d l this program finds out some elements needed to complete a Lanford sequence. 

lanford2 this program is similar to l a n f o r d l , but the data structures are completely different. 

P r o g r a m 

deriv 
occur 
tak 
boyer 
matr ix (10) 
matr ix (15) 
matr ix (20) 
matr ix (25) 
quicksort (400) 
quicksort (600) 
quicksort (750) 
bpebpf(30) 
bpesf (30) 

pesf (30) 

S p e e d u p 

100.97 
31.65 
44.16 
3.49 

26.86 
58.70 
101.91 
161.68 

3.93 
4.07 
4.28 

23.21 
10.11 
2.59 

P r o c e s s o r s 

378 
49 
315 
11 
80 
170 
286 
462 
15 
17 
19 

260 
31 
25 

P e r f o r m a n c e 

0.26 
0.64 
0.14 
0.31 
0.33 
0.34 
0.35 
0.34 
0.26 
0.23 
0.22 

0.08 
0.32 

0.10 

Table 2: Máximum and-parallelism 

P r o g r a m 

domino 

jugs 
queens 
witt 
lanfordl 
lanford2 

S p e e d u p 

32.01 
1.95 

18.14 
1.12 

19.72 
114.87 

P r o c e s s o r s 

59 
8 

40 
25 
44 

475 

P e r f o r m a n c e 

0.54 
0.24 

0.45 
0.04 
0.44 
0.24 

Table 3: Máximum or-parallelism 

6.2 Máximum Parallelism Performance 

The máximum parallelism performance for the programs above mentioned appears in Tables 2 and 3. 
They show, for each of the benchmarks already referred to, the máximum speedup attainable according to 
the simulation, the number of processors at which this speedup is achieved, and the relative performance 
with respect to a linear speedup , i.e., performance = sPe e UP 

1 l l ' ' l processors 

The numbers that appear next to some of the benchmark ñames correspond to the size of the input 
data: for matr ix , the number of rows and columns of the matr ix to be multiplied; for quicksort , the 
length of the list to be sorted, and for bpebpf , b p e s f and pesf, the number of factors in the series. 

Programs which require a large number of processors despite the problem to be solved not being very 
big are those where tasks are small. This would suggest that a parallel system would need of some sort of 
granularity control to execute them efñciently. This turns out not to be always the case for real executions 
on shared memory multiprocessors with a small number of processors, as we will see in Section 6.3 and 
Table 4, but will certainly be an issue in larger or distributed memory machines. 

In programs with a regular structure, such as matr ix , potential speedups grow accordingly with the 
size of the problem, which in turn determines the number of tasks available. However, in programs where 



20 00 40 00 60 01 

Figure 7: Computat ion of e Figure 8: 25x25 matr ix multiplication 

the length of the tasks is variable and the structure of the execution is not homogeneous, the máximum 
speedup achievable grows very slowly with the size of the problem. This is the case of, for example, 
quicksort , in which the sequential parts caused by the partit ioning and the appending of the list to 
be sorted finally dominate the whole execution, preventing further speedups and confirming once again 
Amhdal 's law. 

6.3 Ideal Parallelism Performance 

For each and-parallel and or-parallel benchmark we have found the ideal parallelism and the actual 
speedups on one to nine processors. The results are shown in Tables 4 and 5. In each of those tables 
there are three rows for each benchmark: the uppermost one is the predicted speedup obtained using the 
subsets algorithm, the middle one is the speedup obtained using the andp algorithm, and the lower-most 
one has been obtained using ¿¿-Prolog and Muse, i.e., the speedups there are actual ones. 

The data obtained with ¿¿-Prolog was gathered using a versión of the scheduler with reduced capa-
bilities (for example, no parallel backtracking was supported) and a very low overhead, so that the andp 
simulation and the actual execution be as cióse as possible. In general the results from the simulation are 
very cióse to those obtained from the actual execution, which seems to imply that the simulations results 
are quite accurate and useful. Usually, the results with the subsets scheduling algorithm are slightly bet-
ter, but due to its non optimality, it is surpassed sometimes by the andp algorithm and by ¿¿-Prolog itself 
(see, for example, the row corresponding to the quicksort benchmark). With respect to the relationship 
between the speedups obtained by the andp algorithm and the actual ¿¿-Prolog speedups, sometimes the 
actual speedups are slightly better than the simulation and sometimes they are not, but in general they 
are quite cióse. This is understandable, given the heuristic nature of these algorithms. 

Benchmarks that show good performance in Table 3 have good speedups here also. But the inverse 
is not true: benchmarks with low performance in máximum parallelism can perform very well in actual 
executions (see, for example, the data for bpebpf ) . Figure 7 shows the simulated speedups for the 
benchmark bpebpf; Figure 8 shows a similar figure for m a t r i x multiplication. The speedup in the 
first one, although showing a logarithmic behavior, is quite good for a reduced number of processors. 
The second one has a larger granularity and shows almost linear speedups with respect to the number 
of processors. When the number of processors increases beyond a limit, the expected sawtooth effect 
appears due to the regularity of the tasks and their more or less homogeneous distribution among the 
available processors. 

Concerning the data for or-parallelism, Muse performs slightly worse than the prediction given by 
the simulation. This is not surprising, since Muse has an overhead associated with task switching (due to 
copying) that ¿¿-Prolog does not have. However, there is one case where Muse performs better than IDRA 
prediction: the water jugs benchmark. In fact, in this case Muse beats even the máximum parallelism 



P r o g r a m 

deriv 

occur 

tak 

boyer 

mat r ix (10) 

mat r ix (15) 

mat r ix (20) 

mat r ix (25) 

quicksort (400) 

quicksort (600) 

quicksort (750) 

bpebpf (30) 

bpesf (30) 

pesf (30) 

T i m e ( m s ) 

240 

1750 

610 

110 

170 

550 

1270 

2460 

590 

1070 

1500 

220 

180 

200 

S c h e d u l i n g 
Algorithm 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

P r o c e s s o r s 
1 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

2 

1.99 
1.99 
2.00 

1.99 
1.99 
1.96 

1.99 
1.97 
1.90 

1.78 
1.79 
1.57 

1.98 
1.97 
1.88 

1.99 
1.97 
1.96 

1.99 
1.99 
1.95 

1.99 
1.97 
1.98 

1.76 
1.76 
1.73 

1.80 
1.75 
1.72 

1.78 
1.71 
1.82 

1.96 
1.93 
1.83 

1.96 
1.88 
1.80 

1.47 
1.41 
1.33 

3 

2.99 
2.97 
3.00 

2.97 
2.55 
2.96 

2.97 
2.95 
2.65 

2.34 
2.37 
1.83 

2.91 
2.70 
2.83 

2.96 
2.85 
2.89 

2.98 
2.78 
2.95 

2.98 
2.73 
2.96 

2.32 
2.26 
2.26 

2.41 
2.25 
2.37 

2.36 
2.42 
2.41 

2.88 
2.81 
2.44 

2.88 
2.59 
2.57 

1.74 
1.65 
1.66 

4 

3.97 
3.94 
4.00 

3.97 
3.28 
3.97 

3.93 
3.91 
3.58 

2.65 
2.76 
2.20 

3.86 
3.59 
3.39 

3.94 
3.51 
3.92 

3.97 
3.56 
3.84 

3.98 
3.51 
3.96 

2.69 
2.66 
2.68 

2.84 
2.75 
2.74 

2.75 
2.60 
2.88 

3.74 
3.69 
3.66 

3.75 
3.27 
3.60 

1.92 
1.83 
1.81 

5 

4.95 
4.86 
4.80 

4.49 
3.97 
4.48 

4.86 
5.48 
4.35 

2.84 
3.02 
2.20 

4.74 
4.59 
4.25 

4.91 
4.40 
4.58 

4.94 
4.36 
4.88 

4.97 
4.44 
4.91 

2.95 
3.00 
3.10 

3.15 
3.20 
3.14 

3.04 
3.13 
3.40 

4.60 
4.30 
4.40 

4.53 
3.67 
4.50 

2.05 
1.95 
1.81 

6 

5.93 
5.77 
4.80 

5.14 
4.45 
5.83 

5.77 
5.76 
5.08 

2.94 
3.15 
2.20 

5.57 
5.21 
5.66 

5.84 
5.36 
5.50 

5.92 
5.23 
5.77 

5.94 
5.54 
5.85 

3.15 
3.23 
3.27 

3.38 
3.34 
3.45 

3.25 
3.55 
3.65 

5.41 
5.16 
4.40 

5.18 
4.23 
4.50 

2.14 
2.02 
1.81 

7 

6.90 
6.79 
6.00 

5.96 
5.12 
5.83 

6.65 
6.57 
5.54 

3.05 
3.25 
2.20 

6.41 
6.09 
5.66 

6.76 
6.37 
6.87 

6.88 
6.07 
6.68 

6.92 
6.41 
6.83 

3.28 
3.68 
3.47 

3.53 
3.79 
3.68 

3.38 
3.66 
3.94 

5.41 
5.60 
5.50 

5.99 
4.56 
4.50 

2.20 
2.10 
2.00 

8 

7.86 
7.56 
8.00 

7.10 
5.92 
7.00 

7.51 
7.54 
6.09 

3.09 
3.30 
2.20 

7.26 
6.86 
8.50 

7.71 
7.15 
7.85 

7.85 
6.95 
7.47 

7.91 
7.34 
7.93 

3.35 
3.60 
3.47 

3.64 
3.97 
3.82 

3.47 
3.75 
4.05 

5.41 
6.32 
5.50 

6.33 
5.08 
6.00 

2.26 
2.18 
2.00 

9 

8.82 
8.40 
8.00 

8.73 
7.08 
8.75 

8.33 
8.30 
6.77 

3.13 
3.31 
2.20 

8.02 
7.54 
8.50 

8.62 
7.84 
7.85 

8.80 
8.01 
8.46 

8.88 
7.98 
8.78 

3.40 
3.60 
3.47 

3.71 
4.00 
3.96 

3.53 
3.67 
4.16 

5.41 
6.98 
7.33 

6.75 
5.12 
6.00 

2.31 
2.26 
2.22 

Table 4: Ideal and-parallelism 

prediction in Table 3, which would imply that something is wrong. We have traced the reason for that 
behavior to an erroneous trace. This is because of the way in which ¿¿-Prolog dumps traces for o r -
parallelism imposes a small overhead for each possible branch in the execution. This overhead is small 
and thus it was not felt tha t it should be compensated for. However, the water jugs benchmark has a large 
amount of very small tasks, so that the overhead associated with the creation of an event is a sizeable 
part of the t ime reported for a task. This results, from the point of view of the simulation, in larger 
tasks than in the actual implementation, and this produces misleading results. The timings could have 
been adjusted easily (by subtracting the t ime taken in creating the event as mentioned previously) and 
a correct trace generated. However, we felt tha t it was interesting to see how a small error in computing 



P r o g r a m 

domino 

jugs 

queens 

witt 

lanfordl 

lanford2 

T i m e ( m s ) 

130 

220 

70 

5090 

160 

2090 

S c h e d u l i n g 
A l g o r i t h m 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

subsets 
andp 
real 

P r o c e s s o r s 
1 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

2 

1.98 
1.98 
1.62 

1.47 
1.43 
2.00 

1.97 
1.95 
1.75 

1.05 
1.05 
1.05 

1.98 
1.97 
1.77 

1.99 
1.99 
1.97 

3 

2.94 
2.92 
2.16 

1.60 
1.61 
2.75 

2.92 
2.77 
2.33 

1.07 
1.07 
1.07 

2.91 
2.92 
2.28 

2.99 
2.98 
2.86 

4 

3.86 
3.86 
2.60 

1.67 
1.71 
3.66 

3.82 
3.77 
2.33 

1.08 
1.08 
1.09 

3.79 
3.82 
3.20 

3.98 
3.97 
3.66 

5 

4.75 
4.78 
3.25 

1.72 
1.70 
3.66 

4.70 
4.72 
3.50 

1.09 
1.09 
1.10 

4.59 
4.73 
4.00 

4.97 
4.96 
4.54 

6 

5.61 
5.61 
3.25 

1.74 
1.70 
4.40 

5.48 
5.33 
3.50 

1.09 
1.09 
1.10 

5.34 
5.53 
4.00 

5.95 
5.91 
5.35 

7 

6.42 
6.54 
3.25 

1.76 
1.70 
5.50 

6.22 
5.89 
3.50 

1.09 
1.09 
1.10 

6.04 
6.27 
4.00 

6.92 
6.88 
6.33 

8 

7.20 
7.32 
3.25 

1.78 
1.70 
5.50 

6.93 
6.30 
3.50 

1.09 
1.09 
1.11 

6.67 
7.29 
4.00 

7.88 
7.87 
6.96 

9 

7.97 
8.26 
4.33 

1.78 
1.70 
5.50 

7.55 
6.48 
3.50 

1.09 
1.09 
1.11 

7.45 
8.09 
5.33 

8.85 
8.85 
7.74 

Table 5: Ideal or-parallelism 

the size of tasks can result in a large error in the computed speedups. We believe this further supports 
one of the assumptions in our approach, that of performing simulations but based on accurate estimates 
of task execution times. 

7 Conclusions and Future Work 

We have reported on a technique and a tool to compute ideal speedups using simulations which have 
as input data information about executions gathered using real systems. We have applied it to o r - and 
independent and-parallel benchmarks, and compared the results with those from actual executions. The 
results show that the simulation is quite reliable and corresponds well with the results obtained from 
actual systems. In particular, results are very cióse to those obtained from a the ¿¿-Prolog system. 
This corresponds with expectations, since the particular versión of the ¿¿-Prolog systems used has very 
little overhead associated with parallel execution. The results for or-parallelism and Muse also offer a 
strong correspondence between simulation and actual system, being somewhat better in the simulation, 
which is understandable when considering the slight task creation overhead incurred due to copying. The 
technique can be extended for other classes of systems and execution models, provided that the data 
which models the executions can be gathered with enough accuracy. 

As far as the sizes of the executions that can be simulated, this is not limited by the trace generation 
phase, which uses resources comparable to those of the actual execution, but rather by the simulation 
phase. Our Prolog implementation of this phase is rather naive. In the future, optimizations would be 
necessary in order to allow larger traces to be processed in a reasonable amount of t ime. We also plan 
to modify the simulator in order to support other execution paradigms, such as Andorra-I [SCWY90], 
ACE [GHPC94], AKL [JH91], IDIOM [GSCYH91] etc. and study other scheduling algorithms. Finally, 
we believe the same approach can be used to study issues other than ideal speedup, such as memory 
consumption, copying overhead, etc. 
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