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ABSTRACT 
Proof carrying code is a general methodology for certify-
ing that the execution of an untrusted mobile code is safe, 
according to a predefined safety policy. The basic idea is 
that the code supplier attaches a certifícate (or proof) to 
the mobile code which, then, the consumer checks in order 
to ensure that the code is indeed safe. The potential bene-
fit is that the consumer's task is reduced from the level of 
proving to the level of checking, a much simpler task. Re-
cently, the abstract interpretation techniques developed in 
logic programming have been proposed as a basis for proof 
carrying code [1]. To this end, the certifícate is generated 
from an abstract interpretation-based proof of safety. Intu-
itively, the verification condition is extracted from a set of 
assertions guaranteeing safety and the answer table gener­
ated during the analysis. Given this information, it is rela-
tively simple and fast to verify that the code does meet this 
proof and so its execution is safe. This extended abstract re-
ports on experiments which illustrate several issues involved 
in abstract interpretation-based code certification. First, we 
describe the implementation of our system in the context of 
CiaoPP: the preprocessor of the Ciao multi-paradigm (con-
straint) logic programming system. Then, by means of some 
experiments, we show how code certification is aided in the 
implementation of the framework. Finally, we discuss the 
application of our method within the área of pervasive sys-
tems which may lack the necessary computing resources to 
verify safety on their own. We herein illustrate the rele-
vance of the information inferred by existing cost analysis 
to control resource usage in this context. Moreover, since 

the (rather complex) analysis phase is replaced by a sim­
pler, efficient checking process at the code consumer side, 
we believe that our abstract interpretation-based approach 
to proof-carrying code becomes practically applicable to this 
kind of systems. 

1. THE FRAMEWORK 
Current approaches to mobile code safety, inspired by the 
technique oí Proof-Carrying Code (PCC) [19], associate safety 
information in the form of a certifícate to programs. The cer­
tifícate (or proof) is created by the code supplier at compile 
time, and packaged along with the untrusted code. The con­
sumer who receives the code+certificate package can then 
run a checker which by a straightforward inspection of the 
code and the certifícate, can verify the validity of the cer­
tifícate and thus compliance with the safety policy. The key 
benefit of this approach is that the burden of ensuring com­
pliance with the desired safety policy is shifted from the con­
sumer to the supplier. Indeed the (proof) checker performs 
a task that should be much simpler, efficient, and automatic 
than generating the original certifícate. For instance, in the 
first PCC system [19], the certifícate is originally a proof 
in first-order logic of certain verification conditions and the 
checking process involves ensuring that the certifícate is in­
deed a valid first-order proof. 

The main practical difficulty of PCC techniques is in gener­
ating safety certificates which at the same time: 

• allow expressing interesting safety properties, 

• can be generated automatically and, 

• are easy and efficient to check. 

In [1], the abstract interpretation techniques [6] developed 
in logic programming1 are proposed as a basis for PCC. 
They offer a number of advantages for dealing with the afore-
mentioned issues. In particular, the expressiveness of exist­
ing abstract domains will be implicitly available in abstract 
interpretation-based code certification to define a wide range 
of safety properties. Furthermore, the approach inherits 
the automation and inference power of the abstract inter­
pretation engines used in (Constraint) Logic Programming, 
(C)LP. 
1We refer to [2, 7, 15], and their references, for more details 
on analysis techniques developed in logic programming. 
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Figure 1: Abstract Interpretation-based Mobile 
Code Certiñcation in CiaoPP 

1.1 Certification in the Supplier 
In Fig. 1, we illustrate the certification process of [1] carried 
out to genérate a safety certificate by the code supplier. It 
is based on the idea that a particular subset of the analy-
sis results computed by abstract interpretation-based fixpoint 
algorithms can play the role of certificate for attesting pro­
gram safety [1]. The certification process consists in four 
main steps which are described below. 

Safety Policy. 
A subset of the high-level assertion language of [20] is used 
to define the safety policy in the context of CLP programs. 
Assertions are syntactic objects which allow us to express 
"abstract"—i.e. symbolic—properties over different abstract 
domains. Examples are assertions which state information 
on entry points to a program module, assertions which de­
scribe properties of built-ins, assertions which provide some 
type declarations, cost bounds, etc. The certification pro­
cess starts from an initial program and an abstract domain 
and obtains a set of safety assertions from the predefined 
assertions for system predicates and those provided by the 
user. The Safety Policy consists in guaranteeing that safety 
assertions hold for the given program (and entries) in the 
context of the desired abstract domain. 

Fixpoint Analyzer. 
A main idea in [1] is that the certificate is automatically gen-
erated by a fixpoint abstract interpretation-based analyzer. 
In particular, the goal dependent (a.k.a. goal oriented) ana­
lyzer of [15] plays the role of Fixpoint Analyzer. This analysis 
algorithm receives as input, in addition to the program and 
the abstract domain, a set of calling patterns (or entries). 
A calling pattern is a description of the calling modes into 
the program. For simplicity, we assume that the program 

comes enhanced with its entries. Due to space limitations, 
and given that it is now well understood, we do not describe 
here the fixpoint algorithm (details can be found in, e.g., [2, 
15]). An interesting point to note is that analysis results 
in [15] are represented by means of two data structures in 
the output: the answer table and the are dependeney ta­
ble. In [1], we show that a particular subset of the analysis 
results— namely the answer table—is sufficient for mobile 
code certification. 

Verification condition generator 
Then, a verification condition generator, VCGen, computes 
from the assertions and the answer table a verification con­
dition in order to attest compliance of the program with 
respect to the safety policy. The formal definition of VC­
Gen is outside the scope of this paper (it can be found in 
[1]). Intuitively, the verification condition is a conjunction of 
boolean expressions whose validity ensures the consisteney 
of a set of assertions w.r.t. the answer table computed by 
the analyzer. 

Validator 
The condition is sent to an automatic Validator which at-
tempts to check its validity w.r.t. the answer table. This 
validation may yield three different possible status: i) the 
verification condition is indeed checked and the answer ta­
ble is considered a Valid Certificate, ii) it is disproved, and 
thus the certificate is not valid and the code is definitely 
not safe to run (we should obviously correct the program 
before continuing the process); iii) it cannot be pro ved ñor 
disproved, which may be due to several circumstances. For 
instance, it can happen that the analysis is not able to in-
fer precise enough information to verify the conditions. The 
user can then provide a more refined description of initial 
calling patterns or choose a different, finer-grained, domain. 
Although, it is not showed in the picture, in both the ii) 
and iii) cases, the certification process needs to be restarted 
until achieving a verification condition which meets i). If it 
succeeds, the answer table constitutes a valid certificate and 
can be sent to the consumer together with the program. 

1.2 Validation in the Consumer 
The validation process of [1] performed by the code con­
sumer is similar to the certification process described in 
Fig. 1 by replacing the fixpoint analyzer by an Analysis 
Checker. Indeed, the supplier sends the program together 
with the certificate to the consumer and, to retain the safety 
guarantees, the consumer can trust neither the code ñor the 
certificate. Thus, in the validation process, a code consumer 
not only checks the validity of the answer table but it also 
(re-)generates a trustworthy verification condition, as it is 
done by the supplier in the above figure. 

Regarding the definition of the Analysis Checker, the whole 
validation process is centered around the following observa-
tion: the checking algorithm can be defined as a very sim-
plified "one-pass" analyzer [1]. Intuitively since the certifi­
cation process already provides the fixpoint result as certifi­
cate, an additional analysis pass over it cannot change the 
result. Thus, as long as the answer table is valid, one single 
execution of the abstract interpreter validates the certificate. 
The definition of the checker can be found in [1]. 



The remaining of the paper is organized as follows. Section 2 
describes an implementation of our certification system in 
the context of CiaoPP[14] and illustrates the main aspects by 
means of some experiments at work. In Section 3, we discuss 
the application of our framework in the área of pervasive 
computing systems. Finally, Section 4 concludes and points 
out several directions for further research. 

vmul(VO,VI,Result). 

vmul([],[] ,0). 
vmul ([Hl I TI] , [H2IT2] , Result):-

vmul(Tl,T2, Newresult), 

Product is H1*H2, 

Result is Product+Newresult. 

2. SOME EXPERIMENTS IN CIAOPP 
The above abstract interpretation-based code certification 
framework has been implemented in CiaoPP [14]: the prepro-
cessor of the Ciao program development system [3]. Ciao is 
a multi-paradigm programming system, allowing program-
ming in logic, constraint, and functional styles. At the heart 
of Ciao is an efficient logic programming-based kernel lan-
guage. This allows the use of the very large body of approx-
imation domains, inference techniques and tools for abstract 
interpretation-based semantic analysis which have been de-
veloped to a powerful and mature level in this área (see, e.g., 
[18, 5, 12, 15] and their references). These techniques and 
systems can approximate at compile-time, always safely, and 
with a significance degree of precisión, a wide range of prop-
erties which is much richer than, for example, traditional 
types. This includes data structure shape (including pointer 
sharing), independence, bounds on data structure sizes, and 
other operational variable instantiation properties as well 
as procedure-level properties such as determinacy, termina-
tion, non-failure and bounds on resource consumption (time 
or space cost). The latter tasks are performed in an in-
tegrated fashion in CiaoPP. The fundamental functionality 
behind CiaoPP is static global program analysis based on 
abstract interpretation. For this task CiaoPP uses the PLAI 
abstract interpreter including extensions for, e.g., incremen-
tally [15], modularity [4, 21], analysis of constraints [13] and 
analysis of concurrency [17]. 

In the context of CiaoPP, the abstract interpretation-based 
certification system is implemented in Ciao 1.11#200 [3] 
with compilation to bytecode. In essence, we have used the 
efficient, highly optimized, state-of-the-art analysis system 
of CiaoPP (which is part of a working compiler) as fixpoint 
analyzer for generating safety certificates. The checker has 
been implemented also as a simplification of such generic 
abstract interpreter. Our aim here is to present not the 
techniques used by CiaoPP for code certification (which are 
described in [1]) but its main functionalities by means of 
some examples. 

Example 1. The next program mmultiply multiplies two 
matrices by using two auxiliary predicates: mult iply which 
performs the multiplication of a matrix and an array and 
vmul which computes the vectorial product of two arrays 
(by multiplying all their elements): 

mmultiply( [ ] , _ , [ ] ) . 
mmultiply([VO|Rest], VI, [Result I Others] ) : -

mmultiply(Rest, VI, Others), 

multiply(VI,V0,Result). 

mult ip ly( [ ] , _ , [ ] ) . 
mult iply ([V01 Rest] , VI, [Result I Others] ) : -

mul t ip ly(Rest , VI, Others) , 

One of the distinguishing features of logic programming is 
that arguments to procedures can be uninstantiated vari­
ables. This, together with the search execution mechanism 
available (generally backtracking) makes it possible to have 
multi-directional procedures. Le., rather than having fixed 
input and output arguments, execution can be "reversed". 
Thus, we may compute the "input" arguments from known 
"output" arguments. However, predicate i s / 2 (used as an 
infix binary operator) is mono-directional. It computes the 
arithmetic valué of its second (right) argument and unifies 
it with its first (left) argument. The execution of i s with 
an uninstantiation rightmost argument results in a run-time 
error. Therefore, a safety issue in this example is to ensure 
that calis to the built-in predicate i s are performed with 
ground data in the right argument. 

We can infer this safety information by analyzing the above 
program in CiaoPP using a mode and independence analysis 
("sharing+freeness"). In the "sharing+freeness" domain, 
var denotes variables that do not point yet to any data 
structure, mshare denotes pointer sharing patterns between 
variables and ground variables which point to data struc-
tures which contain no pointers. The analysis is performed 
with the following entry assertion which allows specifying a 
restricted class of calis to the predicate. 

: - entry mmultiply(X,Y,Z):( var (Z) , ground(X), 
ground(Y) ) . 

It denotes that calis to mmultiply will be performed with 
ground terms in the first two arguments and a free variable 
in the last one. 

For the above entry, the output of CiaoPP yields the follow­
ing set of assertions which constitute our safety certifícate: 

:- true pred mmultiply(A,B,C) 

mshare ([[C]]), var (C) , ground ( [A, B] ) ) 
ground([A,B,C]) ). 

true pred multiply(A,B,C) 

mshare ([[C]]), var (C) , ground ( [A, B] ) ) 
ground([A,B,C]) ). 

true pred vmul(A,B,C) 

mshare ( [ [ C ] ] ) , var (C) , ground ( [A, B] ) ) 
ground([A,B,C]) ). 

true pred A is B+C 

mshare ([ [A] ] ) ,var(A) ,ground( [B, C] ) ) 

ground([A,B,C]) ). 
true pred A is B*C 

mshare ( [ [A] ] ) ,var(A) , ground( [B, C] ) ) 
ground([A,B,C]) ) . 

The "true pred" assertions above specify in a combined 



way properties of both: ":" the entry (i.e., upon calling) 
and "=>" the exit (i.e., upon success) points of all calis to the 
predícate. For instance, the last two assertions for predícate 
i s express that the leftmost argument is a free unaliased 
variable while the rightmost arguments are input valúes (i.e., 
ground on cali) when i s is called (:). Upon success, all three 
arguments will get instantiated. Given this information, we 
can verify that the safety condition is accomplished and thus 
the code is safe to run. Thus, the above analysis output can 
be used as a certifícate to attest a safe use of predícate i s . 

The above experiment has been performed using a shar-
ing+freeness domain. However, the whole method is domain-
independent. This allows plugging in different abstract do-
mains, provided suitable interfacing functions are defined. 
From the user point of view, it is sufñcient to specify the par­
ticular abstract domain desired. For instance, CiaoPP can 
also infer (parametric) types for programs both at the pred­
ícate level and at the literal level [10, 11, 23]. Clearly, type 
information is very useful for program certification, verifica-
tion, optimization, debugging (see, e.g., [14]). 

Example 2. Our next experiment uses the regular type do­
main eterms [23] to analyze the same program of Ex. 1. We 
use in our examples term as the most general type (i.e., it 
corresponds to all possible terms), l i s t to represent lists 
and num for numbers. We also allow parametric types such 
as l i s t (T) which denotes lists whose elements are all of type 
T. Type l i s t is clearly equivalent to l i s t ( t e r m ) . 

The program is analyzed w.r.t. the following entry assertion 
which specifies that calis to mmultiply are performed with 
matrices in the first two arguments: 

: - entry mmultiply(X,Y,Z) 
: ( v a r ( Z ) , l i s t ( X , l i s t ( n u m ) ) , l i s t ( Y , l i s t ( n u m ) ) ) . 

CiaoPP output yields, among other, the following assertions 
for the built-in predícate i s : 

: - t rue pred A i s B+C 
: ( term(A),num(B),num(C) ) 

=> ( num(A),num(B),num(C) ) . 

: - t rue pred A i s B*C 
: ( term(A),num(B),num(C) ) 

=> ( num(A),num(B),num(C) ) . 

They indícate that calis to i s will be performed with num­
bers in the rightmost argument (thus, ground terms) and 
will return, upon success, a number in the first argument. 
Therefore, they also constitute a valid (and more precise) 
certifícate for the safety issue described in Ex. 1. 

It is also interesting to note that properties natively under-
stood by different analysis domains can be combined in the 
same assertion [14] (c.f. Example 3). 

3. APPLICATIONS IN PERVASIVE COM-
PUTING 

Pervasive computing platforms are becoming ever smaller 
and more powerful, and are embedded everywhere, even in 
living organisms. They can contain sophisticated models of 
our personal environment that help us to make everyday de-
cisions; they have the power to do mathematical and logical 
reasoning in order to perform intelligent tasks. As a result, 
verification and validation techniques have to keep pace with 
the huge requirements for intelligent, user-oriented applica-
tions that must run on devices with a mínimum of com­
puting resources. In this context, there is a large number 
of computing devices which may range from personal com-
puters to PDAs, mobile phones, dedicated processors, smart 
cards, wearable computers and such like. Such devices are 
often characterized by having a relatively small amount of 
computing resources [24]. As a result, time efficiency is an 
issue since often these devices have to opérate on real-time 
tasks. Also, and possibly more importantly, memory effi­
ciency is an issue. If either the software used is too large to 
fit in the device or needs too much memory to run, then it 
is simply not possible to use such software. 

Abstract interpretation-based techniques are able to reason 
about computational properties which can be useful for con-
trolling efficiency issues in the context of pervasive comput­
ing systems. For instance, CiaoPP can infer lower and upper 
bounds on the sizes of terms and the computational cost of 
predicates [8, 9]. Cost bounds are expressed as functions 
on the sizes of the input arguments and yield the num­
ber of resolution steps. Various measures can be used for 
the "size" of the input, such as list-length, term-size, term-
depth, integer-value, etc. The idea is that the system can 
disregard code which makes requirement that are too large 
in terms of computing resources (in time and/or space). Let 
us see an example. 

Example 3. The following program i n c a l í increments 
all elements of a list by adding one to each of them. 

i n c a l í ([] , [ ] ) . 
i n c a l í ([HIT] , [NH|NT]) : -

NH i s H+l, 
i n c a l í (T, NT). 

The following assertions have been added by the user of the 
pervasive computing system: 

: - entry inc_all(A,B) : ( l i s t (A,num) ,var (B)) . 
: - check c a l i s i n c a l í (A,B) 

: l i s t (A,num). 
: - check success inc_all(A,B) 

=> l i s t (B,num). 
: - check comp inc_all(A,B) 

: ( l i s t (A,num), var(B) ) 
+ s teps_ub(length(A)+l) . 

The entry assertion specifies that calis to i n c a l í must be 
performed with a list of numbers in the first argument while 
the second one must be a free variable. The next three check 



assertions express the intended semantics of the program. 
In particular, the second one is somehow trivial to verify for 
the given entry. The third one intends to check that, upon 
success, the second argument of calis to i n c a l í will be a list 
of numbers. Finally, the last computational (comp) assertion 
tries to verify that the upper bound of the predicate is the 
sum of the length of the first list and one. The idea is 
that the code will be accepted provided all assertions can be 
checked. 

The cost analysis available in CiaoPP infers, among others, 
the following assertions for the above program and enfries: 

:- checked calis inc_all(A,B) 

: list(A,num). 
:- checked success inc_all(A,B) 

=> list(B,num). 
:- checked comp inc_all(A,B) 

: ( list(A,num) , var(B) ) 

+ steps_ub(inc_all(A,B),length(A)+l). 
:- true pred inc_all(A,B) 

: ( list(A,num) , var(B) ) 
=> ( list(A,num), list(B,num)) 

+ ( no t_ fa i l s , i s_de t , s t eps_ub( leng th (A)+1) ) . 

Therefore, the status of the last three check assertions has 
become checked, which means that they have been vali-
dated and thus the program is safe to run (according to 
the intended meaning). The last procedure-level assertion 
merges them all and, additionally, indicates that calis to the 
predicate do not fail and their execution is deterministic by 
combining information available for other abstract domains. 

Apart from expressing relevant properties, when developing 
software for deployment on Smart Cards (and similar am-
bient computing devices), two more important issues arise: 
1) Pervasive computing is characterized by having a rela-
tively large number of untrusted computing devices which 
interact. Thus, when modeling such a system, it is not real-
istic to consider one device in isolation: it will receive plenty 
of mobile data from the environment. In this context, the 
safety of the deployed software is crucial, as the cost of re-
calling unfit devices can be prohibitive. 2) It is essential 
to simplify the (safety) verification process and reduce its 
resource usage. Indeed, Smart Cards typically provide less 
than 4Kb of RAM while it is possible to use only up to 
128Kb for storing the application and static data. Such 
resource considerations tend to dominate the development 
process for pervasive systems, forcing developers to write 
low-level code from scratch, as mobile system developers 
have found in their own experience. 

PCC techniques—based on certificates which are computed 
outside the device—constitute a good scenario for the cer-
tification of software deployed in pervasive systems. They 
compute tamper-proof certificates which simplify code ver­
ification and pass them along with the code. In our ab­
stract interpretation-based context, although global analy­
sis is now routinely used as a practical tool, it is still un-
acceptable to run the whole analyzer to validate the cer­
tifícate as it involves considerable cost. One of the main 

reasons is that the fixpoint algorithm is an iterative pro­
cess which often computes answers (repeatedly) for the same 
cali due to possible updates introduced by further compu-
tations. At each iteration, the algorithm has to manipúlate 
rather complex data structures—which involve performing 
updates, lookups, etc.—until the fixpoint is reached. Luck-
ily, in abstract interpretation-based code certification, the 
burden on the consumer side is reduced by using a simple 
one-traversal checker, which is a very simplified and efficient 
abstract interpreter which does not need to compute a fix­
point. The benchmark results in [1] show that the speedup 
achieved by the checking is approximately 1.63 in just anal­
ysis time which, we believe, makes our approach practically 
applicable in pervasive contexts. 

A similar proposal is presented in [22] to split the type-based 
bytecode verification of the KVM (an embedded variant of 
the JVM) in two phases, where the producer first computes 
the certifícate by means of a type-based dataflow analyzer 
and then the consumer simply checks that the types pro­
vided in the code certifícate are valid. This approach is 
extended in [16] to real world Java Software. As in our 
case, the validation can be done in a single, linear pass over 
the bytecode. However, these approaches are designed lim-
ited to types, whereas our approach supports a very rich set 
of domains especially well-suited for this purpose, including 
complex properties such as computational and memory cost, 
non-failure, determinacy, etc. (as we have seen in the exam-
ples in this section) and possibly even combining several of 
them. 

Let us mention that, while our approach is general to other 
programming paradigms, we develop it for concreteness in 
the context of (Constraint) Logic Programming because this 
paradigm offers a good number of advantages, especially the 
maturity and sophistication of the analysis tools available. 

4. CONCLUSIONS 
Abstract interpretation-based verification forms the córner 
stone of the safety model of CiaoPP: the preprocessor of the 
Ciao multi-paradigm programming system. It ensures the 
integrity of the runtime environment even in the presence of 
untrusted code. The framework uses modular, incremental, 
abstract interpretation as a fundamental tool to infer infor­
mation about programs. This information is used to certify 
and validate programs, to detect bugs with respect to partial 
specifications written using program assertions, to genérate 
and simplify run-time tests and to perform high-level op-
timizations such as múltiple abstract specialization, paral-
lelization, and resource usage control. Among these applica-
tions, we herein focus on the use of abstract interpretation-
based verification for the purpose of mobile code safety by 
following the standard PCC methodology. We report on 
some experiments in CiaoPP at work which illustrate how 
the actual process of program certification is aided in an 
implementation of this framework. We also discuss the ap­
plication of abstract interpretation-based code certification 
to the área of pervasive computing systems, which may lack 
computing resources to perform static analysis. We point 
out that computational properties inferred by CiaoPP can 
be useful for controlling resource usage and filtering out 
mobile code which does not meet certain cost requirements. 
Also, the fact that our approach follows PCC techniques—in 



which the certifícate is generated outside the device—makes 
it potentially applicable in this pervasive context. However, 
controlling it in a perfect way proves far from obvious, and a 
range of challenging open problems remain as topics for fur­
ther research. For instance, we plan to study a more precise 
model of the memory requirements of small devices. The 
size of certificates needs to be minimized as much as possi-
ble to fit in such limited systems. We believe that they can 
be further reduced by omitting the information which has 
to be necessarily re-computed by the checker. This is the 
subject of ongoing research. 
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