
On The Uses of Attributed Variables
in Parallel and Conciirrent Logic Programming Systems*

(Extended Abstract)

M. Hermenegildo D. Cabeza M. Carro
{herme,dcaheza,mcarro} @dia.ñ. upm.es

Facultad de Informática
Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - SPAIN

A b s t r a c t : Incorporating the possibility of attaching at tr ibutes to variables in a logic programming
system has been shown to allow the addition of general constraint solving capabilities to it. This
approach is very attractive in that by adding a few primitives any logic programming system can
be turned into a generic constraint logic programming system in which constraint solving can be user
defined, and at source level - an extreme example of the "glass box" approach. In this paper we propose
a different and novel use for the concept of at t r ibuted variables: developing a generic parallel/concurrent
(constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which
implements at t r ibuted variables and a few additional primitives can be easily customized at source level
to implement many of the languages and execution models of parallelism and concurrency currently
proposed, in both shared memory and distributed systems. We illustrate this through examples.

K e y w o r d s : Logic Programming, Attr ibuted Variables, Generic Implementations, Parallelism, Concur­
rency.

1 Introduction
A number of concepts and implementation techniques
have been recently introduced which allow extending
unification in logic languages in a flexible and user-
accessible way. One example is that of meta-structures,
introduced by Neumerkel [19], which allow the speci-
fication by the user of how unification should behave
when certain types of terms, called meta-structures and

marked as such by the user, are accessed during unifica­
tion.

More or less at the same time, the data type at­
tributed variable was introduced by Hoitouze [14] with
the purpose of implementing memory management opti-
mizations such as early reset and variable shunting. Al-
though the behavior of at t r ibuted variables during unifi­
cation was not specified in this work, a number of appli-
cations were proposed including the implementation of
delayed computations, reversible modification of terms,
and variable typing. Earlier, Carlsson [2] used a data

http://upm.es

type called suspensión, which was incorporated into SIC-
Stus Prolog for the implementation of coroutining facil-
ities. "Attributed variables" and "suspensión variables"
are essentially the same objects. Hoitouze's contribu-
tion was to put some emphasis on the data type as such
and on memory management . He also used at t r ibuted
variables as a low level primitive for the implementation
of mechanisms that necessitated the specification of the
behavior of the data type during unification.

A refined versión of the concept of meta-structures
and at t r ibuted variables was used in [12, 13] for the spec­
ification and implementation of a variety of instances of
the general CLP scheme [15]. Implementations of clp(R)
(i.e. constraint solving over the "reals") and clp(Q) (i.e.
constraint solving over the rationals) on top of SlCStus-
Prolog [3] using the concept of at t r ibuted variables have
been presented by the same authors and illustrate the
power of the approach. By enhancing the SlCStus-
Prolog system with at t r ibute variables they essentially
provide a generic system which is basically a SlCStus-
Prolog "clone" but where the unification mechanism has
been changed in such a way that the user may introduce
interpreted terms and specify their unification through
Prolog predicates.

This approach is very attractive in that it shows that
by adding a few primitives any logic programming sys­
tem can be turned into a generic constraint logic pro­
gramming system in which constraint solving can be
user defined, at the source level - an extreme example of
the "glass box" approach. Another system which imple-
ments constraint solving using similar techniques is the
Eclipse system developed at ECRC [7].

While this approach in principie has drawbacks from
the performance point of view (our measurements show
that the performance obtained can be up to an order
of magnitude slower than a specialized implementation
of a constraint logic programming language such as e.g.
CLP(3¿)[16], CHIP [18], ProloglII [6], BNRProlog [20],
etc.) the convenience and generality of the approach
can make it very worthwhile in many cases. Further-
more, the speed can be easily increased in interesting
cases (such as perhaps those of the domains supported
by the concrete systems mentioned before) by writing
the unification handlers in a lower-level language.1 The

1 In fact, the speed differential between the attribute variable
/ meta-term approach (with the constraint solving algorithms im-
plemented in Prolog) and the native implementations seems to

potential for achieving both genericity and reasonable
speed is illustrated by the relatively good performance
exhibited by the Eclipse system [7], which has been used
in many practical applications.

Inspired by the previously discussed use of at t r ibuted
variables we propose a different and novel use for such
variables in a completely different context: developing
generic parallel/concurrent (constraint) logic program­
ming systems, using the same "glass box" flavor. Our
proposal shares with those previously discussed the ob-
jective of providing a generic system. But our interest fo-
cuses on implementing concurrent and parallel languages
and execution models. Attr ibuted variables have already
been used to implement the coroutining (delay) facilities
present in many Prolog systems - often what is actu-
ally being done is in fact restoring such capabilities after
having "cannibalized" the delay mechanism support for
implementing the at t r ibuted variables. However, we ar­
güe that a system which implements both support for
at t r ibuted variables and a few additional primitives re-
lated to concurrency and parallelism can do much more
than simply restoring the delay mechanism. In fact, it is
our thesis that using the primitives mentioned above it is
possible to easily implement many of the languages and
execution models of parallelism and concurrency cur-
rently proposed. We illustrate this through examples
and we discuss how quite complex concurrent languages
and parallel execution models can be implemented us­
ing only such primitives. Furthermore, we argüe that
that this can be done in a seamless and user-transparent
way in both shared memory and distributed systems.
Thus, one additional advantage of our technique is that
it relates and reunites the two main approaches cur-
rently used in concurrent logic programming, and which
are seen traditionally as unrelated: "shared variable"
systems, in which communication among parallel tasks
is done through variables, and "distributed" or "black-
board" systems in which communication is done through
explicit built-ins which access shared channels or global
data áreas.

We have implemented our technique by adding sup­
port for at t r ibute variables and the concurrency primi­
tives (most of these primitives were already in the sys­
tem) to &-Prolog, a system which efficiently supports

pretty much correspond to the differential between "C" and Pro­
log, the languages in which the constraint solving algorithms are
implemented respectively.

and-parallelism on both shared memory and distributed
architectures [11, 9]. It should be noted that the use that
we propose of at t r ibuted variables in the implementation
of concurrency and parallelism does not in any way pre-
vent their simultaneous use also for other purposes, such
as the original one of constraint solving.

The rest of the paper proceeds as follows: Section
2 provides a minimal introduction to at t r ibute variables
and the related primitives. Section 3 then describes the
minimal concurrent / parallel language that we assume.
Sections 4 and 5 provide two concrete examples of the
application of at t r ibuted variables proposed. In Section
4 we sketch an implementation of the DDAS scheme for
parallel execution of Prolog, while in Section 5 we present
a way of implementing concurrent logic programming
languages in a distributed environment. Finally, in Sec­
tion 6 we discuss other uses of the technique and propose
lines of future research.

Space limitations forcé the presentation to cover only
some basic cases and give incomplete implementations.
For more details the reader is referred to [10]. Our ob-
jective is simply to point out and substantiate to some
extent the great potential tha t in our view the concept of
at t r ibuted variables has in the implementation of generic
parallel, concurrent, and distributed logic programming
systems.

2 Attr ibuted Variables and Re­
lated Primitives

We provide a brief introduction to at t r ibuted variables.
We follow mainly Holzbaur's description of their imple­
mentat ion in the SICStus Prolog clone.

2.1 General Concepts

Attributed variables are variables with an associated "at­
tr ibute." Attributes are terms which are attached to
variables, and which are accessed in a special way dur-
ing unification and also through special built-in predi-
cates. As far as the rest of a given Prolog implementation
is concerned, at t r ibuted variables behave like variables.
The indexing mechanism treats variables and at t r ibuted
variables in the same way. Also, built-in predicates ob­
serve at t r ibuted variables as if they were ordinary vari­
ables. Special t reatment for at t r ibuted variables does

apply in the following situations:

• Notably, during unification. When an at t r ibuted
variable is to be unified with another at t r ibuted
variable or some other non-variable term, user-
defined predicates specify how this unification has
to be performed.

• When printed via ' p r i n t / 1 ' , a user-supplied predi-
cate gets a chance to print the at t r ibuted variable
in some customized fashion.

2.2 Manipulation of At t r ibuted Vari­
ables

The following is a list of typical predicates which pro­
vide for the introduction, detection, and manipulat ion
of at t r ibuted variables:

• g e t ^ a t t r i b u t e (X , C) If X is an at t r ibuted vari­
able, unify the corresponding at t r ibute with C,
otherwise fail.

• a t t a c h ^ a t t r i b u t e (X , C) Turn the free variable X
into an at t r ibuted variable with at t r ibute C. C
must not be a variable. (Attaching an at t r ibute
to variable generally changes the identity of the
variable.)

• d e t a c h ^ a t t r i b u t e (X) Remove the at t r ibute from
an at t r ibuted variable, turning it into a free vari­
able. (Detaching the at t r ibute from a variable gen­
erally changes the identity of the variable.)

• u p d a t e ^ a t t r i b u t e (X , C) Change the at t r ibute of
the at t r ibuted variable X to C. Acts as as an at-
tach, followed by a detach, but might be more
(memory) efficient.

Note that all operations on at t r ibuted variables be­
have correctly (i.e. they are undone) upon backtracking.

2.3 Unification in the Presence of At­
t r ibuted Variables

Attributed variables are dealt with specially during uni­
fication. Essentially, the different possible cases are han-
dled as follows:

• A unification between an unbound variable and an
at t r ibuted variable binds the unbound variable to
the at t r ibuted variable.

• When an at t r ibuted variable is about to be bound
during unification to a non-variable term or an-
other at t r ibuted variable, the at t r ibuted variable
and the valué it should be bound to are recorded
internally.

• If there is more than one binding event for at­
tr ibuted variables between two inference steps, a
list of at t r ibuted variable-value pairs is collected
internally.

• At the next inference step, the pending at t r ibuted
variable-value pairs are supplied to user-defined
handlers which are Prolog predicates.

The handlers for the unification of at t r ibuted vari­
ables mentioned above are provided by the user by means
of the following predicates:

• v e r i f y ^ a t t r i b u t e (C , T) This user-defined predi-
cate is invoked when an at t r ibuted variable with
an at t r ibute which unifies with C is about to be
unified with the non-variable term T.

• c o m b i n e ^ a t t r i b u t e s (C l ,C2) This user-defined
predicate is invoked when two at tr ibuted variables
with at tr ibutes C1,C2 are about to be unified.

Note that the two predicates are not called with the
at t r ibuted variables involved, but with the correspond-
ing at tr ibutes instead. The is done for reasons of sim-
plicity and efficiency (e.g. indexing). Note that if access
to the actual at t r ibuted variable is needed the variable
itself can be included in the at t r ibute.

2.4 Other Related Primitives

In general, a number of other primitives are often pro­
vided which allow pretty printing and dumping of the
results in a user understandable format.

2.5 At t r ibuted Variables And Coroutin-
ing — an Example

The following example, due to [12] serves both to ¿Ilús­
t rate the use of the primitives introduced in the previous

section and also to recover the functionality of f r e e z e
since at t r ibute variables are, as mentioned in the intro-
duction, most easily implemented in practice by "canni-
balizing" an existing implementation of f r e e z e :
f r e e z e (X, Goal) : -

a t t a c h _ a t t r i b u t e (V, f r o z e n (V , G o a l)) ,
X = V.

verify_attribute(frozen(Var,Goal), Valué) :-

detach_attribute(Var),

Var = Valué,

call(Goal).

combine_attributes(frozen(Vl,G1), frozen(V2,G2))

detach_attribute(VI),

detach_attribute(V2),

VI = V2,

a t t a c h _ a t t r i b u t e (VI, f r o z e n (V l , (G l , G 2))) .
The cali to at tach at t r ibute ties the term represent-

ing the frozen goal to the relevant variable. When the
variable is bound the unification routine escapes to the
user-defined generic handler v e r i f y _ a t t r i b u t e which
in turn performs the meta-cali. Note the definition of
c o m b i n e ^ a t t r i b u t e s needed for handling the case where
two variables which have frozen goals attached are uni­
fied: a conjunction of the goals is attached to the result-
ing variable.

Note that the explicit encoding of delay primitives
such as f r e e z e / 2 and their incorporation into the at­
tr ibuted variable handling mechanism is not to be un-
derstood as a mere substitute for the original C code.
The true motivation for explicit encodings is that it en-
ables the user to freely define the combination and in-
teraction of such delay primitives with other uses of the
at t r ibuted variables such as the implementation of a con-
straint solver. Note that such a solver may also itself
perform some delaying, for example when dealing with
non-linear constraints.

3 The Kernel Concurrent Lan­
guage

We now introduce a simple concurrent and parallel
extensión of Prolog, that we cali "Kernel &-Prolog"
(K&P). The purpose of this language is to provide a
reduced (hopefully minimal) set of operators which will

allow the implementations that we would like to propose.
This language is essentially identical to the kernel lan-
guage used in the shared memory [11] and distributed
[9] implementations of the &-Prolog system, but it is
described here for the first t ime.

Essentially, the K&P language subsumes Prolog and
includes all the at t r ibuted variable primitives described
in Section 2. In addition, it provides the following op­
erators which provide for creation of processes, assign-
ment of "gas" (computational resources) to them, and
synchronization:

• &/2 - Standard fork/join parallel conjunction op-
erator (the one used, for example, by the &-Prolog
parallelizing compiler [1]). It performs a parallel
"fork" of the two literals involved and waits for the
execution of both literals to finish (i.e. the join).
If no processors are available, then the two liter­
als may be executed in the same processor and
sequentially, i.e. one after the other. This is a
"parallelism" operator: it is used to indicate where
parallel execution can be profitable, with speed as
the main objective. All tasks created with this
primitive will eventually be run, unless one such
task goes into an infinite loop. It is defined as an
infix operator. For example, . . . , p(X) & q (X) ,
r (X) , . . . will fork a task p(X) in parallel with
q(X). The continuation r (X) will wait until both
p(X) and q(X) are completed.2

"fair" fork/join parallel conjunction opera­
tor. It performs a parallel fork of the two literals
involved and waits for the execution of both liter­
als to finish (join). A "thread" is assigned to each
literal. The execution of the two literals will be
interleaved either by executing them on different
processors (if they are available) or by multiplex-
ing a single processor.3 Thus, even if no processors

2 Note that the goals do not need in any way to be independent —
this is only necessary if certain efficiency properties of the parallel
execution are to hold.

The implementation of these tasks is identical to that of the
standard tasks in the &-Prolog system except that while standard
tasks are put on a goal stack and picked up when there is an idle
thread, in the case of "fair" tasks an idle thread is directly attached
to the task. Notably, a new thread is created if no idle thread
is available. When using the standard operators the máximum
number of threads is never larger than the number of processors
on the system, while when using fair operators, many more threads
than processors may be created.

are available, the two literals will be executed with
(apparent) simultaneity in a fair way. It is defined
as an infix operator. For example, . . . , p(X) &&
q (X) , r (X) , . . . will fork a task p(X) in paral­
lel with q(X), both tasks getting a "thread" allo-
cated to them. The continuation r (X) will wait
until both p(X) and q(X) are completed. This ap-
proach of distinguishing specially the cases where
"gas" (or, more formally, a notion of fairness) is
to be attached to parallel processes has also been
followed in the concurrent constraint language Oz
[25]. There are also variants of the primitives which
allow handing levéis of "gas" down to lower levéis
for implementing priority schemes.

• &/1 - Standard fork operator. It performs a paral­
lel fork of the literal(s) involved. No waiting for its
return is involved (unless explicitly expressed using
the wa i t primitive - see below). If no processors
are available, then the literal may be executed in
the same processor and sequentially, i.e. after the
rest of the computation finishes. It is defined as
a postfix operator. For example, . . . , p(X) &,
q (X) , r (X) , . . . will fork a task p(X) in parallel
with the rest of the computation.

• &&/1 - "fair" fork operator. It performs a paral­
lel fork of the literals involved. No waiting for its
return is involved (unless explicitly expressed us­
ing the wa i t primitives - see below). A "thread"
is assigned to the literal. It is defined as a post­
fix operator. For example, . . . , p(X) &&, q (X) ,
r (X) , . . . will fork a task p(X) in parallel with
the rest of the computation and a thread will be
attached to it.

- "Placement" s tandard fork operator. It
performs a parallel fork of the literal(s) involved,
assigning it to a given node. No waiting for its re­
turn is involved. If tha t node is busy, then the lit­
eral will eventually be executed in that node when
it becomes idle. It is defined as an infix operator.
For example, . . . , p(X) &® node , q (X) , . . .
will fork the task p(X) in parallel with the rest of
the computation and assign it to node node. The
second argument can be a variable. If the variable
is instantiated at the t ime the literal is reached,
its valué is used to determine its placement. If the

variable is unbound at tha t t ime, then the goal is
not assigned to any particular node and the vari­
able is bound to the node id. of the node that picks
up the task, when it does so. Processor ñames can
also be of the format network_node#processor.4:

• &&Q/2 - "fair" placement fork operator. It per-
forms a parallel fork of the literal(s) involved, as-
signing it to a given node and finding (or, if not
available, creating) a thread for it in that node.

• w a i t (X) : This primitive suspends the current exe-
cution thread until X is bound. X can also contain
a disjunction of variables, in which case execution
waits for either one of such variables to be bound.

• lock(X) / unlock(X): This primitive gets (re-
leases) a lock on the (address of the) object X.

Note that in the discussion above a (parallel) con-
junction of literals can always be used in place of a lit­
eral, i.e. the expression . . . , (a , b) & (c , d & e , f) ,
. . . is supported.

In addition to the "placement" operators described
above, which can be directly used in distributed envi-
ronments, the language also provides as base primitives
a Linda-like [5, 4] library, and a lower-level Unix socket
interface both of which reproduce the functionality of
those of SICStus-Prolog. In fact, in distributed environ-
ments the primitives described above are implemented
using the Linda library [9]. However, the Linda inter­
face can also be used directly: there is a server process
which handles the blackboard. Prolog client processes
can write (using o u t / l) , read (using r d / l) , and remove
(using i n / l) da ta (i.e. Prolog terms) to and from the
blackboard. If the data is not present on the blackboard,
the process suspends until it is available. Alternatively,
other primitives (in_n.oblock/l and rd_noblock/ l) do
not suspend if the data is not avai lable- they fail instead
and thus allow taking an alternative action if the data is
not in the blackboard. The input primitives can wait on
conjunctions or disjunctions of data.

This is implemented by having a prívate goal stack for each
agent, from which other nodes cannot pick work, and putt ing the
goal being scheduled on the prívate goal stack of the appropríate
agent. Alternatively, the general goal stack of that agent can be
used, in which case that agent will execute the goal unless another
agent becomes idle first and steals the goal.

4 Implementing the DDAS
Model

We now discuss the implementation of a model for par­
allel execution of Prolog, the DDAS model of Shen [24].
We choose this model both because it is interesting and
also because it has quite complex behavior and synchro-
nization rules and therefore it should put to the test our
thesis. In the following for simplicity we will discuss
mainly forward execution in the model. However we ar­
güe that backward execution can be implemented in a
similar way.

In a very simplified form the DDAS model is an ex­
tensión to (goal level) independent and-parallel models
which allowsfine grained synchronization of tasks, imple­
menting a form of "dependent" and-parallelism.5 Paral-
lelism in this model is controlled by means of "Extended
Conditional Graph Expressions" which are of the form:
(conditions => goals) . As such, these expressions
are identical to those used in s tandard independent and-
parallelism: if the conditions hold, then the goals can be
executed in parallel, else, they are to be executed sequen-
tially. The main difference is that a new builtin is added,
dep/1 . This builtin can appear as part of the conditions
of an ECGE. Its effect is to mark the variable(s) appear-
ing in its argument specially as "shared" or "dependent"
variables. This character is in effect during the execu­
tion of the goals in the ECGE and disappears after they
succeed. Bindings to these variables by the goals in the
ECGEs can only be performed if certain conditions hold.
Otherwise the computation must suspend until such con­
ditions do hold. In particular, only the leftmost active
(i.e. non finished) goal in the ECGE (the "producer") is
allowed to bind such variables. Other goals which try
to bind such variables (the "consumers") must suspend
until the variable is bound or they become leftmost (i.e.
all the goals to their left have finished).

For example, when the ECGE . . . , (dep(X) =>
p(X) & q (X)) , . . . is executed the variable X is marked
as "dependent" and the goals p(X) and q(X) are sched­
uled to execute in parallel. During their execution bind­
ings to X behave according to the above mentioned rules.

In order to support this model in K&P we
assume a source to source transformation (using
t e rm_expans ion /2) of ECGEs. The intuition behind the

More precisely, independent and-parallelism, but where the
independence rule is applied at a much lower level of granularity.

transformation (and the implementation of the built-ins
used by it) is as follows. An ECGE is turned into a Pro­
log if-then-else such that if the conditions succeed then
execution proceeds in parallel (using the &/2 operator,
which directly encodes the fork-join parallelism imple-
mented by the ECGEs) , else it proceeds sequentially.
Dependent variables shared by the goals in a ECGE are
renamed. The d e p / 1 annotation is transformed into a
cali to a predicate that marks the variables as dependent
by attaching to them attr ibutes. Such attr ibutes also en-
code whether a variable is in a producer or a consumer
position.

Unification is handled in such a way that bindings
to variables whose at t r ibute corresponds to being in the
producer position are actually bound.6 Note that if the
variable is being bound to a complex term with vari­
ables, these variables also have to be marked as depen­
dent. Bindings to variables whose at t r ibute corresponds
to being in a consumer position (using w a i t / l) .

The change from producer to consumer status is im-
plemented as follows: each parallel goal containing a de­
pendent variable (except the last one) is replaced by the
sequential conjunction of the goal itself and a cali to the
predicate p a s s _ t o k e n / l which will "pass the token" of
being leftmost to the next goal (or short-circuiting the
token link if it is an intermediate goal). This predicate
also takes care of restoring the connection lost due to the
variable renaming.

For example, the ECGE
. . . , (d e p (X) , ground(Y) =>

a(X,Y) & b(X,Y) & c (X)) , . . .
is transformed into
. . . , (g r o u n d (Y) , dep(X, [XI, X2]) ->

(a (X , Y) , p a s s _ t o k e n (X)) &
(b (X l , Y) , p a s s _ t o k e n (X l)) &
c(X2)

>
a (X , Y) , b (X , Y) , c(X)) , . . .

The new variables produced after the renaming of
the original shared variable form a "group". Tha t group
is logically sorted in the same order in which the goals
where the variables appear become producers, and is up-
dated at run- t ime to reflect the success of the goals or

Locking (using the lock/1 and unlock/1 primitives) must
obviously be done while performing such bindings, since other
threads running the parallel goals can be performing simultaneous
accesses. However, we have left out all locking from the description
for simplicity.

the execution of new and-parallel goals sharing a vari­
able belonging to the group. Thus, the group contains
the variables that appear in the computation tree fron-
tier that correspond to the shared variable, in le f t - to-
right order.

Each dependent variable's a t t r ibute in the group
shares a common field from where the aforementioned
group can be accessed, i.e., from each variable's a t t r ibute
one can consult (and update) the group itself. Moreover,
each variable's a t t r ibute includes a suspension-oriented
field whose aim is to allow the suspensión of goals trying
to bind a dependent variable when they are in consumer
position. This suspensión is performed, as mentioned
above, using the w a i t / 1 primitive. As an example, the
at t r ibute for variable Var can be d e p a t t (V a r , Susp ,
Group).

In what follows we explain more in depth the opera-
tions sketched above.

The d e p / 2 predicate takes two arguments, the first
is the original dependent variable and the second is a list
of the remaining variables in the group (that belong to
consumer goals initially). d e p / 2 copies the term given in
the first argument to each of the elements of the second
argument. For each free variable appearing in the term
this variable and the corresponding free variables of the
copied terms are placed in a new "group". In addition,
the suspensión field of the producer variable is marked
as p r o d u c e r . Variables (initially) in consumer positions
are left unbound so that w a i t / 1 will suspend on them.
A special case occurs if the dependent variable in the
ECGE was already dependent. In that case, the group
to which this variable belongs is expanded to include the
new renamed variables, and all inserted variables are left
as consumers.

The p a s s _ t o k e n / l predicate is called after the exe­
cution of a dependent goal, and binds each variable in
the argument to the next variable in its group, removing
the first variable from the group, and passing the sus­
pensión field of the at t r ibute of the first variable to the
second.

When a dependent variable is about to be bound
to a non-variable, the predicate v e r i f y ^ a t t r i b u t e / 2
is invoked since such a variable is at t r ibuted.
v e r i f y _ a t t r i b u t e / 2 performs a wa i t on the suspen­
sión field of the at t r ibute, to avoid unification of the
variable if it is not in a producer position. The suspen­
sión field can be instantiated to two valúes. A first case is

when the suspensión field has the valué p r o d u c e r . This
means that this goal is now the producer and thus we can
proceed with the unification. The remaining consumer
variables are deprived of their at tr ibutes, and their sus­
pensión fields are collected. In order to initialize the
at tr ibutes of the free variables that possibly appear in
the valué given to the variable, the d e p / 2 predicate is
called again. Finally, the consumers are woken by bind-
ing their previously collected suspensión fields with the
a tom consumer. Thus, the other possible case is when,
after proceeding from a wa i t , the suspensión field has
the valué consumer. In this case, since the variable at­
tributes were already managed by the producer, only the
standard unification has to be performed.

The listing of the predicates mentioned above is given
schematically below. While this code does not take into
account all the details present in an actual implemen-
tation, it does on the other hand give an idea of how
the operations can be implemented with the primitives
provided.
dep(X, Xs) : -

copy_term_to_list (Xs, X),
dep_term_vars(X, Xs) .

copy_term_to_list ([] , _X) .
copy_term_to_list ([Y|Ys] , X) : -

copy_term(X, Y),
copy_term_to_list (Ys, X).

dep_term_vars(X, Xs) : -
{calis dep_var for each variable ínsíde X
together with the correspondíng variables in Xs}

dep_var(X,Xs) :-

get_attribute(X, depatt(_X, _Susp, Group)) —>

insert_to_right (Group, X, Xs) ,

put_depatt_attributes(Xs, Group)

create_group_structure([X|Xs] , Group) ,

attach_attribute(X, depatt(X, producer, Group))

put_depatt_attributes(Xs, Group).

put_depatt_attributes([] , Group) .

put_depatt_attributes([X|Xs] , Group) :-

attach_attribute(X, depatt(X, _Susp, Group)),

put_depatt_attributes(Xs, Group).

pass_token_var(X) :-

get_attribute(X, depatt(_X, Susp, Group)),

dettach^attribute(X) ,

delete_and_get_right_var(X, Group, Xr) ,

get_attribute(Xr, depatt(_Xr, Susp_r, _Group)).

X = Xr,

Susp = Susp_r.

verify_attribute(depatt(X, Susp, Group), Val) :-

wait(Susp),

(
Susp = consumer —>

X = Val

de t tach^at t r ibute(X) ,
X =Val,
get_right_vars(Group, X,
detach_and_get_susps (Xs,
dep(X, Xs),
signal_consumers(Susps)

Xs) ,
Susps),

).

detach_and_get_susps([] , []) .
detach_and_get_susps([X|Xs] , [Susp|Susps]) : -

ge t_a t t r ibu te (X, depatt(_X, Susp, _Group)),
de t tach^at t r ibute(X) ,
dettach^and_get_susps(Xs, Susps) .

signal_consumers([]) .
signal_consumers([consumer |S]) : -

signal_consumers(S) .

°/0 These p r ed i ca t e s deal with the group s t r u c t u r e

create_group_structure(Xs, Group) : -
{makes a group with the variables in the líst
Xs, in that order]

inser t_to_right (Group, X, Xs) : -
{given a group Group that contaíns the

> variable X, ínserts the líst of variables
Xs to íts ríght]

delete_and_get_right_var(X, Group, Xr) : -
{removes X from Group, and gíves
in Xr the variable to the ríght of X
in the group]

pass_token(X) : -
{calis pass_token_var for each variable
ínsíde the térra X}

get_right_vars(Group, X, Xs) : -
{gíves in Xs the líst of the variables

to the ríght of X in Group}

5 Implementing
Concurrent (Constraint) Lan-
guages in Distributed Environ-
ments

We now sketch a relatively different application. Our ob-
jective here is to combine the two main approaches cur-
rently used in concurrent logic programming, and which
are seen traditionally as unrelated: "shared variable"
systems, in which communication among parallel tasks
is done through logical variables (e.g. Concurrent-Prolog
[23], PARLOG [8], GHC [26], Janus [22], AKL [17], Oz
[25], etc.), and "distributed" or "blackboard" systems [5]
(for which there are many implementations, one of the
most popular being the one bundled with [3]) in which
communication is done through explicit built-ins which
access shared channels or global data áreas. In order
to do that , we will sketch a method for implementing
communication through shared variables by means of a
blackboard. We assume the availability of the primitives
introduced in the previous sections. We also assume that
we want to implement a simple concurrent (constraint)
language which basically has a sequential operator, a
parallel operator (which, since we are in a distributed en-
vironment will actually mean execution in another node
of the net), and "ask" and "tell" unification primitives.
The sort of net that we have in mind could perhaps be
a local área net, where the nodes are workstations. The
incorporation of the sequential operator (to mark goals
that should not be "farmed out") and the special mark-
ing of "(remote) communication variables" that will be
mentioned later is relevant in the environment being con-
sidered. Note that it would be extremely inefficient to
blindly run a traditional concurrent logic language (cre-
ating actual possibly remote tasks for every parallel goal
and allowing for all variables to be possibly shared and
worked on concurrently by goals in different nodes) in
such a distributed environment. A traditional concur­
rent language can of course be compiled to run efficiently
in such an environment — in fact, this can be seen as a
source level transformation to a language of the type we
are considering.

To implement this language on K&P we start by ob-
serving that the sequential and parallel operators of the
source language map directly into the sequential (",")
and &® (or &&Q/2, if fairness is needed) operators of K&P.
Thus, if a goal p(X) is to be executed concurrently and
remotely, it can simply be replaced with a cali to "p(X)
&&® _" (or a valué or non-anonymous variable can be
used in place of the "_" if it is important or useful to im­
pose or know in which particular node the goal is going to
be executed). However, while this allows creating remote
tasks, it does not by itself implement the communication
of valúes between nodes through the variable X. We pro­
pose to do this by placing before the cali to p(X) &&® _
a cali to a predicate which will at tach an at t r ibute to the
variable X marking it as a "communication variable". If
X is bound to a complex term with variables, then each
such variable is marked in that way. Also, a unique iden-
tifier is given to each communication variable. All bind-
ings to these variables are postea1 on the blackboard (using
the o u t / 1 primitive) as (variable_id,valué) pairs, where
if valúes contain themselves new variables, such variables
are represented by their identifiers. Thus, substitutions
are represented as explicit mappings. When bound to a
communication variable, a non-communication variable
is turned into a communication variable.

Tell and ask operations on ordinary variables, which
are handled in the standard way, are distiguished from
tell and ask operations to (remote) communication vari­
ables by the fact that the latter have the corresponding
at t r ibute attached to them. Thus, tell and ask unifica-
tions to such variables will be then handled by the at­
tr ibuted variable unification. A tell will be implemented
by actually performing the binding to the variable in
the manner explained above using the o u t / 1 blackboard
primitives. An ask will wait (using the blocking r ead /1
blackboard primitive)7 until a binding for the variable is
posted (i.e. a (variable_id, valué) pair where variable_id is
the identifier of the variable is present in the blackboard).
Finally, it may often be possible to tidy up things when
a remote goal finishes by erasing the entries in the black­
board corresponding to the bindings of variables which

Note that a variable can have múltiple readers and thus i n / 1
cannot be used in general. On the other hand, if a threadedness
analysis is performed and a variable is determined to have only one
producer and one consumer then i n / 1 can be used performing on
the fly garbage collection on the blackboard. This illustrates how
the attr ibuted variable approach allows performing low-level opti-
mizations as source to source transformations also in the context!

are not used as communication variables any more (and
are not linked to other active communication variables)
and creating the corresponding term in the originating
heap (as in the case of the DDAS model, a sequential
conjunction of the parallel goal with a cali to a tidying-
up predicate can be used for this purpose).

While the approach sketched certainly has the po-
tential of providing the functionality required of the lan-
guage being implemented, the performance of the ap­
proach will of course depend heavily in turn on the per­
formance of the blackboard implementation.

Space limitations do not allow us to describe this ap­
proach in more detail. For more information the reader
is referred to [10].

6 Discussion and Future Work

We have proposed a different and novel use for the con-
cept of at t r ibuted variables: developing a generic par-
allel/concurrent (constraint) logic programming system,
using the same "glass box" flavor as that provided by
at t r ibuted variables and meta-terms in the context of
constraint logic programming implementations. We ar­
güe that a system which implements at t r ibuted variables
and the few additional primitives which have been pro­
posed constitutes a kernel language which can be easily
customized at source level to implement many of the lan-
guages and execution models of parallelism and concur-
rency currently proposed, in both shared memory and
distributed systems. We have illustrated this through a
few examples.

Lack of space does not allow elaborating further but
we believe that using techniques similar to those that we
have proposed it is possible to implement many other
parallel and concurrent models at the source level of a
kernel language. We believe it is quite possible to encode
the determinacy driven synchronization of the Andorra-
I system [21] in terms of our wa i t primitive and the
concurrency operators. We also believe it is quite pos­
sible to implement languages with deep guards and/or
those based on the Extended Andorra Model [27], such
as AKL [17]. For example, one of the most character-
istic features of deep guard languages is precisely the
behavior of the guards and one of the main complica-
tions in implementing such languages is in implementing
the binding rules that opérate within such guards. If
the Herbrand domain is used, the guard binding rules

require in principie8 tha t no bindings to external vari­
ables be made. Thus, it is necessary to keep track of the
level of nesting of guards and assign to each variable the
guard level at which it was created. Note that this can be
done by assigning to each guard a hierarchical identifier
and attaching to each variable such an identifier as (part
of) its a t t r ibute. Unifications in the program are labeled
with the identifier of the guard in which they occur (the
level computation is passed down recursively through an
additional argument) . Such unifications are handed over
to the at t r ibuted variable handler which makes compu­
tation suspend unless the variable and the binding have
the appropriate relative identifiers.9 The binding rules
for domains other than Herbrand can be more complex
because they often use the concept of entailment. But
note that in the proposed approach all constraint solv-
ing would be implemented through at tr ibuted variables
anyway. Thus, it is not difficult to imagine that a correct
entailment check can be written at the source level using
the same primitives and w a i t .

While the wide applicability of the ideas presented is
very attractive, a clear issue is the performance of the
systems built using them. Of course, such performance
is bound to be much slower than that of the correspond­
ing native implementations. It is clear that the native
implementation approach is both sensible and practical,
and simply the way to go in most cases. On the other
hand we also feel there it is interesting to be able to
have a generic system which can be easily customized
to enrúlate many implementations. On one hand, it
can be used to study in a painless way different vari-
ations of a scheme or to make quick assessments of new
models. On the other hand the loss in performance is
compensated in some ways by the flexibility (a tradeoff
that has been found acceptable in the implementation of
constraint logic programming systems), and such perfor­
mance can be improved in a gradual way by pushing the
implementation of critical operations down to C.

Some models are more complicated: in AKL, for example,
there is a notion of local bindings and there is an additional rule
controlled by the concept of "stability" (closely related to that of
independence) which allows non-deterministic bindings to propá­
gate at "promotion" time. We believe however that there is also
potential for the use of attr ibuted variables in the implementation
of AKL.

Promotion rules can also be implemented by updating the
identifiers (the attributes) of all the local variables to higher levéis.

References
[1] F . Bueno, M. García de la Banda, and M. Hermenegildo.

Effectiveness of Global Analysis in Strict Independence-
Based Automat ic Program Parallelization. Techni­
cal Report T R Number CLIP7/93 .0 , T .U. of Madrid
(UPM) , Facultad Informática U P M , 28660-Boadilla del
Monte, Madrid-Spain, October 1993.

[2] M. Carlsson. Freeze, Indexing, and Other Implementa-
tion Issues in the Wam. In Fourth International Confer-
ence on Logic Programmíng, pages 40-58. University of
Melbourne, M I T Press, May 1987.

[3] M. Carlsson. Sicstus Prolog User's Manual. Po Box
1263, S-16313 Spanga, Sweden, February 1988.

[4] N. Carreiro and D. Gelernter. How to Wri te Parallel
Programs - A Guide to the Perplexed. ACM Computing
Surveys, September 1989.

[5] N. Carreiro and D. Gelernter. Linda in Context . Com­

munications ACM, 32(4), 1989.

[6] A. Colmerauer. Opening the Prolog-III Universe. In
BYTE Magazine, August 1987.

[7] European Compute r Research Center . Eclipse User's
Guide, 1993.

[8] S. Gregory. Parallel Logic Programmíng in PARLOG:

the Language and íts Lmplementatíon. Addison-Wesley
Ltd., Wokingham, England, 1987.

[9] M. Hermenegildo. A Simple, Distr ibuted Versión of the
&-Prolog System. Technical report , School of Com­
puter Science, Technical University of Madrid (UPM) ,
Facultad Informática U P M , 28660-Boadilla del Monte,
Madrid-Spain, April 1994.

[10] M. Hermenegildo, D. Cabeza, and M. Carro . On The
Uses of At t r ibu ted Variables in Parallel and Concurrent
Logic Programmíng Systems. Technical report CLIP
5/94.0, School of Compute r Science, Technical Uni­
versity of Madrid (UPM) , Facultad Informática U P M ,
28660-Boadilla del Monte, Madrid-Spain, June 1994.
Presented at the ILPS'94 Post Conference Workshop on
Design and Implementat ion of Parallel Logic Program­
míng Systems.

[11] M. Hermenegildo and K. Greene. The &-prolog System:
Exploiting Independent And-Parallel ism. New Genera-
tion Computing, 9(3,4):233-257, 1991.

[12] C. Holzbaur. Specíficatíon of Constraint Based Lnference
Mechanisms through Extended Unification. P h D thesis,
University of Vienna, 1990.

[13] C. Holzbaur. Metas t ruc tures vs. At t r ibu ted Variables
in the Context of Extensible Unification. In 1992 In­
ternational Symposium on Programmíng Language Lm­
plementatíon and Logic Programmíng, pages 260-268.
LNCS631, Springer Verlag, August 1992.

[14] Serge Le Huitouze. A New Da ta St ructure for Im-
plementing Extensions to Prolog. In P. Deransar t
and J. Maluszyñski, editors, Proceedíngs of Program­
míng Language Lmplementatíon and Logic Programmíng,
number 456 in Lecture Notes in Compute r Science,
pages 136-150. Springer, August 1990.

[15] J. Jaffar and J.-L. Lassez. Constraint Logic Program­
míng. In ACM Symp. Principies of Programmíng Lan-
guages, pages 111-119. ACM, 1987.

[16] J. Jaffar and S. Michaylov. Methodology and Imple­
menta t ion of a C L P System. In Fourth Lnternatíonal
Conference on Logic Programmíng, pages 196-219. Uni­
versity of Melbourne, M I T Press, 1987.

[17] S. Janson and S. Haridi. Programmíng Paradigms of the
Andorra Kernel Language. In 1991 Lnternatíonal Logic
Programmíng Symposium, pages 167-183. M I T Press,
1991.

[18] H. Simonis M. Dincbas and P. Van Hentenryck. Solving
Large Combinatorial Problems in Logic Programmíng.
•Lournal of Logic Programmíng, 8(1 & 2):72-93, 1990.

[19] U. Neumerkel. Extensible Unification by Metas t ruc­
tures . In Proceedíng of the META'90 workshop, 1990.

[20] W. Older and A. Vellino. Extending Prolog with
Constraint Ari thmet ic in Real Intervals. In Canadían
Conference on Electrícal and Computer Engíneeríng,
September 1990.

[21] V. Santos-Costa, D.H.D. Warren, and R. Yang.
Andorra-I : A Parallel Prolog System tha t Transparent ly
Exploits bo th And- and Or-parallelism. In Proceedíngs
of the Srd. ACM SLGPLAN Symposium on Principies
and Practíce of Parallel Programmíng. ACM, April 1990.

[22] V. Saraswat. Concurrent Constraint Programmíng Lan-

guages. P h D thesis, Carnegie Mellon, P i t t sburgh, 1989.
School of Compute r Science.

[23] E. Y. Shapiro. A Subset of Concurrent Prolog and Its In­
te rp re ten Technical Report TR-003, I C O T , 1-4-28 Mita,
Minato-ku Tokyo 108, Japan, January 1983.

[24] K. Shen. Exploiting Dependent And-Parallel ism in Pro­
log: The Dynamic, Dependent And-Paral lel Scheme. In
Proc. Loínt Lnt'l. Conf. and Symp. on Logic Prog. M I T
Press, 1992.

[25] Gert Smolka. Feature constraint logics for unification
g rammars . Lournal of Logic Programmíng, 1991.

12 1994 Compulog-net Ws. on Parallelism and Implementation Technology

[26] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, ed­
itor, Concurrent Prolog: Collected Papers, pages 140-
156. MIT Press, Cambridge MA, 1987.

[27] D.H.D. Warren. The Extended Andorra Model with Im-
plicit Control. In Sverker Jansson, editor, Parallel Logic
Programming Workshop, Box 1263, S-163 13 Spanga,
SWEDEN, June 1990. SICS.

