
Abstract Interpretation-based Code Certification for
Pervasive Systems: Preliminary Experiments

Elvira Albert1

^chool of Computer Science
Complutense University of

Madrid
elvira@sip.ucm.es

Germán Puebla2

2School of Computer Science
Technical University of Madrid

{german,herme}@f¡. upm.es

Manuel Hermenegildo2-3

3Departments of Computer
Science and Electrical and

Computer Engineering
University of New México

ABSTRACT
Proof carrying code is a general methodology for certify-
ing that the execution of an untrusted mobile code is safe,
according to a predefined safety policy. The basic idea is
that the code supplier attaches a certifícate (or proof) to
the mobile code which, then, the consumer checks in order
to ensure that the code is indeed safe. The potential bene-
fit is that the consumer's task is reduced from the level of
proving to the level of checking, a much simpler task. Re-
cently, the abstract interpretation techniques developed in
logic programming have been proposed as a basis for proof
carrying code [1]. To this end, the certifícate is generated
from an abstract interpretation-based proof of safety. Intu-
itively, the verification condition is extracted from a set of
assertions guaranteeing safety and the answer table gener­
ated during the analysis. Given this information, it is rela-
tively simple and fast to verify that the code does meet this
proof and so its execution is safe. This extended abstract re-
ports on experiments which illustrate several issues involved
in abstract interpretation-based code certification. First, we
describe the implementation of our system in the context of
CiaoPP: the preprocessor of the Ciao multi-paradigm (con-
straint) logic programming system. Then, by means of some
experiments, we show how code certification is aided in the
implementation of the framework. Finally, we discuss the
application of our method within the área of pervasive sys-
tems which may lack the necessary computing resources to
verify safety on their own. We herein illustrate the rele-
vance of the information inferred by existing cost analysis
to control resource usage in this context. Moreover, since

the (rather complex) analysis phase is replaced by a sim­
pler, efficient checking process at the code consumer side,
we believe that our abstract interpretation-based approach
to proof-carrying code becomes practically applicable to this
kind of systems.

1. THE FRAMEWORK
Current approaches to mobile code safety, inspired by the
technique oí Proof-Carrying Code (PCC) [19], associate safety
information in the form of a certifícate to programs. The cer­
tifícate (or proof) is created by the code supplier at compile
time, and packaged along with the untrusted code. The con­
sumer who receives the code+certificate package can then
run a checker which by a straightforward inspection of the
code and the certifícate, can verify the validity of the cer­
tifícate and thus compliance with the safety policy. The key
benefit of this approach is that the burden of ensuring com­
pliance with the desired safety policy is shifted from the con­
sumer to the supplier. Indeed the (proof) checker performs
a task that should be much simpler, efficient, and automatic
than generating the original certifícate. For instance, in the
first PCC system [19], the certifícate is originally a proof
in first-order logic of certain verification conditions and the
checking process involves ensuring that the certifícate is in­
deed a valid first-order proof.

The main practical difficulty of PCC techniques is in gener­
ating safety certificates which at the same time:

• allow expressing interesting safety properties,

• can be generated automatically and,

• are easy and efficient to check.

In [1], the abstract interpretation techniques [6] developed
in logic programming1 are proposed as a basis for PCC.
They offer a number of advantages for dealing with the afore-
mentioned issues. In particular, the expressiveness of exist­
ing abstract domains will be implicitly available in abstract
interpretation-based code certification to define a wide range
of safety properties. Furthermore, the approach inherits
the automation and inference power of the abstract inter­
pretation engines used in (Constraint) Logic Programming,
(C)LP.
1We refer to [2, 7, 15], and their references, for more details
on analysis techniques developed in logic programming.

mailto:elvira@sip.ucm.es
http://upm.es

Domain

Fixpoint |
Analyzer 1

Answer
Table — *- (VCGen) *

v

Verification
Condition

'
| Valic

1

atorj

1

Valid
Certificate

Program
with entries

y
"•^[Safety]

I^PolicyJ

Y

Safety
Assertions

CODE

SUPPLIER

Figure 1: Abstract Interpretation-based Mobile
Code Certiñcation in CiaoPP

1.1 Certification in the Supplier
In Fig. 1, we illustrate the certification process of [1] carried
out to genérate a safety certificate by the code supplier. It
is based on the idea that a particular subset of the analy-
sis results computed by abstract interpretation-based fixpoint
algorithms can play the role of certificate for attesting pro­
gram safety [1]. The certification process consists in four
main steps which are described below.

Safety Policy.
A subset of the high-level assertion language of [20] is used
to define the safety policy in the context of CLP programs.
Assertions are syntactic objects which allow us to express
"abstract"—i.e. symbolic—properties over different abstract
domains. Examples are assertions which state information
on entry points to a program module, assertions which de­
scribe properties of built-ins, assertions which provide some
type declarations, cost bounds, etc. The certification pro­
cess starts from an initial program and an abstract domain
and obtains a set of safety assertions from the predefined
assertions for system predicates and those provided by the
user. The Safety Policy consists in guaranteeing that safety
assertions hold for the given program (and entries) in the
context of the desired abstract domain.

Fixpoint Analyzer.
A main idea in [1] is that the certificate is automatically gen-
erated by a fixpoint abstract interpretation-based analyzer.
In particular, the goal dependent (a.k.a. goal oriented) ana­
lyzer of [15] plays the role of Fixpoint Analyzer. This analysis
algorithm receives as input, in addition to the program and
the abstract domain, a set of calling patterns (or entries).
A calling pattern is a description of the calling modes into
the program. For simplicity, we assume that the program

comes enhanced with its entries. Due to space limitations,
and given that it is now well understood, we do not describe
here the fixpoint algorithm (details can be found in, e.g., [2,
15]). An interesting point to note is that analysis results
in [15] are represented by means of two data structures in
the output: the answer table and the are dependeney ta­
ble. In [1], we show that a particular subset of the analysis
results— namely the answer table—is sufficient for mobile
code certification.

Verification condition generator
Then, a verification condition generator, VCGen, computes
from the assertions and the answer table a verification con­
dition in order to attest compliance of the program with
respect to the safety policy. The formal definition of VC­
Gen is outside the scope of this paper (it can be found in
[1]). Intuitively, the verification condition is a conjunction of
boolean expressions whose validity ensures the consisteney
of a set of assertions w.r.t. the answer table computed by
the analyzer.

Validator
The condition is sent to an automatic Validator which at-
tempts to check its validity w.r.t. the answer table. This
validation may yield three different possible status: i) the
verification condition is indeed checked and the answer ta­
ble is considered a Valid Certificate, ii) it is disproved, and
thus the certificate is not valid and the code is definitely
not safe to run (we should obviously correct the program
before continuing the process); iii) it cannot be pro ved ñor
disproved, which may be due to several circumstances. For
instance, it can happen that the analysis is not able to in-
fer precise enough information to verify the conditions. The
user can then provide a more refined description of initial
calling patterns or choose a different, finer-grained, domain.
Although, it is not showed in the picture, in both the ii)
and iii) cases, the certification process needs to be restarted
until achieving a verification condition which meets i). If it
succeeds, the answer table constitutes a valid certificate and
can be sent to the consumer together with the program.

1.2 Validation in the Consumer
The validation process of [1] performed by the code con­
sumer is similar to the certification process described in
Fig. 1 by replacing the fixpoint analyzer by an Analysis
Checker. Indeed, the supplier sends the program together
with the certificate to the consumer and, to retain the safety
guarantees, the consumer can trust neither the code ñor the
certificate. Thus, in the validation process, a code consumer
not only checks the validity of the answer table but it also
(re-)generates a trustworthy verification condition, as it is
done by the supplier in the above figure.

Regarding the definition of the Analysis Checker, the whole
validation process is centered around the following observa-
tion: the checking algorithm can be defined as a very sim-
plified "one-pass" analyzer [1]. Intuitively since the certifi­
cation process already provides the fixpoint result as certifi­
cate, an additional analysis pass over it cannot change the
result. Thus, as long as the answer table is valid, one single
execution of the abstract interpreter validates the certificate.
The definition of the checker can be found in [1].

The remaining of the paper is organized as follows. Section 2
describes an implementation of our certification system in
the context of CiaoPP[14] and illustrates the main aspects by
means of some experiments at work. In Section 3, we discuss
the application of our framework in the área of pervasive
computing systems. Finally, Section 4 concludes and points
out several directions for further research.

vmul(VO,VI,Result).

vmul([],[] ,0).
vmul ([Hl I TI] , [H2IT2] , Result):-

vmul(Tl,T2, Newresult),

Product is H1*H2,

Result is Product+Newresult.

2. SOME EXPERIMENTS IN CIAOPP
The above abstract interpretation-based code certification
framework has been implemented in CiaoPP [14]: the prepro-
cessor of the Ciao program development system [3]. Ciao is
a multi-paradigm programming system, allowing program-
ming in logic, constraint, and functional styles. At the heart
of Ciao is an efficient logic programming-based kernel lan-
guage. This allows the use of the very large body of approx-
imation domains, inference techniques and tools for abstract
interpretation-based semantic analysis which have been de-
veloped to a powerful and mature level in this área (see, e.g.,
[18, 5, 12, 15] and their references). These techniques and
systems can approximate at compile-time, always safely, and
with a significance degree of precisión, a wide range of prop-
erties which is much richer than, for example, traditional
types. This includes data structure shape (including pointer
sharing), independence, bounds on data structure sizes, and
other operational variable instantiation properties as well
as procedure-level properties such as determinacy, termina-
tion, non-failure and bounds on resource consumption (time
or space cost). The latter tasks are performed in an in-
tegrated fashion in CiaoPP. The fundamental functionality
behind CiaoPP is static global program analysis based on
abstract interpretation. For this task CiaoPP uses the PLAI
abstract interpreter including extensions for, e.g., incremen-
tally [15], modularity [4, 21], analysis of constraints [13] and
analysis of concurrency [17].

In the context of CiaoPP, the abstract interpretation-based
certification system is implemented in Ciao 1.11#200 [3]
with compilation to bytecode. In essence, we have used the
efficient, highly optimized, state-of-the-art analysis system
of CiaoPP (which is part of a working compiler) as fixpoint
analyzer for generating safety certificates. The checker has
been implemented also as a simplification of such generic
abstract interpreter. Our aim here is to present not the
techniques used by CiaoPP for code certification (which are
described in [1]) but its main functionalities by means of
some examples.

Example 1. The next program mmultiply multiplies two
matrices by using two auxiliary predicates: mult iply which
performs the multiplication of a matrix and an array and
vmul which computes the vectorial product of two arrays
(by multiplying all their elements):

mmultiply([] , _ , []) .
mmultiply([VO|Rest], VI, [Result I Others]) : -

mmultiply(Rest, VI, Others),

multiply(VI,V0,Result).

mult ip ly([] , _ , []) .
mult iply ([V01 Rest] , VI, [Result I Others]) : -

mul t ip ly(Rest , VI, Others) ,

One of the distinguishing features of logic programming is
that arguments to procedures can be uninstantiated vari­
ables. This, together with the search execution mechanism
available (generally backtracking) makes it possible to have
multi-directional procedures. Le., rather than having fixed
input and output arguments, execution can be "reversed".
Thus, we may compute the "input" arguments from known
"output" arguments. However, predicate i s / 2 (used as an
infix binary operator) is mono-directional. It computes the
arithmetic valué of its second (right) argument and unifies
it with its first (left) argument. The execution of i s with
an uninstantiation rightmost argument results in a run-time
error. Therefore, a safety issue in this example is to ensure
that calis to the built-in predicate i s are performed with
ground data in the right argument.

We can infer this safety information by analyzing the above
program in CiaoPP using a mode and independence analysis
("sharing+freeness"). In the "sharing+freeness" domain,
var denotes variables that do not point yet to any data
structure, mshare denotes pointer sharing patterns between
variables and ground variables which point to data struc-
tures which contain no pointers. The analysis is performed
with the following entry assertion which allows specifying a
restricted class of calis to the predicate.

: - entry mmultiply(X,Y,Z):(var (Z) , ground(X),
ground(Y)) .

It denotes that calis to mmultiply will be performed with
ground terms in the first two arguments and a free variable
in the last one.

For the above entry, the output of CiaoPP yields the follow­
ing set of assertions which constitute our safety certifícate:

:- true pred mmultiply(A,B,C)

mshare ([[C]]), var (C) , ground ([A, B]))
ground([A,B,C])).

true pred multiply(A,B,C)

mshare ([[C]]), var (C) , ground ([A, B]))
ground([A,B,C])).

true pred vmul(A,B,C)

mshare ([[C]]) , var (C) , ground ([A, B]))
ground([A,B,C])).

true pred A is B+C

mshare ([[A]]) ,var(A) ,ground([B, C]))

ground([A,B,C])).
true pred A is B*C

mshare ([[A]]) ,var(A) , ground([B, C]))
ground([A,B,C])) .

The "true pred" assertions above specify in a combined

way properties of both: ":" the entry (i.e., upon calling)
and "=>" the exit (i.e., upon success) points of all calis to the
predícate. For instance, the last two assertions for predícate
i s express that the leftmost argument is a free unaliased
variable while the rightmost arguments are input valúes (i.e.,
ground on cali) when i s is called (:). Upon success, all three
arguments will get instantiated. Given this information, we
can verify that the safety condition is accomplished and thus
the code is safe to run. Thus, the above analysis output can
be used as a certifícate to attest a safe use of predícate i s .

The above experiment has been performed using a shar-
ing+freeness domain. However, the whole method is domain-
independent. This allows plugging in different abstract do-
mains, provided suitable interfacing functions are defined.
From the user point of view, it is sufñcient to specify the par­
ticular abstract domain desired. For instance, CiaoPP can
also infer (parametric) types for programs both at the pred­
ícate level and at the literal level [10, 11, 23]. Clearly, type
information is very useful for program certification, verifica-
tion, optimization, debugging (see, e.g., [14]).

Example 2. Our next experiment uses the regular type do­
main eterms [23] to analyze the same program of Ex. 1. We
use in our examples term as the most general type (i.e., it
corresponds to all possible terms), l i s t to represent lists
and num for numbers. We also allow parametric types such
as l i s t (T) which denotes lists whose elements are all of type
T. Type l i s t is clearly equivalent to l i s t (t e r m) .

The program is analyzed w.r.t. the following entry assertion
which specifies that calis to mmultiply are performed with
matrices in the first two arguments:

: - entry mmultiply(X,Y,Z)
: (v a r (Z) , l i s t (X , l i s t (n u m)) , l i s t (Y , l i s t (n u m))) .

CiaoPP output yields, among other, the following assertions
for the built-in predícate i s :

: - t rue pred A i s B+C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

: - t rue pred A i s B*C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

They indícate that calis to i s will be performed with num­
bers in the rightmost argument (thus, ground terms) and
will return, upon success, a number in the first argument.
Therefore, they also constitute a valid (and more precise)
certifícate for the safety issue described in Ex. 1.

It is also interesting to note that properties natively under-
stood by different analysis domains can be combined in the
same assertion [14] (c.f. Example 3).

3. APPLICATIONS IN PERVASIVE COM-
PUTING

Pervasive computing platforms are becoming ever smaller
and more powerful, and are embedded everywhere, even in
living organisms. They can contain sophisticated models of
our personal environment that help us to make everyday de-
cisions; they have the power to do mathematical and logical
reasoning in order to perform intelligent tasks. As a result,
verification and validation techniques have to keep pace with
the huge requirements for intelligent, user-oriented applica-
tions that must run on devices with a mínimum of com­
puting resources. In this context, there is a large number
of computing devices which may range from personal com-
puters to PDAs, mobile phones, dedicated processors, smart
cards, wearable computers and such like. Such devices are
often characterized by having a relatively small amount of
computing resources [24]. As a result, time efficiency is an
issue since often these devices have to opérate on real-time
tasks. Also, and possibly more importantly, memory effi­
ciency is an issue. If either the software used is too large to
fit in the device or needs too much memory to run, then it
is simply not possible to use such software.

Abstract interpretation-based techniques are able to reason
about computational properties which can be useful for con-
trolling efficiency issues in the context of pervasive comput­
ing systems. For instance, CiaoPP can infer lower and upper
bounds on the sizes of terms and the computational cost of
predicates [8, 9]. Cost bounds are expressed as functions
on the sizes of the input arguments and yield the num­
ber of resolution steps. Various measures can be used for
the "size" of the input, such as list-length, term-size, term-
depth, integer-value, etc. The idea is that the system can
disregard code which makes requirement that are too large
in terms of computing resources (in time and/or space). Let
us see an example.

Example 3. The following program i n c a l í increments
all elements of a list by adding one to each of them.

i n c a l í ([] , []) .
i n c a l í ([HIT] , [NH|NT]) : -

NH i s H+l,
i n c a l í (T, NT).

The following assertions have been added by the user of the
pervasive computing system:

: - entry inc_all(A,B) : (l i s t (A,num) ,var (B)) .
: - check c a l i s i n c a l í (A,B)

: l i s t (A,num).
: - check success inc_all(A,B)

=> l i s t (B,num).
: - check comp inc_all(A,B)

: (l i s t (A,num), var(B))
+ s teps_ub(length(A)+l) .

The entry assertion specifies that calis to i n c a l í must be
performed with a list of numbers in the first argument while
the second one must be a free variable. The next three check

assertions express the intended semantics of the program.
In particular, the second one is somehow trivial to verify for
the given entry. The third one intends to check that, upon
success, the second argument of calis to i n c a l í will be a list
of numbers. Finally, the last computational (comp) assertion
tries to verify that the upper bound of the predicate is the
sum of the length of the first list and one. The idea is
that the code will be accepted provided all assertions can be
checked.

The cost analysis available in CiaoPP infers, among others,
the following assertions for the above program and enfries:

:- checked calis inc_all(A,B)

: list(A,num).
:- checked success inc_all(A,B)

=> list(B,num).
:- checked comp inc_all(A,B)

: (list(A,num) , var(B))

+ steps_ub(inc_all(A,B),length(A)+l).
:- true pred inc_all(A,B)

: (list(A,num) , var(B))
=> (list(A,num), list(B,num))

+ (no t_ fa i l s , i s_de t , s t eps_ub(leng th (A)+1)) .

Therefore, the status of the last three check assertions has
become checked, which means that they have been vali-
dated and thus the program is safe to run (according to
the intended meaning). The last procedure-level assertion
merges them all and, additionally, indicates that calis to the
predicate do not fail and their execution is deterministic by
combining information available for other abstract domains.

Apart from expressing relevant properties, when developing
software for deployment on Smart Cards (and similar am-
bient computing devices), two more important issues arise:
1) Pervasive computing is characterized by having a rela-
tively large number of untrusted computing devices which
interact. Thus, when modeling such a system, it is not real-
istic to consider one device in isolation: it will receive plenty
of mobile data from the environment. In this context, the
safety of the deployed software is crucial, as the cost of re-
calling unfit devices can be prohibitive. 2) It is essential
to simplify the (safety) verification process and reduce its
resource usage. Indeed, Smart Cards typically provide less
than 4Kb of RAM while it is possible to use only up to
128Kb for storing the application and static data. Such
resource considerations tend to dominate the development
process for pervasive systems, forcing developers to write
low-level code from scratch, as mobile system developers
have found in their own experience.

PCC techniques—based on certificates which are computed
outside the device—constitute a good scenario for the cer-
tification of software deployed in pervasive systems. They
compute tamper-proof certificates which simplify code ver­
ification and pass them along with the code. In our ab­
stract interpretation-based context, although global analy­
sis is now routinely used as a practical tool, it is still un-
acceptable to run the whole analyzer to validate the cer­
tifícate as it involves considerable cost. One of the main

reasons is that the fixpoint algorithm is an iterative pro­
cess which often computes answers (repeatedly) for the same
cali due to possible updates introduced by further compu-
tations. At each iteration, the algorithm has to manipúlate
rather complex data structures—which involve performing
updates, lookups, etc.—until the fixpoint is reached. Luck-
ily, in abstract interpretation-based code certification, the
burden on the consumer side is reduced by using a simple
one-traversal checker, which is a very simplified and efficient
abstract interpreter which does not need to compute a fix­
point. The benchmark results in [1] show that the speedup
achieved by the checking is approximately 1.63 in just anal­
ysis time which, we believe, makes our approach practically
applicable in pervasive contexts.

A similar proposal is presented in [22] to split the type-based
bytecode verification of the KVM (an embedded variant of
the JVM) in two phases, where the producer first computes
the certifícate by means of a type-based dataflow analyzer
and then the consumer simply checks that the types pro­
vided in the code certifícate are valid. This approach is
extended in [16] to real world Java Software. As in our
case, the validation can be done in a single, linear pass over
the bytecode. However, these approaches are designed lim-
ited to types, whereas our approach supports a very rich set
of domains especially well-suited for this purpose, including
complex properties such as computational and memory cost,
non-failure, determinacy, etc. (as we have seen in the exam-
ples in this section) and possibly even combining several of
them.

Let us mention that, while our approach is general to other
programming paradigms, we develop it for concreteness in
the context of (Constraint) Logic Programming because this
paradigm offers a good number of advantages, especially the
maturity and sophistication of the analysis tools available.

4. CONCLUSIONS
Abstract interpretation-based verification forms the córner
stone of the safety model of CiaoPP: the preprocessor of the
Ciao multi-paradigm programming system. It ensures the
integrity of the runtime environment even in the presence of
untrusted code. The framework uses modular, incremental,
abstract interpretation as a fundamental tool to infer infor­
mation about programs. This information is used to certify
and validate programs, to detect bugs with respect to partial
specifications written using program assertions, to genérate
and simplify run-time tests and to perform high-level op-
timizations such as múltiple abstract specialization, paral-
lelization, and resource usage control. Among these applica-
tions, we herein focus on the use of abstract interpretation-
based verification for the purpose of mobile code safety by
following the standard PCC methodology. We report on
some experiments in CiaoPP at work which illustrate how
the actual process of program certification is aided in an
implementation of this framework. We also discuss the ap­
plication of abstract interpretation-based code certification
to the área of pervasive computing systems, which may lack
computing resources to perform static analysis. We point
out that computational properties inferred by CiaoPP can
be useful for controlling resource usage and filtering out
mobile code which does not meet certain cost requirements.
Also, the fact that our approach follows PCC techniques—in

which the certifícate is generated outside the device—makes
it potentially applicable in this pervasive context. However,
controlling it in a perfect way proves far from obvious, and a
range of challenging open problems remain as topics for fur­
ther research. For instance, we plan to study a more precise
model of the memory requirements of small devices. The
size of certificates needs to be minimized as much as possi-
ble to fit in such limited systems. We believe that they can
be further reduced by omitting the information which has
to be necessarily re-computed by the checker. This is the
subject of ongoing research.

5. REFERENCES
[1] E. Albert, G. Puebla, and M. Hermenegildo. An

Abstract Interpretation-based Approach to Mobile
Code Safety. Technical Report CLIP8/2003.0,
Technical University of Madrid, School of Computer
Science, UPM, November 2003.

[2] M. Bruynooghe. A Practical Framework for the
Abstract Interpretation of Logic Programs. Journal of
Logic Programming, 10:91-124, 1991.

[3] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. López-García, and G. Puebla. The Ciao Prolog
System. Reference Manual (vi.8). The Ciao System
Documentation Series-TR CLIP4/2002.1, School of
Computer Science, Technical University of Madrid
(UPM), May 2002. System and on-line versión of the
manual available at
h t t p : / / c l i p . d i a . f i . upm.e s /So f twa re /C iao / .

[4] F. Bueno, M. García de la Banda, M. Hermenegildo,
K. Marriott, G. Puebla, and P. Stuckey. A Model for
ínter-module Analysis and Optimizing Compilation.
In Logic-based Program Synthesis and Transformation,
number 2042 in LNCS, pages 86-102. Springer-Verlag,
March 2001.

[5] B. Le Charlier and P. Van Hentenryck. Experimental
Evaluation of a Generic Abstract Interpretation
Algorithm for Prolog. ACM Transactions on
Programming Languages and Systems, 16(1):35-101,
1994.

[6] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of
Programming Languages, pages 238-252, 1977.

[7] Patrick Cousot and Radhia Cousot. Abstract
interpretation and application to logic programs. The
Journal of Logic Programming, 13(2 and 3):103-179,
1992.

[8] S.K. Debray, P. López-García, M. Hermenegildo, and
N.-W. Lin. Estimating the Computational Cost of
Logic Programs. In Static Analysis Symposium,
SAS'94, number 864 in LNCS, pages 255-265, Namur,
Belgium, September 1994. Springer-Verlag.

[9] S.K. Debray, P. López-García, M. Hermenegildo, and
N.-W. Lin. Lower Bound Cost Estimation for Logic
Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge,
MA, October 1997.

[10] J. Gallagher and D. de Waal. Fast and Precise
Regular Approximations of Logic Programs. In Proc.
ofICLP'94, pages 599-613. MIT Press, 1994.

[11] J. Gallagher and G. Puebla. Abstract Interpretation
over Non-Deterministic Finite Tree Autómata for
Set-Based Analysis of Logic Programs. In Fourth
International Symposium on Practical Aspects of
Declarative Languages, number 2257 in LNCS, pages
243-261. Springer-Verlag, January 2002.

[12] J.P. Gallagher and D.A. de Waal. Fast and precise
regular approximations of logic programs. In Pascal
Van Hentenryck, editor, Proc. of the llth
International Conference on Logic Programming,
pages 599-613. MIT Press, 1994.

[13] M. García de la Banda, M. Hermenegildo,
M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Global Analysis of Constraint Logic
Programs. ACM Transactions on Programming
Languages and Systems, 18(5):564-615, September
1996.

[14] M. Hermenegildo, G. Puebla, F. Bueno, and
P. López-García. Program Development Using
Abstract Interpretation (and The Ciao System
Preprocessor). In lOth International Static Analysis
Symposium (SAS'03), number 2694 in LNCS, pages
127-152. Springer-Verlag, June 2003.

[15] M. Hermenegildo, G. Puebla, K. Marriott, and
P. Stuckey. Incremental Analysis of Constraint Logic
Programs. ACM Transactions on Programming
Languages and Systems, 22(2):187-223, March 2000.

[16] K. Klohs and U. Kastens. Memory Requirements of
Java Bytecode Verification on Limited Devices. In
Proc. of Compiler Optimization meets Compiler
Verification (COCV'04), 2004.

[17] K. Marriott, M. García de la Banda, and
M. Hermenegildo. Analyzing Logic Programs with
Dynamic Scheduling. In 20th. Annual ACM Conf. on
Principies of Programming Languages, pages 240-254.
ACM, January 1994.

[18] K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract
Interpretation. Journal of Logic Programming, 13(1, 2,
3 and 4):315-347, 1992.

[19] G. Necula. Proof-Carrying Code. In Proc. of
POPL'97, pages 106-119. ACM Press, 1997.

[20] G. Puebla, F. Bueno, and M. Hermenegildo. An
Assertion Language for Constraint Logic Programs. In
Analysis and Visualization Tools for Constraint
Programming, pages 23-61. Springer LNCS 1870,
2000.

[21] G. Puebla, J. Correas, M. Hermenegildo, F. Bueno,
M. García de la Banda, K. Marriott, and P. J.
Stuckey. A Generic Framework for Context-Sensitive
Analysis of Modular Programs. In M. Bruynooghe and
K. Lau, editors, Program Development in
Computational Logic, A Decade of Research Advances

http://clip.dia.fi.upm.es/Software/Ciao/

in Logic-Based Program Development, number 3049 in
LNCS, pages 234-261. Springer-Verlag, Heidelberg,
Germany, August 2004.

[22] K. Rose, E. Rose. Lightweight bytecode verification.
In OOPSALA Workshop on Formal Underpinnings of
Java, 1998.

[23] C. Vaucheret and F. Bueno. More precise yet eíficient
type inference for logic programs. In Proc. of SAS'02,
pages 102-116. Springer LNCS 2477, 2002.

[24] M. Weiser. The computer for the twenty-first century.
Scientific American, 3(265):94-104, September 1991.

