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Abstract. Tabled evaluation has been proved an effective method to improve 
several aspeets of goal-oriented query evaluation, including termination and com-
plexity. Several "native" implementations of tabled evaluation have been devel-
oped which offer good performance, but many of them need significant changes 
to the underlying Prolog implementation. More portable approaches, generally 
using program transformation, have been proposed but they often result in lower 
efficieney. We explore some techniques aimed at combining the best of these 
worlds, i.e., developing a portable and extensible implementation, with minimal 
modifications at the abstract machine level, and with reasonably good perfor­
mance. Our preliminary results indícate promising results. 

1 Introduction 

Tabling [15,2,14] is a resolution strategy which tries to memoize previous calis and 
their answers in order to improve several well-known shortcomings found in SLD reso­
lution. Itbrings some of the advantages of bottom-up evaluation to the top-down, goal-
oriented evaluation strategy. In particular, evaluating logic programs under a tabling 
scheme may achieve termination in cases where SLD resolution does not (because of 
infi nite loops —for example, the tabled evaluation of bounded-term-size programs is 
guaranteed to always terminate). Also, programs which perform repeated computations 
can be greatly sped up. Program declarativeness is also improved since the order of 
clauses and goals within a clause is less relevant, if at all. Tabled evaluation has been 
successfully applied in many fi elds, such as deductive databases [10], program analy-
sis [16,3], reasoning inthe semantic Web [18], model checking [8], and others. 

In all cases the advantages of tabled evaluation stem from checking whether calis 
to tabled predicates, i.e., predicates which have been marked to be evaluated using 
tabling, have been made before. Repeated calis to tabled predicates consume answers 
from a table, they suspend when all stored answers have been consumed, and they 
fail when no more answers can be generated. However, the advantages are not without 
drawbacks. The main problem is the complexity of some (effi cient) implementations of 
tabled resolution, and a secondary issue is the diffi culty in selecting which predicates to 
table in order not to incur in undesired slow-downs. 
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Two main categories of tabling mechanisms can be distinguished: suspension-based 
and linear tabling mechanisms. In suspension-based mechanisms the computation state 
of suspended tabled subgoals has to be preserved to avoid backtracking over them. 
This is done either byfreezing the stacks, as in XSB [12], by copying to another área, 
as in CAT [5], or by using an intermedíate solution as in CHAT [6]. Linear tabling 
mechanisms maintain a single execution tree where tabled subgoals always extend the 
current computation without requiring suspensión and resumption of sub-computations. 
The computation of the (local) fi xpoint is performed by repeatedly looping subgoals 
until no more solutions can be found. Examples of this method are the linear tabling of 
BProlog [17] and the DRA scheme [7]. 

Suspension-based mechanism have achieved very good performance results but, in 
general, deep changes to the underlying Prolog implementation are required. Linear 
mechanisms, on the other hand, can usually be implemented on top of existing sequen-
tial engines without major modifi cations. One of our theses is that it should be possible 
to fi nd a combination of the best of both worlds: a suspension-based mechanism that 
is effi cient and does not require complex modifi cations to the underlying Prolog imple­
mentation, thus contributing to maintainability. Also, we would like to avoid introduc-
ing any overhead that would reduce the execution speed for SLD execution. 

Our starting point is the continuation cali mechanism [11]. This approach has the 
advantage that it indeed does not need deep changes to the underlying Prolog machin-
ery. On the other hand it has shown up to now worse effi ciency than the more "native" 
suspension-based implementations. Our aim is to analyze the bottlenecks of this ap­
proach, explore variations of it, and propose solutions in order to improve its effi ciency 
without losing much in implementation simplicity and portability. 

2 Tabling Basics 

We will now sketch how tabled evaluation works from a user point of view (more details 
can be found in [2,12]) and then we briefly describe the continuation cali mechanism 
implementation technique proposed in [11] on which we base our work. 

2.1 Tabling by Example 

Let us use as running example the program in Figure 1 (taken from [11]), where we 
can ignore the declaration : - t a b l e d p a t h / 2 (which instructs the compiler to use 
tabled execution for the designated predicate) for the moment, and assume that SLD 
resolution is to be used. The program is aimed at determining reachability of nodes in 
a graph, and a query such a s ? - p a t h (a , N ) . will never terminate as there is a 
left-recursive clause which generates a goal with the same instantiation as the initial 
cali. 

Adding the t a b l e d declaration forces the compiler and runtime system to distin-
guish the fi rst occurrence of a tabled goal (the generator) and subsequent calis which 
are identical up to variable renaming (the consumers). The generator uses resolution 
against the program clauses to derive answers for the goal. Consumers suspend the cur­
rent execution path (using implementation-dependent means) and move to a different 



path(X, Y ) : - slg(path(X, Y)). 
edge(a, b). 

edge(b, c). slg_path(X, Y, l d ) : -
edge(b, d). s | g c a | | (|d , path(X, Z), path_cont). 

slg.path(X, Y, l d ) : -
: - tabled path/2 edge(X, Y), 

answer(ld, path(X, Y)). 
path(X, Y ) : -

path(X, Z), path.cont(ld , path(X, Z ) ) : -
edge(Z, Y). edge(Z, Y), 

path(X, Y ) : - answer(ld, path(X, Y)). 
edge(X, Y). 

Fig. 2. Program in Figure 1 transformed for tabled ex-
Fig. 1. A simple tabled program. ecution. 

branch. When such an altemative branch fi nally succeeds, the answer generated for the 
initial query is inserted in a table associated with the original goal and makes it possible 
to reactivate suspended calis and to continué execution at the point where it was stopped 
— i.e., consumers do not use SLD resolution, but rather they obtain answers from the 
table where they had been previously inserted. 

Predicates not marked as tabled are executed following SLD resolution, hopefully 
without any (or minimal) overhead associated to the availability of tabling. 

2.2 A Concrete Technique: Continuation Cali 

The continuation cali technique presented by Ramesh and Chen in [11] implements 
tabling by a combination of program transformation and side effects in the form of 
insertions to and reads from an internally-maintained table which relates calis, answers, 
and the continuation code to be executed after consumers read answers from the table. 
We will now sketch how the mechanism works using the p a t h / 2 example shown in 
Figure 1, which is transformed into the program in Figure 2 —this code is what is 
actually executed. 

Roughly speaking, the transformation for tabling is as follows: a bridge predicate 
for p a t h / 2 is introduced so that calis to p a t h / 2 made from regular Prolog exe­
cution do not need to be aware that p a t h / 2 is tabled. s l g / 1 will ensure that its 
argument is evaluated to completion and it will return, on backtracking, all the Solu­
tions found for the tabled predicate. s l g / 1 introduces the cali in the answer table and 
generates an identifi er for it. Control is then passed to a new distinct predicate (in this 
case, s l g _ p a t h / 3 ) by constructing a term from p a t h (X, Y) (which is passed as 
argument to s l g / 1 ) and then calling this term, suitably instantiated, from inside the 
implementationof s l g / 1 . 4 The fi rst argument is the original cali to p a t h / 2 and the 
second one is the identifi er generated for the parent cali, which is used to relate oper-
ations on the table with this initial cali. Every clause of s l g _ p a t h / 3 is constructed 
from a clause of the original p a t h / 2 by: 

4 The new term is created, in this case, by prepending the prefix s lg_to the argument passed to 
s l g / 1 . Any means of constructing a new unique predicate symbol based on the original one 
is acceptable. Our implementation tries to do at compile time as much of this work as possible. 



path(X, Y ) : - slg(path(X, Y)). 

slg_path(path(X, 
edge(X, Y), 
slgcall (Id , | 

slg_path(path(X, 
edge(X, Y), 

Y), 

:x], 
Y), 

l d ) : -

path(Y, 
l d ) : -

answer(ld, path(X, Y)). 

Z), path. .contJ). 

: - tabled path/2. 

path(X, Z ) : -
edge(X, Y), 
path(Y, Z). 

path(X, Z ) : - path.cont.1 (Id , [X ] , path(Y, Z ) ) : -
edge(X, Z). answer(ld, path(X, Z)). 

Fig. 3. A program which needs to p¡g . 4. The program in Figure 3 after being transformed 
keep an environment. for tabled execution. 

- Addingananswer/2 primitiveatthe endof eachclauseof p a t h / 2 . a n s w e r / 2 
is responsible for checking for redundant answers and executing whatever contin-
uations (see next item) there may be associated with that cali identifi ed by its fi rst 
argument. 

- Instrumenting recursive calis to p a t h / 2 using s l g c a l l / 3 . Ifthetermpath (X, 
Y), passed as an argument, has already been inserted in the table, s l g c a l l / 3 cre-
ates a new consumer which reads answers from the table. It is otherwise inserted in 
the table with a new cali identifi er and execution follows against t h e s l g . p a t h / 3 
program clauses to derive new answers. In the fi rst case, p a t h . c o n t / 2 is associ­
ated as (one of) the continuation(s) of p a t h (X, Y) (its body being what remains 
of the clause body of p a t h / 2 after the recursive cali), and s l g c a l l / 3 fails. In 
the second case p a t h _ c o n t / 2 is only associated as a continuation of p a t h (X, 
Y) ifthe tabled cali cannot be completed. The continuation p a t h _ c o n t / 2 willbe 
activated by a n s w e r / 2 upon answer insertion or erased upon completion of the 
subgoalpath (X, Y). 

- p a t h _ c o n t / 2 and s l g _ p a t h / 3 are constructed in a similar way: the continua­
tion is applied the same transformation as the initial clauses and can cali s l g c a l l / 3 
and a n s w e r / 2 at appropriate times. 

As this strategy tries to complete subgoals as soon as possible, failing whenever 
new answers are found, it implements the so called local scheduling [12]. This imple-
mentation uses the same completion detection algorithm as the SLG-WAM. 

Figure 3 shows a variation of the program which requires slight modifi cations of 
the translation. Note that an answer t o ? - p a t h (x. Y) needs to give a valué to a 
variable (X) which does not appear in the recursive cali to p a t h / 2 . Therefore, if we 
follow the translation in Figure 2, this variable will not be available at the time where 
the answer is inserted in the table. The solution adopted in this case is to explicitly carry 
a set of variables when preparing the cali to the continuation. This set is also inserted in 
the table, and is passed to the continuation cali when resumed. 

The translation is shown in Figure 4. Note that the cali to s 1 ge a 11 / 4 in pa t h_c on t _1 
includes alist containing variable X. This listis, onresumption, receivedby pa th_cont_ l 
and used to construct and insert in the table an answer which includes X. A safe approx-



slgcall ( callid Parent, term Bindings, 
term Cali, term CCall) { 

Id = inserí Cali into answer table; 
if (Id.state == READY) { 

Id. state = EVALUATING; 
cali the transformed clause of Cali; 
check for completion; 

answer(callid Id , term Answer) { } 

inserí Answer in answer table consume answers for Id; 
If (Answer ^ answer table) if ( Id. state != COMPLETE) { 

for each continuation cali C Id depends on Parent; 
of tabled cali Id { add a new continuation 

cali (C) consuming Answer, cali (CCall, Bindings) to Id; 

} } 
return FALSE; return FALSE; 

} } 

Fig. 5. Pseudo-code for a n s w e r / 2 Fig. 6. Pseudo-code for s l g c a l l / 4 

imation of the variables which should appear in this list is the set of variables which 
appear in the clause before the tabled goal and which are used in the continuation, in-
cludingthe a n s w e r / 2 primitive if there is one inthe continuation—this isthe case in 
our example. Variables appearing in the tabled cali itself do not need to be included, as 
they will be passed along anyway. 

The list of bindings is a means to recover the environment existing when a cali is 
suspended. Other approaches recover this environment using e.g. lower-level mecha-
nisms, such as the forward trail of SLG-WAM plus freeze registers [12]. The continu­
ation cali approach, has, however, the nice property that several of the operations are 
made at the Prolog level through program transformation, which increases its portabil-
ity and simplifi es the implementation. On the other hand, the primitives which insert 
answers in the table and retrieve them are usually, and for effi ciency issues, written 
using some lower-level language and accessed using a suitable interface. 

The pseudo-code for a n s w e r / 2 and s l g c a l l / 4 is shown in Figure 5 and 6, 
respectively. The pseudo-code for s i g / 1 is similar to that of s l g c a l l / 4 but, instead 
of consuming answers, they are returned by backtracking and it fi nally fails when all 
the stored answers have been exhausted. 

2.3 Issues in the Continuation Cali Mechanism 

We have identifi ed two performance issues when implementing the technique sketched 
in the previous section. The fi rst one is rather general and related to the heavy use of 
the interface from C to Prolog (and back) that the implementation needs to make, and 
which adds an overhead which cannot be neglected. 

The second one is the repeated copy of continuation calis. Continuation calis (Pro­
log predicates with an arbitrarily long list of variables as an argument) are completely 
copied from Prolog memory to the table for every consumer found. Storing a pointer to 



these structures inmemory isnotenough, since s l g / 1 and s l g c a l l / 3 failimmedi-
ately after associating a continuation cali with a table cali in order to forcé the program 
to search for more solutions and complete the tabled cali. Therefore, the data structures 
created during forward execution may be removed on backtracking and not be avail-
able when needed. When continuations are resumed by a n s w e r / 2 , it is necessary to 
reconstruct them as Prolog terms from the data stored in the table to cali them as a goal. 
This can clearly have a negative impact on performance. 

Finally, the extensibility of the baseline implementation [13] is compromised since 
it was not capable of backtracking over Prolog predicates called from C. This would 
make it diffi cult to implement other scheduling strategies. Since this shortcoming may 
appear also in other C interfaces, it is a candidate to be avoided. 

3 An Improvement over the Continuation Cali Technique 

We will now devise some solutions to the drawbacks in the original implementation we 
described in Section 2.3. 

3.1 Using a Lower-Level Interface 

The calis C-to-Prolog were initially done using a relatively high-level interface simi­
lar to those commonly found in logic programming systems nowadays: operations to 
créate and traverse Prolog terms appear to the programmer as regular C functions, and 
details of the internal data representationwere hiddento the programmer. This interface 
imposed a noticeable overhead in our implementation, as the calis to C functions had to 
allocate environments, pass arguments, set up Prolog environments to cali Prolog from 
C, etc. 

Since the low-level code which constructs Prolog terms and performs calis from C 
is the same regardless the program being executed, we decided to skip the programmer 
interface and cali directly macros available in the engine implementation. Given that 
the complexity of the C code involved is certainly manageable, that was a not diffi cult 
task to do and it sped the execution up by a factor of 2.5 on average. 

3.2 Calling Prolog from C 

A relevant issue when using a C-to-Prolog interface is the need to cali Prolog goals from 
C effi ciently. This is needed both by s l g c a l l / 3 and a n s w e r / 2 in order to invoke 
continuations of tabled predicates. As mentioned before, we want to design a solution 
which relies as little as possible on non-widely available characteristics of C-to-Prolog 
interfaces (to improve implementation extensibility), and which keeps the effi ciency as 
high as possible. 

The solution we have adopted is to move calis to continuations from the C level to 
the Prolog level. Continuations are stored in a (Prolog) list which is pointed to from the 
corresponding table entry, and they are returned one at a time on backtracking using an 
extra argument of s l g c a l l / 3 and a n s we r / 2; these continuations are then called by 



path(X.Y) : - slg.path(path(X, Y),Sid) : -
slgcall (path(X, Y), Sid, edge(X, Z), 

true, Pred), slgcall (path(Z, Y), NewSid, 
( path_cont_1, Pred), 

nonvar(Pred) —> ( 
(cali (Pred); nonvar(Pred) — > 
test.complete(S¡d)) (call(Pred); 

; test_complete(NewSid)) 
true 

), true 
consume_answer(path(X, Y), Sid). ), 

read_answers(Sid, NewSid, [X], CCall, 0), 
slg.path(path(X, Y), S i d ) : - cali (CCall). 

edge(X, Y), 
answer(path(X, Y), Sid, CCall, 0), path_cont_1 (path(X, Y), Sid , [Z]) : -
cali (CCall). answer(path(Z, Y), Sid, CCall, 0), 

call(CCall). 

Fig. 7. New program transformation for right-recursive definition of p a t h / 2 

Prolog.5 Failure happens whenthere is no pending continuation cali. New continuations 
found in the program execuüon can be destructively inserted at the end of the list of 
continuations in a Prolog-transparent fashion 

In Figure 7 (which shows the translation we propose now for the code in Fig­
ure 3), a n s w e r / 4 , r e a d _ a n s w e r s / 5 , and s l g c a l l / 4 return in variables Pred 
and CCall the continuations of a tabled cali to be called as Prolog goals. This avoids 
using up C stack space due to repeated calis Prolog —> C —> Prolog —> . . . which 
may exhaust the available space. Additionally, the C code is somewhat simplifi ed (e.g., 
there is no need to set up a Prolog environment to be used from C) and a lower-
level, faster interface is easier to use. The last unused argument of a n s w e r / 4 (and 
r ead_answers /5 ) implements a trick to make the corresponding choicepoint have 
an extra, unused slot (corresponding to a WAM argument), which will be used to hold 
a pointer to the rest of the list of continuations. Having such a slot avoids changing 
the structure of choicepoints and how they are managed. This pointer is destructively 
updated every time a continuation cali is handed to the Prolog level. 

We would like to clarify how some of the primitives used in Figure 7 work for this 
case. Note that the functionality of s l g c a l l / 3 ( s l g / 1 when called from SLD-type 
execution) hasbeensplit across s l g c a l l / 3 , t e s t _ c o m p l e t i o n / l and 
r ead_answer /5 (consume.answers /2 whenassociated with s l g / 1 ) inorderto 
being able to perform calis to continuations from Prolog, s i ge a l 1 / 5 , as in the orig­
inal den nition, checks if a cali to a tabled goal is a new one. If so, Pred is unifi ed 
with a goal whose main functor is s l g _ p a t h / 2 and whose arguments are appropri-
ately instantiated. A free variable is returned otherwise. t e s t _ c o m p l e t e / l is only 

5 This requires, in our implementation, the capability to write non-deterministic predi cates in C. 
If this feature is not available, we could always return a list of continuations and traverse them 
using member/2, and further reduce the requirements on the C interface. 



useful for its side effects: it tests if the tabled goal identifi ed by S i d can be marked as 
complete, and it gets marked in that case. It always succeeds. 

r e a d _ a n s w e r s / 5 consumes actual answers for the cali identifi ed by NewSid 
and then associates a new continuation cali to NewSid if the tabled cali is not com-
pleted. Its fi rst argument, Sid, is needed to mark dependencies between tabled calis. 
consume.answer /2 returns the answers stored in the table one at a time and on 
backtracking if the tabled cali is completed. Otherwise, it internally behaves as 
r e a d _ a n s w e r s / 5 . 

3.3 Freezing continuation calis 

In this section we will sketch some proposals to reduce the overhead associated with 
the way continuation calis were handled in their original approach. 

The Overhead of Resuming a Consumer The original continuation cali technique 
saved a binding list to reinstall the environment of consumers instead of copying or 
freezing the stacks and using a forward trail, as CAT, CHAT, or SLG-WAM. This is a 
relatively non-intrusive technique, but it requires copying terms back and forth between 
Prolog and the table where calis are stored. Restarting a consumer needs to construct a 
term whose fi rst argument is the new answer (which is stored in the heap), the second 
one is the goal identifi er (an atomic item), and the third one is a list of bindings (which 
may be arbitrarily large). If the list of bindings has N elements, constructing the con­
tinuation cali needs to créate « 2N + 4 heap cells. If a continuation cali is resumed 
often and N is high, the effi ciency of the system can degrade quickly. 

The technique we propose constructs all the continuation calis in the heap as a 
regular Prolog term. This makes calling the continuation a constant time operation, 
since a n s w e r / 4 only has to unify its third argument with the continuation cali. As 
that argument is a variable at run time, full unifi catión is not needed. However, the 
fragment of code which constructs this cali performs backtracking as it fails after every 
successof a n s w e r / 4 . This would remove the constructed cali from the heap, thereby 
forcing us to construct it again. Protecting that term would make it possible to construct 
it only once. The solution we propose can be seen as a variant of the approach taken by 
CHAT, but without having to introduce new abstract machine instructions. 

In order to explain our proposed^reez/'wg technique we will use the following nota-
tion (borrowed from [6]): H will denote a pointer to the top of the heap; B will be the 
pointer to the most recent choicepoint. To distinguish different kinds of choicepoints 
we will use BT, where T can be G, C or P (standing for generator, consumer, or Prolog). 
The pointer to the heap stored in a choicepoint will be denoted as BT [H]. 

In CHAT the heap pointer is not reset on backtracking (as the WAM does with the 
assignment H : = BP [ H ]) by manipulating the heap pointer fi eld Bp [ H ] of the Prolog 
choicepoints between the (newly created) consumer choicepoint and the choicepoint 
corresponding to its generator so that they all point to the current top of the heap H: 
BP [H] : = Bc [H]. Therefore, forward execution will continué building terms on the 
heap on top of the previous solutions. 

This solution can genérate garbage in the heap, which is not a serious problem 
as garbage collection can eventually free it. A more critical problem is the need to 



CHOICEPOINTS HEAP 
SUBGOAL FRAME 

Fig. 9. Frozen continuation cali 

traverse an arbitrarily long series of choicepoints, which could make the system efíi -
ciency decrease. A solution for this problem has been proposed [4], which for us has 
the drawback of needing new WAM-level instructions and adding a new fi eld to some 
choicepoints. As an alternative solution, we update the B [H] fi elds of the choicepoints 
between the new consumer and its generator so that they point to a pointer H' which 
in turn points to the heap top. Whenever we need to change again the B [H] fi eld for 
these choicepoints, we simply update H' plus the choicepoints pushed since the last 
adjustments. Determining whether B [H] points to the heap or to H' is very easy by 
simply deciding whether it falls within the heap limits. This needs changing the back-
tracking WAM instructions in a very localized way which, in our experience, has an 
unmeasurable impact over the performance in SLD execution 

Figure 8 shows the state of the choicepoint stack and heap before freezing a con­
tinuation cali. On the left of Figure 9 all B [H] fi elds of the choicepoints G, P, and C 
have changed to a common pointer H' to the heap top. Thus, the continuation cali (C, 
[ X , l , 2 ] , Ans) is frozen. 

Trail Management to Recover a Continuation Cali State The same term T corre-
sponding to a continuation cali C can be used several times to genérate múltiple an-
swers to a query. This is in general not a problem as answers are in any case saved in 
a safe place (e.g., the answer table), and backtracking would undo the bindings to the 
free variables in T. There is, however, a particular case which needs special measures. 
When a continuation cali C\, identical to C, is resumed within the scope of C and it is 
going to read a new answer, the state of T has to be reset to its frozen initial state. The 
variables which may have been bound by C (Figure 10) are reset to unbound by using 
a list of free variables collected when this term was copied to the heap (Figure 9, at the 
right). Since C\ is using the same term T as C, we say that C\ is a reusing cali. This 
approach to deal with reusing calis avoids repeatedly copying several times the same 
continuation cali to the heap. 
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Fig. 10. Before reusing a cont. cali Fig. 11. Setting up the valué trail 

When C\ fi nishes and execution has to continué with C, the state of T has to be 
restored to the one existing just before starting C\, i.e., that in Figure 10, where some 
variables initially free were bound. This is done by constructing a valué trail (Figure 11) 
just before untrailing T prior to calling C\. This valué trail is used to put back in T the 
bindings generated by C up to the point in which it was interrupted. Valué trails are 
pointed to from the choicepoints associated to a n s w e r / 4 . 

Other systems like CHAT or SLG-WAM also spend some extra time in preparing a 
consumer to be resumed, as they need to record bindings in the forward trail to reinstall 
them; this is done for every resumption, and not only for reusing calis. 

3.4 Freezing answers 

When a consumer is found or when reacLanswer s / 5 is executed a continuation cali 
is created and its 3 r d variable has to be instantiated using the answers found so far to 
continué the execution. These answers are, in principie, stored inthe table (answer /4 
inserted them), and they have to be constructed on the heap so that the continuation cali 
can access them and proceed with the execution. 

The ideas in Section 3.3 can be reused to freeze the answers and avoid the overhead 
of building them again.6 As done with the continuation calis, a new fi eld is added to 
the table pointing to a (Prolog) list which holds all the answers found so far for a tabled 
goal. When a continuation for some tabled goal is to be executed, the elements of the 
answer list are unifi ed with the corresponding argument of the continuation cali. The list 
head is, again, accessed through a pointer which is saved in a slot of the corresponding 
choicepoint and which is updated on backtracking. 

In spite of this freezing operation, answers to tabled goals are stored in the table 
in addition to being linked in a list. There are two reasons for this: the fi rst one is that 
when some tabled goal is completed, all the answers have to be accessible from outside 

P(l. 2) 

CONT. CALL 

Sid = l 

3 

6 Since there are no reused answers, trail management is not needed for them. 



left-recursive path program, unidimensional graph 
left-recursive path program, cyclic graph 
right-recursive path program (this generates more continuation calis), uni­
dimensional graph 
right-recursive path program, cyclic graph 
find arithmetic expressions which evalúate to some number N using all the 
numbers in a list L 
same as above, but all the numbers in L are all the same (this generates a 
larger search space) 

Table 1. A terse description of the benchmarks used in the paper 

the denvation tree of the goal, and the second one is that the table (which is a trie in our 
implementation, following [9]) makes checking for duplicate answers faster. 

4 Performance evaluation 

We have implemented the proposed techniques as an extensión of the Ciao system [1]. 
Tabled evaluation is provided to the user as a loadable package that provides the new 
directives and user-level predicates, performs the program transformations, and links in 
the low-level support for tabling. We have implemented and measured three variants: 
the fi rst one is based on a direct adaptation of the implementation presented in [13], 
using the standard, high-level C interface. We have also implemented a second variant 
in which the lower-level and simplifi ed C interface is used, as discussed in Sections 3.1 
and 3.2. Finally, a third variant incorporales the proposed improvements to the model 
discussed in Sections 3.3 and 3.4. 

We have then evaluated the performance of our proposal using a series of bench­
marks which are briefly described in Table 1. The results are shown in Table 2 (in 
milliseconds). All the measurements have been made using Ciao-1.13 and XSB 3.0.1 
compiled with local scheduling and disabling garbage collection in all cases (this in the 
end did not impact execution times very much). We used gec 4 . 1 . 1 to compile both 
systems, and we executed them on a machine with Fedora Core Linux (kernel 2.6.9). 

For reference, we have made an attempt to also compare with the execution times re­
poned in [11]. Due to the difference in technology (Prolog system, C compilers, CPUs, 
available memory, etc.) it is not possible to compare directly with those execution times. 
Instead, we took those graph benchmarks which can be executed using SLD resolu-
tion and measured their execution times on Ciao-1.13. We then compared these times 
to those reported in [11] (which were originally executed using SICStus Prolog) and 
obtained a speed ratio. Finally, we applied this ratio to estimate the execution time 
that would be obtained for other (tabled) programs by the original implementation in 
our platform. These predicted times for the original continuation call-based execution 
(when available) are presented in the second column of Table 2. 

The three following columns in the table provide the execution times for the three 
variants implemented as explained at the beginning of this section. It is reassuring to 
note that the execution times predicted from those in [11] are within a reasonable range 

lchain X 
leyele X 
rchain X 

reyele X 
numbers X 

numbers Xr 



Benchmark 

lchain 1024 
lcycle 1024 
rchain 1024 
rcycle 1024 
numbers 5 
numbers 5r 

Original 

8.65 
8.75 
-
-
-
-

Ciao Ccal 

7.12 
7.32 

2620.60 
8613.10 
1691.00 
3974.90 

Lower C itf. 

2.85 
2.92 

1046.10 
2772.60 

676.40 
1425.48 

Copying 

2.07 
2.17 

603.44 
607.68 
772.10 
986.00 

Table 2. Comparison of original implementation and those in Ciao 

(and with a relatively consistent ratio) when compared to those obtained from our fi rst 
(baseline) versión We are quite confi dent, therefore, that they are in general terms com­
parable, despite the difference in the base system, C compiler technology, implementa­
tion of answer tables, etc. 

Lowering the level of the C interface and improving the transformation for tabling 
and the way calis are performed have a clear impact. It should be also noted that the 
latter improvement seems to be specially relevant in non-trivial programs which handle 
data structures (the larger the data structures are, the more re-copying we avoid) as 
opposed to those where little data management is done. On average, we consider the 
versión reported in the rightmost column to be the implementation of choice among 
those we have developed, and this is the one we will refer to in the rest of the paper 

Table 3 tries to determine how our implementation of tabling compares with a state-
of-the-art one —namely, the latest available versión of XSB at the time of writing. 
In the table we provide, for several benchmarks, the raw time (in milliseconds) taken 
to execute them using tabling and, when possible, SLD resolution, and the speedup 
obtained when using tabling, for Ciao and XSB, and the ratio of the execution time of 
XSB vs. Ciao using SLD resolution and tabling. 

It should be taken into account that XSB is somewhat slower than Ciao when ex-
ecuting programs using SLD resolution —at least in those cases where the program 
execution is large enough to be really signifi cant (between 1.8 and 2 times slower for 
these non-trivial programs). This is partly due to the fact that XSB is, even in the case 
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has an addi-
tional overhead (reported to be around a 10% [12]) not present in other Prolog systems 
and also that the priorities of their implementors were understandably more focused on 
the implementation of tabling. 

The speedup obtained when using tabling with respect to SLD resolution (the columns 
marked Tf¿íP ) is, in general, favorable to XSB, specially for benchmarks which are 
tabling-intensive but do not resume so many consumers (e.g., the transitive closure), 
confi rming the advantages of the native implementation of tabling in XSB. However, 
and interestingly, the difference in the speedups between XSB and Ciao tends to reduce 
as the programs get more complex, mix in more SLD execution, the XSB forward trail 
gets larger, and consumers are resumed more times, especially if the answers are large 
and there are no reusing continuation calis. 



Program 

rchain 64 
rchain 256 
rchain 1024 
rcycle 64 
rcycle 256 
rcycle 1024 
numbers 3 
numbers 4 
numbers 5 
numbers 3r 
numbers 4r 
numbers 5r 

Ciao 
SLD 

0.02 
0.11 
0.48 
-
-
-
0.56 

24.89 
811.08 

1.62 
99.74 

7702.03 

Tabling 

2.54 
37.01 

603.44 
2.78 

39.36 
607.68 

0.63 
25.39 

772.10 
1.31 

33.43 
986.00 

Tabling 

0.0080 
0.0027 
0.0008 

-
-
-
0.88 
0.98 
1.05 
1.24 
2.98 
7.81 

XSB 
SLD 

0.02 
0.11 
0.42 
-
-
-

1.0 
44.4 

1465.9 
3.3 

197.7 
15091.0 

Tabling 

0.9 
14.4 

216.1 
2.1 

35.2 
650.9 

0.7 
28.7 

868.7 
1.8 

49.3 
1500.1 

Tabling 

0.027 
0.008 
0.002 

-
-
-
1.43 
1.55 
1.69 
1.83 
4.01 
10.6 

XSB 
Ciao 

SLD 

1.00 
1.00 
0.88 

-
-
-

1.79 
1.78 
1.81 
2.04 
1.98 
1.96 

Tabling 

0.35 
0.39 
0.36 
0.76 
0.90 
1.07 
1.11 
1.13 
1.13 
1.37 
1.47 
1.52 

Table 3. Comparing the speed of Ciao and XSB 

For example, in the r c h a i n benchmarks,7 XSB achieves better speedups. How-
ever, in the more complex r c y c l e N and numbers Xr benchmarks, the difference 
of speedup between XSB and Ciao is smaller the larger the execution is. We attribute 
this to two reasons. The fi rst one is that XSB does not resume consumers immedi-
ately after fi nding new answers, so it has to pay an extra cost during completion to 
traverse the list of suspended consumers, and this traversal may have to be repeated 
several times. The second one is the forward trail that XSB uses: when repeatedly re-
suming consumers, XSB needs to keep track of the bindings and reinstall them, while 
our implementation only performs an initial copy between two memory áreas (to have 
a continuation ready to execute) and, since there are no reusing continuation calis in 
these programs, it can resume continuations in a constant time. Besides, answers for 
numbers X and numbers Xr are relatively large (they are arithmetic expressions) 
and our implementation freezes them when evaluating a tabled cali, while XSB has to 
reconstruct them whenever a consumer is resumed. 

It is also interesting to note that the fi nal raw speeds (shown in the rightmost column 
of the table) are in the end somewhat favorable to Ciao in the non-trivial benchmarks, 
which at least in principie should reflect more accurately what one might expect in 
larger applications. This is probably due in part to the faster raw speed of the basic 
engine in Ciao but it also implies that the overhead of the approach to tabling used 
is reasonable after the proposed optimizations. Further work is in any case needed to 
compare further not only with XSB but also with other systems supporting tabling. 

The results are also encouraging to us because they seem to support the "Ciao ap­
proach" of starting from a fast and robust, but extensible LP-kernel system and then 
include additional characteristics by means of pluggable components whose implemen­
tation must, of course, be as effi cient as possible but which in the end beneti t from the 
initial base speed of the system. 

7 Which we have to take with a grain of salt, since their executions are in any case quite short. 



5 Conclusions 

We have reported on the design and efíi ciency of some improvements done to the con-
tinuation cali mechanism of Ramesh and Chen presented in [11]. This mechanism is 
easier to port than the SLG-WAM, as it requires minimal changes to the underlyíng 
execution engine. 

The experimental results show that in general the speedups that the SLG-WAM 
obtains with respect to SLD execution are better than the ones obtained by our imple-
mentation. However, the difference in raw speed between the systems makes Ciao have 
sometimes better results in the absolute (and sometimes better convergence results). 

To conclude, we think that using an external module implementing tabling is a vi­
able alternative for Prolog systems which want to include tabled evaluation, especially 
if coupled with the proposed optimizations which we argüe not very diffi cult to im-
plement: almost all is done by a fairly reusable C library, while the engine has to be 
changed only to re-interpret B [H] fi elds whenbacktracking. 
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