
Some Improvements over the Continuation Cali Tabling
Implementation Technique

Pablo Chico de Guzmán1 Manuel Carro1 Manuel V. Hermenegildo1'2

Claudio Silva3 Ricardo Rocha3

pchico@clip.dia.fi.upm.es
{mcarro, herme}@fi.upm.es

herme@c s.unm.edu
ccaldas@dcc.online.pt
ricroc@dcc.fe.up.pt

1 School of Computer Science, Univ. Politécnica de Madrid, Spain
2 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New México, USA

3 DCC-FC & LIACC, University of Porto, Portugal,

Abstract. Tabled evaluation has been proved an effective method to improve
several aspeets of goal-oriented query evaluation, including termination and com-
plexity. Several "native" implementations of tabled evaluation have been devel-
oped which offer good performance, but many of them need significant changes
to the underlying Prolog implementation. More portable approaches, generally
using program transformation, have been proposed but they often result in lower
efficieney. We explore some techniques aimed at combining the best of these
worlds, i.e., developing a portable and extensible implementation, with minimal
modifications at the abstract machine level, and with reasonably good perfor­
mance. Our preliminary results indícate promising results.

1 Introduction

Tabling [15,2,14] is a resolution strategy which tries to memoize previous calis and
their answers in order to improve several well-known shortcomings found in SLD reso­
lution. Itbrings some of the advantages of bottom-up evaluation to the top-down, goal-
oriented evaluation strategy. In particular, evaluating logic programs under a tabling
scheme may achieve termination in cases where SLD resolution does not (because of
infi nite loops —for example, the tabled evaluation of bounded-term-size programs is
guaranteed to always terminate). Also, programs which perform repeated computations
can be greatly sped up. Program declarativeness is also improved since the order of
clauses and goals within a clause is less relevant, if at all. Tabled evaluation has been
successfully applied in many fi elds, such as deductive databases [10], program analy-
sis [16,3], reasoning inthe semantic Web [18], model checking [8], and others.

In all cases the advantages of tabled evaluation stem from checking whether calis
to tabled predicates, i.e., predicates which have been marked to be evaluated using
tabling, have been made before. Repeated calis to tabled predicates consume answers
from a table, they suspend when all stored answers have been consumed, and they
fail when no more answers can be generated. However, the advantages are not without
drawbacks. The main problem is the complexity of some (effi cient) implementations of
tabled resolution, and a secondary issue is the diffi culty in selecting which predicates to
table in order not to incur in undesired slow-downs.

mailto:pchico@clip.dia.fi.upm.es
mailto:ccaldas@dcc.online.pt
mailto:ricroc@dcc.fe.up.pt

Two main categories of tabling mechanisms can be distinguished: suspension-based
and linear tabling mechanisms. In suspension-based mechanisms the computation state
of suspended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either byfreezing the stacks, as in XSB [12], by copying to another área,
as in CAT [5], or by using an intermedíate solution as in CHAT [6]. Linear tabling
mechanisms maintain a single execution tree where tabled subgoals always extend the
current computation without requiring suspensión and resumption of sub-computations.
The computation of the (local) fi xpoint is performed by repeatedly looping subgoals
until no more solutions can be found. Examples of this method are the linear tabling of
BProlog [17] and the DRA scheme [7].

Suspension-based mechanism have achieved very good performance results but, in
general, deep changes to the underlying Prolog implementation are required. Linear
mechanisms, on the other hand, can usually be implemented on top of existing sequen-
tial engines without major modifi cations. One of our theses is that it should be possible
to fi nd a combination of the best of both worlds: a suspension-based mechanism that
is effi cient and does not require complex modifi cations to the underlying Prolog imple­
mentation, thus contributing to maintainability. Also, we would like to avoid introduc-
ing any overhead that would reduce the execution speed for SLD execution.

Our starting point is the continuation cali mechanism [11]. This approach has the
advantage that it indeed does not need deep changes to the underlying Prolog machin-
ery. On the other hand it has shown up to now worse effi ciency than the more "native"
suspension-based implementations. Our aim is to analyze the bottlenecks of this ap­
proach, explore variations of it, and propose solutions in order to improve its effi ciency
without losing much in implementation simplicity and portability.

2 Tabling Basics

We will now sketch how tabled evaluation works from a user point of view (more details
can be found in [2,12]) and then we briefly describe the continuation cali mechanism
implementation technique proposed in [11] on which we base our work.

2.1 Tabling by Example

Let us use as running example the program in Figure 1 (taken from [11]), where we
can ignore the declaration : - t a b l e d p a t h / 2 (which instructs the compiler to use
tabled execution for the designated predicate) for the moment, and assume that SLD
resolution is to be used. The program is aimed at determining reachability of nodes in
a graph, and a query such a s ? - p a t h (a , N) . will never terminate as there is a
left-recursive clause which generates a goal with the same instantiation as the initial
cali.

Adding the t a b l e d declaration forces the compiler and runtime system to distin-
guish the fi rst occurrence of a tabled goal (the generator) and subsequent calis which
are identical up to variable renaming (the consumers). The generator uses resolution
against the program clauses to derive answers for the goal. Consumers suspend the cur­
rent execution path (using implementation-dependent means) and move to a different

path(X, Y) : - slg(path(X, Y)).
edge(a, b).

edge(b, c). slg_path(X, Y, l d) : -
edge(b, d). s | g c a | | (|d , path(X, Z), path_cont).

slg.path(X, Y, l d) : -
: - tabled path/2 edge(X, Y),

answer(ld, path(X, Y)).
path(X, Y) : -

path(X, Z), path.cont(ld , path(X, Z)) : -
edge(Z, Y). edge(Z, Y),

path(X, Y) : - answer(ld, path(X, Y)).
edge(X, Y).

Fig. 2. Program in Figure 1 transformed for tabled ex-
Fig. 1. A simple tabled program. ecution.

branch. When such an altemative branch fi nally succeeds, the answer generated for the
initial query is inserted in a table associated with the original goal and makes it possible
to reactivate suspended calis and to continué execution at the point where it was stopped
— i.e., consumers do not use SLD resolution, but rather they obtain answers from the
table where they had been previously inserted.

Predicates not marked as tabled are executed following SLD resolution, hopefully
without any (or minimal) overhead associated to the availability of tabling.

2.2 A Concrete Technique: Continuation Cali

The continuation cali technique presented by Ramesh and Chen in [11] implements
tabling by a combination of program transformation and side effects in the form of
insertions to and reads from an internally-maintained table which relates calis, answers,
and the continuation code to be executed after consumers read answers from the table.
We will now sketch how the mechanism works using the p a t h / 2 example shown in
Figure 1, which is transformed into the program in Figure 2 —this code is what is
actually executed.

Roughly speaking, the transformation for tabling is as follows: a bridge predicate
for p a t h / 2 is introduced so that calis to p a t h / 2 made from regular Prolog exe­
cution do not need to be aware that p a t h / 2 is tabled. s l g / 1 will ensure that its
argument is evaluated to completion and it will return, on backtracking, all the Solu­
tions found for the tabled predicate. s l g / 1 introduces the cali in the answer table and
generates an identifi er for it. Control is then passed to a new distinct predicate (in this
case, s l g _ p a t h / 3) by constructing a term from p a t h (X, Y) (which is passed as
argument to s l g / 1) and then calling this term, suitably instantiated, from inside the
implementationof s l g / 1 . 4 The fi rst argument is the original cali to p a t h / 2 and the
second one is the identifi er generated for the parent cali, which is used to relate oper-
ations on the table with this initial cali. Every clause of s l g _ p a t h / 3 is constructed
from a clause of the original p a t h / 2 by:

4 The new term is created, in this case, by prepending the prefix s lg_to the argument passed to
s l g / 1 . Any means of constructing a new unique predicate symbol based on the original one
is acceptable. Our implementation tries to do at compile time as much of this work as possible.

path(X, Y) : - slg(path(X, Y)).

slg_path(path(X,
edge(X, Y),
slgcall (Id , |

slg_path(path(X,
edge(X, Y),

Y),

:x],
Y),

l d) : -

path(Y,
l d) : -

answer(ld, path(X, Y)).

Z), path. .contJ).

: - tabled path/2.

path(X, Z) : -
edge(X, Y),
path(Y, Z).

path(X, Z) : - path.cont.1 (Id , [X] , path(Y, Z)) : -
edge(X, Z). answer(ld, path(X, Z)).

Fig. 3. A program which needs to p¡g . 4. The program in Figure 3 after being transformed
keep an environment. for tabled execution.

- Addingananswer/2 primitiveatthe endof eachclauseof p a t h / 2 . a n s w e r / 2
is responsible for checking for redundant answers and executing whatever contin-
uations (see next item) there may be associated with that cali identifi ed by its fi rst
argument.

- Instrumenting recursive calis to p a t h / 2 using s l g c a l l / 3 . Ifthetermpath (X,
Y), passed as an argument, has already been inserted in the table, s l g c a l l / 3 cre-
ates a new consumer which reads answers from the table. It is otherwise inserted in
the table with a new cali identifi er and execution follows against t h e s l g . p a t h / 3
program clauses to derive new answers. In the fi rst case, p a t h . c o n t / 2 is associ­
ated as (one of) the continuation(s) of p a t h (X, Y) (its body being what remains
of the clause body of p a t h / 2 after the recursive cali), and s l g c a l l / 3 fails. In
the second case p a t h _ c o n t / 2 is only associated as a continuation of p a t h (X,
Y) ifthe tabled cali cannot be completed. The continuation p a t h _ c o n t / 2 willbe
activated by a n s w e r / 2 upon answer insertion or erased upon completion of the
subgoalpath (X, Y).

- p a t h _ c o n t / 2 and s l g _ p a t h / 3 are constructed in a similar way: the continua­
tion is applied the same transformation as the initial clauses and can cali s l g c a l l / 3
and a n s w e r / 2 at appropriate times.

As this strategy tries to complete subgoals as soon as possible, failing whenever
new answers are found, it implements the so called local scheduling [12]. This imple-
mentation uses the same completion detection algorithm as the SLG-WAM.

Figure 3 shows a variation of the program which requires slight modifi cations of
the translation. Note that an answer t o ? - p a t h (x. Y) needs to give a valué to a
variable (X) which does not appear in the recursive cali to p a t h / 2 . Therefore, if we
follow the translation in Figure 2, this variable will not be available at the time where
the answer is inserted in the table. The solution adopted in this case is to explicitly carry
a set of variables when preparing the cali to the continuation. This set is also inserted in
the table, and is passed to the continuation cali when resumed.

The translation is shown in Figure 4. Note that the cali to s 1 ge a 11 / 4 in pa t h_c on t _1
includes alist containing variable X. This listis, onresumption, receivedby pa th_cont_ l
and used to construct and insert in the table an answer which includes X. A safe approx-

slgcall (callid Parent, term Bindings,
term Cali, term CCall) {

Id = inserí Cali into answer table;
if (Id.state == READY) {

Id. state = EVALUATING;
cali the transformed clause of Cali;
check for completion;

answer(callid Id , term Answer) { }

inserí Answer in answer table consume answers for Id;
If (Answer ^ answer table) if (Id. state != COMPLETE) {

for each continuation cali C Id depends on Parent;
of tabled cali Id { add a new continuation

cali (C) consuming Answer, cali (CCall, Bindings) to Id;

} }
return FALSE; return FALSE;

} }

Fig. 5. Pseudo-code for a n s w e r / 2 Fig. 6. Pseudo-code for s l g c a l l / 4

imation of the variables which should appear in this list is the set of variables which
appear in the clause before the tabled goal and which are used in the continuation, in-
cludingthe a n s w e r / 2 primitive if there is one inthe continuation—this isthe case in
our example. Variables appearing in the tabled cali itself do not need to be included, as
they will be passed along anyway.

The list of bindings is a means to recover the environment existing when a cali is
suspended. Other approaches recover this environment using e.g. lower-level mecha-
nisms, such as the forward trail of SLG-WAM plus freeze registers [12]. The continu­
ation cali approach, has, however, the nice property that several of the operations are
made at the Prolog level through program transformation, which increases its portabil-
ity and simplifi es the implementation. On the other hand, the primitives which insert
answers in the table and retrieve them are usually, and for effi ciency issues, written
using some lower-level language and accessed using a suitable interface.

The pseudo-code for a n s w e r / 2 and s l g c a l l / 4 is shown in Figure 5 and 6,
respectively. The pseudo-code for s i g / 1 is similar to that of s l g c a l l / 4 but, instead
of consuming answers, they are returned by backtracking and it fi nally fails when all
the stored answers have been exhausted.

2.3 Issues in the Continuation Cali Mechanism

We have identifi ed two performance issues when implementing the technique sketched
in the previous section. The fi rst one is rather general and related to the heavy use of
the interface from C to Prolog (and back) that the implementation needs to make, and
which adds an overhead which cannot be neglected.

The second one is the repeated copy of continuation calis. Continuation calis (Pro­
log predicates with an arbitrarily long list of variables as an argument) are completely
copied from Prolog memory to the table for every consumer found. Storing a pointer to

these structures inmemory isnotenough, since s l g / 1 and s l g c a l l / 3 failimmedi-
ately after associating a continuation cali with a table cali in order to forcé the program
to search for more solutions and complete the tabled cali. Therefore, the data structures
created during forward execution may be removed on backtracking and not be avail-
able when needed. When continuations are resumed by a n s w e r / 2 , it is necessary to
reconstruct them as Prolog terms from the data stored in the table to cali them as a goal.
This can clearly have a negative impact on performance.

Finally, the extensibility of the baseline implementation [13] is compromised since
it was not capable of backtracking over Prolog predicates called from C. This would
make it diffi cult to implement other scheduling strategies. Since this shortcoming may
appear also in other C interfaces, it is a candidate to be avoided.

3 An Improvement over the Continuation Cali Technique

We will now devise some solutions to the drawbacks in the original implementation we
described in Section 2.3.

3.1 Using a Lower-Level Interface

The calis C-to-Prolog were initially done using a relatively high-level interface simi­
lar to those commonly found in logic programming systems nowadays: operations to
créate and traverse Prolog terms appear to the programmer as regular C functions, and
details of the internal data representationwere hiddento the programmer. This interface
imposed a noticeable overhead in our implementation, as the calis to C functions had to
allocate environments, pass arguments, set up Prolog environments to cali Prolog from
C, etc.

Since the low-level code which constructs Prolog terms and performs calis from C
is the same regardless the program being executed, we decided to skip the programmer
interface and cali directly macros available in the engine implementation. Given that
the complexity of the C code involved is certainly manageable, that was a not diffi cult
task to do and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue when using a C-to-Prolog interface is the need to cali Prolog goals from
C effi ciently. This is needed both by s l g c a l l / 3 and a n s w e r / 2 in order to invoke
continuations of tabled predicates. As mentioned before, we want to design a solution
which relies as little as possible on non-widely available characteristics of C-to-Prolog
interfaces (to improve implementation extensibility), and which keeps the effi ciency as
high as possible.

The solution we have adopted is to move calis to continuations from the C level to
the Prolog level. Continuations are stored in a (Prolog) list which is pointed to from the
corresponding table entry, and they are returned one at a time on backtracking using an
extra argument of s l g c a l l / 3 and a n s we r / 2; these continuations are then called by

path(X.Y) : - slg.path(path(X, Y),Sid) : -
slgcall (path(X, Y), Sid, edge(X, Z),

true, Pred), slgcall (path(Z, Y), NewSid,
(path_cont_1, Pred),

nonvar(Pred) —> (
(cali (Pred); nonvar(Pred) — >
test.complete(S¡d)) (call(Pred);

; test_complete(NewSid))
true

), true
consume_answer(path(X, Y), Sid).),

read_answers(Sid, NewSid, [X], CCall, 0),
slg.path(path(X, Y), S i d) : - cali (CCall).

edge(X, Y),
answer(path(X, Y), Sid, CCall, 0), path_cont_1 (path(X, Y), Sid , [Z]) : -
cali (CCall). answer(path(Z, Y), Sid, CCall, 0),

call(CCall).

Fig. 7. New program transformation for right-recursive definition of p a t h / 2

Prolog.5 Failure happens whenthere is no pending continuation cali. New continuations
found in the program execuüon can be destructively inserted at the end of the list of
continuations in a Prolog-transparent fashion

In Figure 7 (which shows the translation we propose now for the code in Fig­
ure 3), a n s w e r / 4 , r e a d _ a n s w e r s / 5 , and s l g c a l l / 4 return in variables Pred
and CCall the continuations of a tabled cali to be called as Prolog goals. This avoids
using up C stack space due to repeated calis Prolog —> C —> Prolog —> . . . which
may exhaust the available space. Additionally, the C code is somewhat simplifi ed (e.g.,
there is no need to set up a Prolog environment to be used from C) and a lower-
level, faster interface is easier to use. The last unused argument of a n s w e r / 4 (and
r ead_answers /5) implements a trick to make the corresponding choicepoint have
an extra, unused slot (corresponding to a WAM argument), which will be used to hold
a pointer to the rest of the list of continuations. Having such a slot avoids changing
the structure of choicepoints and how they are managed. This pointer is destructively
updated every time a continuation cali is handed to the Prolog level.

We would like to clarify how some of the primitives used in Figure 7 work for this
case. Note that the functionality of s l g c a l l / 3 (s l g / 1 when called from SLD-type
execution) hasbeensplit across s l g c a l l / 3 , t e s t _ c o m p l e t i o n / l and
r ead_answer /5 (consume.answers /2 whenassociated with s l g / 1) inorderto
being able to perform calis to continuations from Prolog, s i ge a l 1 / 5 , as in the orig­
inal den nition, checks if a cali to a tabled goal is a new one. If so, Pred is unifi ed
with a goal whose main functor is s l g _ p a t h / 2 and whose arguments are appropri-
ately instantiated. A free variable is returned otherwise. t e s t _ c o m p l e t e / l is only

5 This requires, in our implementation, the capability to write non-deterministic predi cates in C.
If this feature is not available, we could always return a list of continuations and traverse them
using member/2, and further reduce the requirements on the C interface.

useful for its side effects: it tests if the tabled goal identifi ed by S i d can be marked as
complete, and it gets marked in that case. It always succeeds.

r e a d _ a n s w e r s / 5 consumes actual answers for the cali identifi ed by NewSid
and then associates a new continuation cali to NewSid if the tabled cali is not com-
pleted. Its fi rst argument, Sid, is needed to mark dependencies between tabled calis.
consume.answer /2 returns the answers stored in the table one at a time and on
backtracking if the tabled cali is completed. Otherwise, it internally behaves as
r e a d _ a n s w e r s / 5 .

3.3 Freezing continuation calis

In this section we will sketch some proposals to reduce the overhead associated with
the way continuation calis were handled in their original approach.

The Overhead of Resuming a Consumer The original continuation cali technique
saved a binding list to reinstall the environment of consumers instead of copying or
freezing the stacks and using a forward trail, as CAT, CHAT, or SLG-WAM. This is a
relatively non-intrusive technique, but it requires copying terms back and forth between
Prolog and the table where calis are stored. Restarting a consumer needs to construct a
term whose fi rst argument is the new answer (which is stored in the heap), the second
one is the goal identifi er (an atomic item), and the third one is a list of bindings (which
may be arbitrarily large). If the list of bindings has N elements, constructing the con­
tinuation cali needs to créate « 2N + 4 heap cells. If a continuation cali is resumed
often and N is high, the effi ciency of the system can degrade quickly.

The technique we propose constructs all the continuation calis in the heap as a
regular Prolog term. This makes calling the continuation a constant time operation,
since a n s w e r / 4 only has to unify its third argument with the continuation cali. As
that argument is a variable at run time, full unifi catión is not needed. However, the
fragment of code which constructs this cali performs backtracking as it fails after every
successof a n s w e r / 4 . This would remove the constructed cali from the heap, thereby
forcing us to construct it again. Protecting that term would make it possible to construct
it only once. The solution we propose can be seen as a variant of the approach taken by
CHAT, but without having to introduce new abstract machine instructions.

In order to explain our proposed^reez/'wg technique we will use the following nota-
tion (borrowed from [6]): H will denote a pointer to the top of the heap; B will be the
pointer to the most recent choicepoint. To distinguish different kinds of choicepoints
we will use BT, where T can be G, C or P (standing for generator, consumer, or Prolog).
The pointer to the heap stored in a choicepoint will be denoted as BT [H].

In CHAT the heap pointer is not reset on backtracking (as the WAM does with the
assignment H : = BP [H]) by manipulating the heap pointer fi eld Bp [H] of the Prolog
choicepoints between the (newly created) consumer choicepoint and the choicepoint
corresponding to its generator so that they all point to the current top of the heap H:
BP [H] : = Bc [H]. Therefore, forward execution will continué building terms on the
heap on top of the previous solutions.

This solution can genérate garbage in the heap, which is not a serious problem
as garbage collection can eventually free it. A more critical problem is the need to

CHOICEPOINTS HEAP
SUBGOAL FRAME

Fig. 9. Frozen continuation cali

traverse an arbitrarily long series of choicepoints, which could make the system efíi -
ciency decrease. A solution for this problem has been proposed [4], which for us has
the drawback of needing new WAM-level instructions and adding a new fi eld to some
choicepoints. As an alternative solution, we update the B [H] fi elds of the choicepoints
between the new consumer and its generator so that they point to a pointer H' which
in turn points to the heap top. Whenever we need to change again the B [H] fi eld for
these choicepoints, we simply update H' plus the choicepoints pushed since the last
adjustments. Determining whether B [H] points to the heap or to H' is very easy by
simply deciding whether it falls within the heap limits. This needs changing the back-
tracking WAM instructions in a very localized way which, in our experience, has an
unmeasurable impact over the performance in SLD execution

Figure 8 shows the state of the choicepoint stack and heap before freezing a con­
tinuation cali. On the left of Figure 9 all B [H] fi elds of the choicepoints G, P, and C
have changed to a common pointer H' to the heap top. Thus, the continuation cali (C,
[X , l , 2] , Ans) is frozen.

Trail Management to Recover a Continuation Cali State The same term T corre-
sponding to a continuation cali C can be used several times to genérate múltiple an-
swers to a query. This is in general not a problem as answers are in any case saved in
a safe place (e.g., the answer table), and backtracking would undo the bindings to the
free variables in T. There is, however, a particular case which needs special measures.
When a continuation cali C\, identical to C, is resumed within the scope of C and it is
going to read a new answer, the state of T has to be reset to its frozen initial state. The
variables which may have been bound by C (Figure 10) are reset to unbound by using
a list of free variables collected when this term was copied to the heap (Figure 9, at the
right). Since C\ is using the same term T as C, we say that C\ is a reusing cali. This
approach to deal with reusing calis avoids repeatedly copying several times the same
continuation cali to the heap.

HEAP HEAP

Fig. 10. Before reusing a cont. cali Fig. 11. Setting up the valué trail

When C\ fi nishes and execution has to continué with C, the state of T has to be
restored to the one existing just before starting C\, i.e., that in Figure 10, where some
variables initially free were bound. This is done by constructing a valué trail (Figure 11)
just before untrailing T prior to calling C\. This valué trail is used to put back in T the
bindings generated by C up to the point in which it was interrupted. Valué trails are
pointed to from the choicepoints associated to a n s w e r / 4 .

Other systems like CHAT or SLG-WAM also spend some extra time in preparing a
consumer to be resumed, as they need to record bindings in the forward trail to reinstall
them; this is done for every resumption, and not only for reusing calis.

3.4 Freezing answers

When a consumer is found or when reacLanswer s / 5 is executed a continuation cali
is created and its 3 r d variable has to be instantiated using the answers found so far to
continué the execution. These answers are, in principie, stored inthe table (answer /4
inserted them), and they have to be constructed on the heap so that the continuation cali
can access them and proceed with the execution.

The ideas in Section 3.3 can be reused to freeze the answers and avoid the overhead
of building them again.6 As done with the continuation calis, a new fi eld is added to
the table pointing to a (Prolog) list which holds all the answers found so far for a tabled
goal. When a continuation for some tabled goal is to be executed, the elements of the
answer list are unifi ed with the corresponding argument of the continuation cali. The list
head is, again, accessed through a pointer which is saved in a slot of the corresponding
choicepoint and which is updated on backtracking.

In spite of this freezing operation, answers to tabled goals are stored in the table
in addition to being linked in a list. There are two reasons for this: the fi rst one is that
when some tabled goal is completed, all the answers have to be accessible from outside

P(l. 2)

CONT. CALL

Sid = l

3

6 Since there are no reused answers, trail management is not needed for them.

left-recursive path program, unidimensional graph
left-recursive path program, cyclic graph
right-recursive path program (this generates more continuation calis), uni­
dimensional graph
right-recursive path program, cyclic graph
find arithmetic expressions which evalúate to some number N using all the
numbers in a list L
same as above, but all the numbers in L are all the same (this generates a
larger search space)

Table 1. A terse description of the benchmarks used in the paper

the denvation tree of the goal, and the second one is that the table (which is a trie in our
implementation, following [9]) makes checking for duplicate answers faster.

4 Performance evaluation

We have implemented the proposed techniques as an extensión of the Ciao system [1].
Tabled evaluation is provided to the user as a loadable package that provides the new
directives and user-level predicates, performs the program transformations, and links in
the low-level support for tabling. We have implemented and measured three variants:
the fi rst one is based on a direct adaptation of the implementation presented in [13],
using the standard, high-level C interface. We have also implemented a second variant
in which the lower-level and simplifi ed C interface is used, as discussed in Sections 3.1
and 3.2. Finally, a third variant incorporales the proposed improvements to the model
discussed in Sections 3.3 and 3.4.

We have then evaluated the performance of our proposal using a series of bench­
marks which are briefly described in Table 1. The results are shown in Table 2 (in
milliseconds). All the measurements have been made using Ciao-1.13 and XSB 3.0.1
compiled with local scheduling and disabling garbage collection in all cases (this in the
end did not impact execution times very much). We used gec 4 . 1 . 1 to compile both
systems, and we executed them on a machine with Fedora Core Linux (kernel 2.6.9).

For reference, we have made an attempt to also compare with the execution times re­
poned in [11]. Due to the difference in technology (Prolog system, C compilers, CPUs,
available memory, etc.) it is not possible to compare directly with those execution times.
Instead, we took those graph benchmarks which can be executed using SLD resolu-
tion and measured their execution times on Ciao-1.13. We then compared these times
to those reported in [11] (which were originally executed using SICStus Prolog) and
obtained a speed ratio. Finally, we applied this ratio to estimate the execution time
that would be obtained for other (tabled) programs by the original implementation in
our platform. These predicted times for the original continuation call-based execution
(when available) are presented in the second column of Table 2.

The three following columns in the table provide the execution times for the three
variants implemented as explained at the beginning of this section. It is reassuring to
note that the execution times predicted from those in [11] are within a reasonable range

lchain X
leyele X
rchain X

reyele X
numbers X

numbers Xr

Benchmark

lchain 1024
lcycle 1024
rchain 1024
rcycle 1024
numbers 5
numbers 5r

Original

8.65
8.75
-
-
-
-

Ciao Ccal

7.12
7.32

2620.60
8613.10
1691.00
3974.90

Lower C itf.

2.85
2.92

1046.10
2772.60

676.40
1425.48

Copying

2.07
2.17

603.44
607.68
772.10
986.00

Table 2. Comparison of original implementation and those in Ciao

(and with a relatively consistent ratio) when compared to those obtained from our fi rst
(baseline) versión We are quite confi dent, therefore, that they are in general terms com­
parable, despite the difference in the base system, C compiler technology, implementa­
tion of answer tables, etc.

Lowering the level of the C interface and improving the transformation for tabling
and the way calis are performed have a clear impact. It should be also noted that the
latter improvement seems to be specially relevant in non-trivial programs which handle
data structures (the larger the data structures are, the more re-copying we avoid) as
opposed to those where little data management is done. On average, we consider the
versión reported in the rightmost column to be the implementation of choice among
those we have developed, and this is the one we will refer to in the rest of the paper

Table 3 tries to determine how our implementation of tabling compares with a state-
of-the-art one —namely, the latest available versión of XSB at the time of writing.
In the table we provide, for several benchmarks, the raw time (in milliseconds) taken
to execute them using tabling and, when possible, SLD resolution, and the speedup
obtained when using tabling, for Ciao and XSB, and the ratio of the execution time of
XSB vs. Ciao using SLD resolution and tabling.

It should be taken into account that XSB is somewhat slower than Ciao when ex-
ecuting programs using SLD resolution —at least in those cases where the program
execution is large enough to be really signifi cant (between 1.8 and 2 times slower for
these non-trivial programs). This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has an addi-
tional overhead (reported to be around a 10% [12]) not present in other Prolog systems
and also that the priorities of their implementors were understandably more focused on
the implementation of tabling.

The speedup obtained when using tabling with respect to SLD resolution (the columns
marked Tf¿íP) is, in general, favorable to XSB, specially for benchmarks which are
tabling-intensive but do not resume so many consumers (e.g., the transitive closure),
confi rming the advantages of the native implementation of tabling in XSB. However,
and interestingly, the difference in the speedups between XSB and Ciao tends to reduce
as the programs get more complex, mix in more SLD execution, the XSB forward trail
gets larger, and consumers are resumed more times, especially if the answers are large
and there are no reusing continuation calis.

Program

rchain 64
rchain 256
rchain 1024
rcycle 64
rcycle 256
rcycle 1024
numbers 3
numbers 4
numbers 5
numbers 3r
numbers 4r
numbers 5r

Ciao
SLD

0.02
0.11
0.48
-
-
-
0.56

24.89
811.08

1.62
99.74

7702.03

Tabling

2.54
37.01

603.44
2.78

39.36
607.68

0.63
25.39

772.10
1.31

33.43
986.00

Tabling

0.0080
0.0027
0.0008

-
-
-
0.88
0.98
1.05
1.24
2.98
7.81

XSB
SLD

0.02
0.11
0.42
-
-
-

1.0
44.4

1465.9
3.3

197.7
15091.0

Tabling

0.9
14.4

216.1
2.1

35.2
650.9

0.7
28.7

868.7
1.8

49.3
1500.1

Tabling

0.027
0.008
0.002

-
-
-
1.43
1.55
1.69
1.83
4.01
10.6

XSB
Ciao

SLD

1.00
1.00
0.88

-
-
-

1.79
1.78
1.81
2.04
1.98
1.96

Tabling

0.35
0.39
0.36
0.76
0.90
1.07
1.11
1.13
1.13
1.37
1.47
1.52

Table 3. Comparing the speed of Ciao and XSB

For example, in the r c h a i n benchmarks,7 XSB achieves better speedups. How-
ever, in the more complex r c y c l e N and numbers Xr benchmarks, the difference
of speedup between XSB and Ciao is smaller the larger the execution is. We attribute
this to two reasons. The fi rst one is that XSB does not resume consumers immedi-
ately after fi nding new answers, so it has to pay an extra cost during completion to
traverse the list of suspended consumers, and this traversal may have to be repeated
several times. The second one is the forward trail that XSB uses: when repeatedly re-
suming consumers, XSB needs to keep track of the bindings and reinstall them, while
our implementation only performs an initial copy between two memory áreas (to have
a continuation ready to execute) and, since there are no reusing continuation calis in
these programs, it can resume continuations in a constant time. Besides, answers for
numbers X and numbers Xr are relatively large (they are arithmetic expressions)
and our implementation freezes them when evaluating a tabled cali, while XSB has to
reconstruct them whenever a consumer is resumed.

It is also interesting to note that the fi nal raw speeds (shown in the rightmost column
of the table) are in the end somewhat favorable to Ciao in the non-trivial benchmarks,
which at least in principie should reflect more accurately what one might expect in
larger applications. This is probably due in part to the faster raw speed of the basic
engine in Ciao but it also implies that the overhead of the approach to tabling used
is reasonable after the proposed optimizations. Further work is in any case needed to
compare further not only with XSB but also with other systems supporting tabling.

The results are also encouraging to us because they seem to support the "Ciao ap­
proach" of starting from a fast and robust, but extensible LP-kernel system and then
include additional characteristics by means of pluggable components whose implemen­
tation must, of course, be as effi cient as possible but which in the end beneti t from the
initial base speed of the system.

7 Which we have to take with a grain of salt, since their executions are in any case quite short.

5 Conclusions

We have reported on the design and efíi ciency of some improvements done to the con-
tinuation cali mechanism of Ramesh and Chen presented in [11]. This mechanism is
easier to port than the SLG-WAM, as it requires minimal changes to the underlyíng
execution engine.

The experimental results show that in general the speedups that the SLG-WAM
obtains with respect to SLD execution are better than the ones obtained by our imple-
mentation. However, the difference in raw speed between the systems makes Ciao have
sometimes better results in the absolute (and sometimes better convergence results).

To conclude, we think that using an external module implementing tabling is a vi­
able alternative for Prolog systems which want to include tabled evaluation, especially
if coupled with the proposed optimizations which we argüe not very diffi cult to im-
plement: almost all is done by a fairly reusable C library, while the engine has to be
changed only to re-interpret B [H] fi elds whenbacktracking.

References

1. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla (Eds.).
The Ciao System. Ref. Manual (vi.13). Technical report, C. S. School (UPM), 2006. Avail-
able at h t t p : / / w w w . c i a o h o m e . o r g .

2. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(l):20-74, January 1996.

3. S. Dawson, C.R. Ramakrishnan, and D.S. Warren. Practical Program Analysis Using Gen­
eral Purpose Logic Programming Systems - A Case Study. In Proceedings of the ACM
SIGPLAN'96 Conference on Programming Language Design and Implementation, pages
117-126, New York, USA, 1996. ACM Press.

4. Bart Demoen and K. Sagonas. CHAT is 6»(SLG-WAM). In D. Me. Allester H. Ganzinger and
A. Voronkov, editors, International Conference on Logic for Programming and Automated
Reasoning, volume 1705 of Lectures Notes in Computer Science, pages 337-357. Springer,
September 1999.

5. Bart Demoen and Konstantinos Sagonas. CAT: The Copying Approach to Tabling. In
Programming Language Implementation and Logic Programming, volume 1490 oí Lee ture
Notes in Computer Science, pages 21-35. Springer-Verlag, 1998.

6. Bart Demoen and Konstantinos F. Sagonas. Chat: The copy-hybrid approach to tabling. In
Practical Applications ofDeclarative Languages, pages 106-121, 1999.

7. Hai-Feng Guo and Gopal Gupta. A Simple Scheme for Implementing Tabled Logic Pro-
gramming Systems Based on Dynamic Reordering of Alternatives. In International Confer-
ence on Logic Programming, pages 181-196, 2001.

8. YS. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S A . Smolka, T. Swift, and D.S.
Warren. Efficient Model Checking Using Tabled Resolution. In Computer Aided Verifica-
tion, volume 1254 oíLecture Notes in Computer Science, pages 143-154. Springer Verlag,
1997.

9. I. V. Ramakrishnan, Prasad Rao, K. F. Sagonas, Terrance Swift, and David Scott Warren.
Efficient tabling mechanisms for logic programs. lnICLP, pages 697-711, 1995.

10. Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive datábase
systems. Journal of Logic Programming, 23(2):125-149, 1993.

11. R. Ramesh and Weidong Chen. A Portable Method for Integrating SLG Resolution into
Prolog Systems. In Maurice Bruynooghe, editor, International Symposium on Logic Pro­
gramming, pages 618-632. MIT Press, 1994.

12. K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and Systems,
20(3):586-634, May 1998.

13. C. Silva, R. Rocha, and R. Lopes. An External Module for Implementing Linear Tabling
in Prolog. In S. Etalle and M. Truszczyñski, editors, International Conference on Logic
Programming, number 4079 in LNCS, pages 429^130, Seattle, Washington, USA, August
2006. Springer-Verlag.

14. H. Tamaki and M. Sato. OLD resolution with tabulation. In ThirdInternational Conference
on Logic Programming, pages 84-98, London, 1986. Lecture Notes in Computer Science,
Springer-Verlag.

15. D.S. Warren. Memoing for logic programs. Communications ofthe ACM, 35 (3) :93- l l l ,
1992.

16. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis
of Logic Programs. In Fifth International Conference and Symposium on Logic Program­
ming, pages 684-699. MIT Press, August 1988.

17. Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation of a linear
tabling mechanism. Journal ofFunctional and Logic Programming, 2001(10), October 2001.

18. Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An Inference Engine for Semantic Web.
In Formal Approaches to Agent-BasedSystems, volume 3228 oíLecture Notes in Computer
Science, pages 238-248. Springer Verlag, January 2005.

