
Interval-based Resource Usage Verification:
Formalization and Prototype

Pedro Lopez-Garcia1'2, Luthfi Darmawan1, Francisco Bueno3, and Manuel
Hermenegildo1 '3

The IMDEA Software Institute, Madrid, Spain
Spanish National Research Council (CSIC), Spain

Technical University of Madrid, Spain
{pedro.lopez,luthfi.darmawan,manuel.hermenegildo}@imdea.org

buenoOfi.upm.es

Abstract . In an increasing number of applications (e.g., in embedded,
real-time, or mobile systems) it is important or even essential to ensure
conformance with respect to a specification expressing resource usages,
such as execution time, memory, energy, or user-defined resources. In
previous work we have presented a novel framework for data size-aware,
static resource usage verification. Specifications can include both lower
and upper bound resource usage functions. In order to statically check
such specifications, both upper- and lower-bound resource usage func­
tions (on input data sizes) approximating the actual resource usage of
the program which are automatically inferred and compared against the
specification. The outcome of the static checking of assertions can express
intervals for the input data sizes such that a given specification can be
proved for some intervals but disproved for others. After an overview of
the approach in this paper we provide a number of novel contributions:
we present a full formalization, and we report on and provide results from
an implementation within the Ciao/CiaoPP framework (which provides
a general, unified platform for static and run-time verification, as well
as unit testing). We also generalize the checking of assertions to allow
preconditions expressing intervals within which the input data size of
a program is supposed to lie (i.e., intervals for which each assertion is
applicable), and we extend the class of resource usage functions that can
be checked.

K e y words: Cost Analysis, Resource Usage Analysis, Resource Usage
Verification, Program Verification and Debugging.

1 Introduction and Motivation

The conventional understanding of software correctness is the conformance to a
functional or behavioral specification, i.e., with respect to what the program is
supposed to compute or do. However, in an increasing number of applications,
particularly those running on devices with limited resources, it is also important

http://upm.es

and sometimes essential to ensure the conformance with respect to specifications
expressing resource usages (such as execution time, memory, energy, or user de-
fined resources). For example, in a real-time application, a program completing
an action later than expected is as erroneous as a program not computing the
correct answer. The same applies to an embedded application in a battery oper-
ated device (for example in the medical or mobile phone domains) which makes
the device to run-out of batteries earlier than expected, and thus, making the
whole system useless.

In [12] we proposed techniques that extended the capacity of debugging and
verification systems based on static analysis [4,2,10] when dealing with a quite
general class of properties related to resource usage. This includes upper and
lower bounds on execution time, memory, energy, and user-defined resources
(the later in the sense of [15]). Such bounds are given as functions on input data
sizes (see [15] for the different metrics that can be used to measure data sizes,
such as list-length, term-depth or term-size). For example, the techniques of [12]
extend the capacity of CiaoPP to certify programs with resource consumption
assuranees and also to efficiently check such certificates. We also defined an
abstract semantics for resource usage properties and described operations to
compare the (approximated) intended semantics of a program (i.e., the specifi-
cation, given as assertions in the program) with approximated semantics inferred
by static analysis, all for the case of resources. Thus, these operations include
the comparison of arithmetic functions (in particular, for [12], polynomial and
exponential functions).

In traditional static checking-based verification (e.g., [4]), for each property or
(part of) an assertion, the possible outeomes are true (property proved to hold),
false (property proved not to hold), and unknown (the analysis cannot prove
true or false). However, it is very common that cost functions have Íntersections,
so that for a given interval of input data sizes, one of them is smaller than the
other one, but for another interval it is the other way around. Thus, a novel
aspect of the resource verification and debugging approach proposed in [12] is
that the answers of the checking process go beyond these classical outeomes and
typically include conditions under which the t ruth or falsity of the property can
be proved. Such conditions can be parameterized by attributes of inputs, such
as input data size or valué ranges. For example, it may be possible to say that
the outeome is true if the input data size is in a given range and false if it is in
another one.

Consider for example the naive reverse program in Figure 1, with the classical
definition of predícate append. The assertion:

: - check comp nrev(A,B)
+ (c o s t (l b , s t e p s , l e n g t h (A)) , c o s t (u b , s t e p s , 10* leng th (A))) .

is a resource usage specification to be checked by CiaoPP. It uses the c o s t / 3
property for expressing a resource usage as a function on input data sizes (third
argument) for a particular resource (second argument), approximated in the
way expressed by the first argument (e.g., Ib for lower bounds and ub for up­
per bounds). The assertion expresses both an upper and a lower bound for

: - module(rev, [nrev/2], [assert ions,regtypes,nat iveprops,predefres(res_steps)]) .

: - entry nrev(A,B) : (l i s t (A, gnd), var(B)).
: - check comp nrev(A,B)

+ (cost (lb , s teps , length(A)), cost(ub, s teps , 10*length(A))).

nrev([] , []) .
nrev([H|L],R) : - nrev(L,Rl), append(Rl,[H],R).

Fig. 1. A module for naive reverse.

250

200

150

100

50

0
0 5 10 15 20

Fig. 2. Resource usage functions for program naive reverse.

the number of resolution steps performed by nrev(A,B), given as functions on
the length of the input list A. In other words, it specifies that the resource
usage (given in number of resolution steps) of nrev(A,B) lies in the interval
[length(A), 10 x length(A)].

Each Ciao assertion can be in a verification status, marked by prefixing the
assertion itself with keywords such as check, checked, f a l se , or true. This
specifies respectively whether the assertion is provided by the programmer and
is to be checked, or is the result of processing an input assertion and proving
it correct or false, or is the output of static analysis and thus correct (safely
approximated) information. Omitting this prefix means "to be checked" [16].

The outcome of the static checking of the previous assertion is the following
set of assertions:

:- false comp nrev(A,_l)
: intervals(length(A),[i(0,0),i(17, inf)])
+ (cost(Ib,steps,length(A)), cost(ub,steps,10*length(A))).

:- checked comp nrev(A,_l)
: intervals(length(A),[i(1,16)])
+ (cost(Ib,steps,length(A)), cost(ub,steps,10*length(A))).

meaning that the assertion is íalse for valúes of length(A) belonging to the
interval [0,0] U [17, oo], and true for valúes of length(A) in the interval [1,16]. In
order to produce that outcome, CiaoPP's resource analysis infers both upper and
lower bounds for the number of resolution steps of n rev /2 , which are compared
against the specification. In this particular case, the upper and lower bound
inferred by the analysis are the same, namely the function 0.5 x length(Ay¿ +
1.5 x length(A) + 1 (which means that it is the exact resource usage function
for nrev /2) .

As we can see in Figure 2, the resource usage function inferred by CiaoPP lies
in the resource usage interval expressed by the specification, namely [length(A), 10 x
length(A)], for length(A) belonging to the data size interval [1, 16]. Therefore,
CiaoPP says that the assertion is checked in that data size interval. However for
length(A) = 0 or length(A) e [17, oo], the assertion is false. This is because the
resource usage interval inferred by the analysis is disjoint with the one expressed
in the specification. This is determined by the fact that the lower bound resource
usage function inferred by the analysis is greater that the upper bound resource
usage function expressed in the specification.

In this paper we extend our previous work [12] in several ways: (a) present-
ing a complete formalization of the resource usage verification framework, and
(b) reporting on a prototype implementation and experimental results. We also
(c) extend the framework to deal with specifications containing assertions that
include preconditions expressing intervals, and (d) extend the class of resource
usage functions that can be checked (e.g., summatory and logarithm functions).

In order to illustrate (c) above, consider that often in a system the possible
input data belong to certain valué ranges. We extend the model to make it possi­
ble to express specifications whose applicability is restricted to intervals of input
data sizes (previously this capability was limited to the output of the analyzer).
This is useful to reduce false negative errors during static checking which may
be caused by input valúes that actually never occur. To this end (and also to
allow the system to express inferred properties in a better way w.r.t. [12]) we
have extended the Ciao assertion language with the new i n t e r v a l s / 2 property,
for expressing such preconditions, used already in the previous output. Consider
the previous example, and assume now that the possible length of the input list
to be reversed is in interval [1, 10]. In this case, we can add a precondition to
the specification expressing an interval for the input data size as follows:

: - check comp nrev(A,B) : i n t e r v a l s (l e n g t h (A) , [i (1 , 1 0)])
+ (c o s t (l b , s t e p s , l e n g t h (A)) , c o s t (u b , s t e p s , 10* leng th (A))) .

As we can see in Figure 2, this assertion is true, because for input valúes A such
that length(A) e [1, 10], the resource usage function of the program inferred by
analysis lies in the specified resource usage interval [length(A), 10 x length(A)].
In general, the outcome of the static checking of an assertion with a precondi­
tion expressing an interval for the input data size can be different for different
subintervals of the one expressed in the precondition.

The closest related work we are aware of presents a method for compari-
son of cost functions inferred by the COSTA system for Java bytecode [1]. The

method proves whether a cost function is smaller than another one for all the
valúes of a given initial set of input data sizes. The result of this comparison
is a boolean valué. However, as mentioned before, in our approach the result is
in general a set of subsets (intervals) in which the initial set of input data sizes
is partitioned, so that the result of the comparison is different for each subset.
The method in [1] also differs from the one presented here in that comparison is
syntactic, using a method similar to what was already being done in the CiaoPP
system: performing a function normalization and then using some syntactic com­
parison rules. However, in this work we go beyond these syntactic comparison
rules. Moreover, we present an application for which cost function comparison is
instrumental and which is not covered in the cited work: verification of resource
usage properties. This implies extending the criteria of correctness and defining
a resource usage (abstract) semantics and conditions under which a program is
correct or incorrect with respect to an (approximated) intended semantics.

The structure of the rest of the paper is the following: Section 2 recalls the
CiaoPP verification framework and Section 3 describes how it is used and ex­
tended for the verification of general resource usage program properties, and
presents the formalization of the framework. Section 4 then brieffy explains the
technique that we have developed for resource usage function comparison. Sec­
tion 5 reports on the implementation of our techniques within the Ciao/CiaoPP sys­
tem, providing experimental results, and finally Section 6 summarizes our con-
clusions.

2 Foundations of the Verification Framework

Our work on data size-aware, static resource usage verification presented in [12]
and in this paper builds on top of the previously existing framework for static
verification and debugging [17], which is implemented and integrated in the
CiaoPP system [10]. Our initial work on resource usage verification reported,
e.g., in [10] and previous papers, was based on a different type of cost function
comparison, basically consisting on performing function normalization and then
using some syntactic comparison rules. Also, the outcome of the assertion check-
ing was the classical one (true, false, or unknown), and did not produce intervals
of input data sizes for which the verification result is different.

The verification and debugging framework of CiaoPP uses abstract interpretation-
based analyses, which are provably correct and also practical, in order to stat-
ically compute semantic approximations of programs. These semantic approxi-
mations are compared with (partial) specifications, in the form of assertions that
are written by the programmer, in order to detect inconsistencies or to prove
such assertions.

Both program verification and debugging compare the actual semantics [P]
of a program P with an intended semantics for the same program, which we will
denote by I. This intended semantics embodies the user's requirements, i.e., it is
an expression of the user's expectations. In Table 1 we show classical verification
problems in a set-theoretic formulation as simple relations between [P] and I.
Using the exact actual or intended semantics for automatic verification and

Property Definit ion

P is partially correct w.r.t. /
P is complete w.r.t. /
P is incorrect w.r.t. /
P is incomplete w.r.t. /

IPÍQI
I Q ÍPÍ
\PÍ%I
I % ÍPÍ

Table 1. Set theoretic formulation of verification problems

debugging is in general not realistic, since the exact semantics can be typically
only partially known, infinite, too expensive to compute, etc. On the other hand
the technique of abstract interpretation allows computing safe approximations
of the program semantics. The key idea of the CiaoPP approach is to use the
abstract approximation [-P]]Q directly in program verification and debugging
tasks.

A number of other approaches have also been proposed which make use to
some extent of abstract interpretation in verification and/or debugging tasks. For
example, abstractions were used in the context of algorithmic debugging in [11].
Abstract interpretation (generally for debugging of imperative programs) was
studied by Bourdoncle [3], by Comini et al. for the particular case of algorithmic
debugging of logic programs [6] (making use of partial specifications) [5], by
P. Cousot [7], and others. Additional discussion and more details about the
foundations and implementation issues of the CiaoPP approach can be found
in [4,9,10].

Abstract Verification and Debugging In the CiaoPP framework the abstract
approximation [-P]]Q of the concrete semantics [P]] of the program is actually
computed and compared directly to the (also approximate) intention (which
is given in terms of assertions [16]), following almost directly the scheme of
Table 1. We safely assume that the program specification is given as an abstract
valué Ia £ Da (where Da is the abstract domain of computation). Program
verification is then performed by comparing Ia and [-?]]„• Table 2 shows sufficient
conditions for correctness and completeness w.r.t. Ia, which can be used when
[P] is approximated. Several instrumental conclusions can be drawn from these
relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as
[P] Q +) , are specially suited for proving partial correctness and incompleteness
with respect to the abstract specification Ia. It will also be sometimes possible to
prove incorrectness in the case in which the semantics inferred for the program is
incompatible with the abstract specification, i.e., when [P] a + n Ia = 0. On the
other hand, we use [P]]Q_ to denote the (less frequent) case in which analysis
under-approximates the actual semantics. In such case, it will be possible to
prove completeness and incorrectness.

Since most of the properties being inferred are in general undecidable at
compile-time, the inference technique used, abstract interpretation, is necessarily

Property

P is partially correct w.r.t. Ia

P is complete w.r.t. Ia

P is incorrect w.r.t. Ia

P is incomplete w.r.t. Ia

Definit ion

a([[P]]) C Ia

I« C a([[P]])

*(l[P}}) 2 I**

I« % a([[P}})

SuíRcient condit ion

ÍPÍa+ ^ J«
I* c [[P]]a_

[[P]]a+ n /« = 0 A [[P l a ^ 0

/« 2 [[PL+

Table 2. Verification problems using approximations

approximate, i.e., possibly imprecise. Nevertheless, such approximations are also
always guaranteed to be safe, in the sense that they are never incorrect.

3 Extending the Framework to Data Size-Aware
Resource Usage Verification

As mentioned before, our data size-aware resource usage verification framework
is characterized by being able to deal with specifications that include both lower
and upper bound resource usage functions (i.e., specifications that express Ín­
ter vals where the resource usage is supposed to be included in), and, in an
extensión of [12], that include preconditions expressing intervals within which
the input data size of a program is supposed to lie. We start by providing a
more complete formalization than that of [12] in order to define all the elements
of the CiaoPP framework for its application to data size-aware resource usage
verification.

3.1 Resource usage semantics
Given a program p, let Cp be the set of all calis to p. The concrete resource usage
semantics of a program p, for a particular resource of interest, [P]], is a set of
pairs (p(i), r) such that i is a tupie of terms, p(i) G Cp is a cali to predícate p with
actual parameters i, and r is a number expressing the amount of resource usage
of the computation of the cali p(t). Such a semantic object can be computed
by a suitable operational semantics, such as SLD-resolution, adorned with the
computation of the resource usage. We abstract away such computation, since it
will in general be dependent on the particular resource r refers to. The concrete
resource usage semantics can be defined as a function [P]] : Cp —¡> 1Z where 1Z
is the set of real numbers (note that depending on the type of resource we can
take another set of numbers, e.g., the set of natural numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v) : c(v),<P,inputp,sizep)

where p(v) : c(v), is an abstraction of a set of calis, v is a tupie of variables and
c(v) is an abstraction representing a set of tupies of terms which are instances
of v. c(v) is an element of some abstract domain expressing instantiation states.
(p, is an abstraction of the resource usage of the calis represented by p(v) : c(v).
We refer to it as a resource usage interval function for p, defined as follows:

Definition 1. A resource usage bound function forp is a monotonic arithmetic
function, & : S H> TZoo, for a given subset S C 1Zk, where 1Z is the set of real
numbers, k is the number of input arguments to predícate p, and IZoo is the set
of real numbers augmented with the special symbols oo and —oo. We use such
functions to express lower and upper bounds on the resource usage of predícate
p depending on input data sizes.

Definition 2. A resource usage interval function forp is an arithmetic function,
(p : S H> 1ZX, where S is defined as before and 1ZX is the set of intervals of real
numbers, such that (p(ñ) = [&1 (ñ),(pu(ñ)] for all ñ E S, where (pl(ñ) and (pu(ñ)
are resource usage bound functions that denote the lower and upper endpoints
of the interval <P(ñ) respectively for the tupie of input data sizes ñ. Although ñ is
typically a tupie of natural numbers, we do not want to restrict our framework.
We require that <& be well defined so that Vñ ((pl(ñ) < (pu(ñ)).

inputp is a function that takes a tupie of terms i and returns a tupie with
the input arguments to p. This function can be inferred by using existing mode
analysis or can be given by the user by means of assertions. sizep(i) is a function
that takes a tupie of terms i and returns a tupie with the sizes of those terms
under a given metric. The metric used for measuring the size of each argument
of p can be automatically inferred (based on type analysis information) or can
be given by the user by means of assertions [15].

Example 1. Consider for example the naive reverse program in Figure 1, with the
classical definition of predícate append. The first argument of nrev is declared
input, and the two first arguments of append are consequently inferred to be
also input. The size measure for all of them is inferred to be list-length. Then,
we have that:
inputnrev((x,y)) = (x), inputapp((x,y,z)) = (x,y),
sizenrev((x)) = (length(x)) and sizeapp((x,y)) = (length(x),length(y)).

In order to make the presentation simpler, we will omit the inputp and sizep

functions in abstract tupies, with the understanding that they are present in all
such tupies.

Intended meaning The intended approximate meaning Ia of a program is an
abstract semantic object with the same kind of tupies: (p(v) : c(v), (p, inputp, sizep),
which are given in the form of assertions. The basic form of a resource usage
assertion is:

: - comp Pred [: Precond] + ResUsage.

which expresses that for any cali to Pred, if Precond is satisfied in the call-
ing state, then ResUsage should also be satisfied for the computation of Pred.
ResUsage defines in general an interval of numbers for the particular resource
usage of the computation of the cali to Pred (i.e., ResUsage is satisfied by the
computation of the cali to Pred if the resource usage of such computation is in
the defined interval).

Example 2. In the program of Figure 1 one could use the assertion:

: - comp nrev(A,B): (l i s t (A , gnd), var(B))
+ resource(ub, s t e p s , l+exp(length(A) , 2)) .

to express that for any cali to nrev(A,B) with the first argument bound to a
ground list and the second one a free variable, an upper bound (ub) on the
number of resolution s teps performed by the computation is 1 + n2, where
n = length(A). In this case, the interval approximating the number of resolution
steps is [0,1 + n2]. Since the number of resolution steps cannot be negative, the
mínimum of the interval is zero. If we assume that the resource usage can be
negative, the interval would be (—oo, 1 + n2]. If we had a lower bound (Ib)
instead of an upper bound in the assertion, the interval would be [1 + n2, oo).

Such an assertion describes a tupie in Ia which is given by
(p(v) : c(v),<P,inputp,sizep), where p(v) : c(v) is defined by Pred and Precond,
and (p is defined by ResUsage. For simplicity, we assume that Pred is actually
p(v) and that there is a syntactic correspondence from Precond to c(v), and from
ResUsage to <£. The information about inputp and sizep is implicit in ResUsage.
The concretization of Ia, j(Ia), is the set of all pairs (p(i),r) such that i is a
tupie of terms and p(i) is an instance of Pred that meets precondition Precond,
and r is a number that meets the condition expressed by ResUsage (i.e., r lies
in the interval defined by ResUsage) for some assertion.

Example 3. The assertion in Example 2 captures the following concrete semantic
tupies:

(n r e v ([a , b , c , d , e , f , g] , X) , 35) (n r e v ([] , Y) , 1)

but it does not capture the following ones:

(nrev([A,B,C,D,E,F,G],X), 35) (nrev(W,Y), 1)
(n r e v ([a , b , c , d , e , f , g] , X) , 53) (n r e v ([] , Y) , 11)

Those in the first line above because they correspond to calis which are outside
the scope of the assertion (i.e., they do not meet the precondition Precond);
those on the second line (which will never occur during execution) because they
viólate the assertion (i.e., they meet the precondition Precond, but do not meet
the condition expressed by ResUsage).

Partial correctness: comparing the abstract semantics.

Definition 3. Given a program p and an intended resource usage semantics I,
where I : Cp H> 1Z, we say that p is partially corred w.r.t. I if for all p(i) G Cp

such that r is the amount of resource usage of the computation of the cali p(i),
we have that I(p(i)) = r, i.e., (p(i),r) G / . This is equivalent to the condition
[-PJ Q I given in Pable 1.

Definition 4. We say that p is partially corred with résped to a tupie of the
form (p(v) : c/(w),^/) if for all p(i) G Cp such that r is the amount of resource
usage of the computation of the callp(i), it holds that: if p(i) G j{p(v) : ci(v))
then r G ^ / (s) ; where s = sizep(inputp(i)).

Definition 5. Given an intended ahstract resource usage semantics Ia expressed
as a set of tupies of the forra (p(v) : CI(V),<PI) (each tupie is expressed by an as-
sertion in the program), we say thatp is partially corred with respect to Ia if for
allp(i) G Cp such thatr is the amount of resource usage of the computation of the
cali p(i), there is a tupie (p(v) : CI(V),<PI) in Ia such that p(i) G j{p(v) : ci(v))
and r G <¡>i{s), where s = sizep(inputp(i)).

L e m m a 1. p is partially corred with respect to Ia if:

— For all p(i) G Cp, there is a tupie (p(v) : CI(V),<PI) in Ia such that p(i) G
j{p(v) : ci(v)), and

— p is partially corred with respect to every tupie in Ia.

Definition 6. Given two resource usage interval functions <fr\ and $2, such that
<&i,<l>2 : S H> 1ZX, where S C lZk, we define the inclusión relation Qf and the
intersection operation l~l/ as follows:

- <P± Qf <P2 ifffor allñeS (S C Kk), <Pi(ñ) C <P2(ñ).
- $! nf <P2 = $3 ifffor allñeS (S c TZk), ^ (ñ) n $2(ñ) = $3(ñ).

Consider a tupie (p(v) : CI(V),<PI) in the intended meaning Ia, and a tupie
(p(v) : c(v),<P) in the computed abstract semantics [-P]a + (for simplicity, we
assume the same tupie of variables v in all abstract objects).

Definition 7. We say that (p(v) : c(v),<P) C (p(v) : CI(V),<PI) if Ci(v) C c(v)
and<P Qf <£/.

Note that the condition a (v) C c(v) can be checked using the CiaoPP capa-
bilities for comparing program state properties such as types or variable sharing.

Definition 8. We say that (p(v) : c(v),<P)n(p(v) : CI(V),<PI) = 0 ifci(v) C c(v)
and <Pr\f<Pi = <&$, where <!>$ is the empty function defined as follows: $<¡¡{ñ) = 0
for allñeS (S C IZk).

L e m m a 2. If (p(v) : c(v),<P) C (p(v) : CI(V),<PI) thenp is partially corred with
respect to (p(v) : CI(V),<PI).

Proof. If (p(v) : c(v),<P) C (p(v) : a(v),<I>i) then a(v) C c(v) and <? Q¡ <£/. For
all p(í) G Cp such that r is the amount of resource usage of the computation of
the cali p(i), it holds that: if p(t) G j{p(v) : ci(v)) then p(i) G j{p(v) : c(w))
(because c/(w) C c(w)), and thus r G ^ (s) , where s = sizep(inputp(i)) (because
of the safety of the analysis). Since <& Qf ^i, we have that r G $i{s).

L e m m a 3. / / (p(v) : c(v),<P) n (p(v) : CI(V),<PI) = 0 and (p(v) : c(v),<P) ^ 0
thenp is incorrect w.r.t. (p(v) : CI(V),<PI).

3.2 Comparing Resource Usage Interval Functions

During verification/debugging within the framework described in the previous
section, we will need to compare abstract tupies following Table 2. Thus, when-
ever ci(v) C c(v) we will have to determine whether <P Qf <Pj or <P ri/ <¡>i = <&$.

Definition 9. Given two resource usage bound functions $ i and $2 (as in Defi-
nition 1, &1, #2 '• S H> 1ZX, where S C lZk), we define the < / relation as follows:

$i < / $2 iff for all ñ G S, it holds that &i(ñ) < &2(ñ)

where < represents the standard relation between real numbers augmented with
the special symbols oo and — oo. Similarly, we define < / , > / and > / .

Lemma 4. Given two resource usage interval functions <fr\ and <t>2, we have
that:

- (px \Zf $2 if@l2 <f &[o,nd @± <f @2.
- <fr\ ri/ $2 = ^0 Íf@i <f @2 or ^2 < / ^ í •

Corollary 1. Let (p(v) : c(v),<P) and (p(v) : CI(V),<PI) be tupies expressing an
abstract semantics [[-P]Q+ inferred by analysis and an intended abstract seman-
tics Ia (given in a specification) respectively, such that ci(v) C c(v), and for all
ñ G S (S C TZk), <£(ñ) = [&{n),$u{ñ)] and <£/(ñ) = [^ (ñ) , ^ (ñ)] . We have
that:

1. If for all ñ e S, ^ j (ñ) < <&l{n) and <¡>u(ñ) < <£j(ñ), then p is partially
corred with résped to (p(v) : CI(V),<PI).

2. If for all ñ G S, (pu(ñ) < @lj(ñ) or <£j(ñ) < (pl(ñ), then p is incorrect with
résped to (p(v) : CI(V),<PI).

When (pj (resp., $\) is not present in a specification, we assume that Vñ
(^j(ñ) = oo) (resp., <í>\ = —oo or (plj(ñ) = 0, depending on the resource). With
this asumption, one of the resource usage bound function comparisons in the
sufficient condition 1 (resp., 2) above is always true (resp., false) and the truth
valué of such conditions depends on the other comparison.

For the particular case where resource usage bound functions depend on one
argument, the result of the resource usage bound function comparison in our
approach is in general a set of intervals of input data sizes for which a function
is less, equal, or greater than another. This is explained in Section 4 and allows
us to give intervals of input data sizes for which a program p is partially correct
(or incorrect).

3.3 Deal ing with Precondit ions Expressing Input Data Size
Intervals

Given the formalization presented in the previous sections, note that it is now
straightforward to allow checking assertions which include preconditions express­
ing intervals within which the input data size of a program is supposed to lie

(i.e., intervals for which each assertion is applicable). All that is required is to
modify some definitions.

From the practical view, we have extended the Ciao assertion language with
the new i n t e r v a l s (A, B) property (to be used in the Precond field of asser-
tions), which expresses that the input data size A is included in some of the
intervals in the list B, and we have made the corresponding changes in the algo-
rithms.

To give an example, the element c(v) in a tupie representing an abstract
semantics should be allowed to include the property i n t e r v a l s (A, B). Also,
the operation ci(v) C c(v) in Definition 7 should be extended to deal with data
size intervals. However, in practice we can follow a simpler approach. Even if
we do have an abstract domain to infer the property i n t e r v a l s (A, B), it is
safe to work with a c(v) expressing only instantiation states (since ci(v) C c(v)
is preserved). Also, in practice, we can perform the assertion checking ignoring
the data size intervals in ci(v), and then "filter" the intervals of the verification
outcome with the intervals initially present in ci(v) (using interval intersection
operations).

4 Resource Usage Bound Function Comparison

As stated in [12,13], fundamental to our approach to verification is the operation
that compares two resource usage bound functions, one of them inferred by the
static analysis and the other one given in an assertion present in the program
(i.e. given as a specification). Given two of such functions, í ' i(n) and &2(ri),
n G TZ, the objective of this operation is to determine intervals for n in which
&i(ri) > &2(ri), &i(ri) = &2(ri), or $ i (n) < &¿(n).

Our approach consists in defining f(n) = &i(ri) — &2(ri) and finding the roots
of the equation f(n) = 0. Assume that the equation has m roots, n-¡_,... ,nm.
These roots are intersection points of $ i (n) and ^(n)- We consider the inter­
vals Si = [0,ni), S2 = (n i , n 2) , Sm = ... (nm-i,nm), Sm+1 = (nm,oo). For
each interval Si, 1 < i < m, we select a valué Vi in the interval. If f(vi) > 0
(respectively f(vi) < 0), then í ' i(n) > ^(n) (respectively $i (n) < ^(n)) for
all n G Si.

Since our resource analysis is able to infer different types of functions (e.g.,
polynomial, exponential, logarithmic and summatory), it is also desirable to be
able to compare all of these functions.

For polynomial functions there exist powerful algorithms for obtaining roots,
e.g. the one we are using which is implemented in the GNU Scientific Library
(GSL) which offers a specific polynomial function library that uses analytical
methods for finding roots of polynomials up to order four, and uses numerical
methods for higher order polynomials. For the other functions, we safely ap-
proximate them using polynomials such that they bound (from above or below
as appropriate) such functions. In this case, we should guarantee that the error
falls in the safe side when comparing the corresponding resource usage bound
functions. We refer the reader to [13] for a full description of how such approxi-
mations are performed.

Benchmark

fibonacci

lb.ub: 1.45* 1.62a1

+0.55 * -0.62a1 - 1
x = length(N)

Naive reverse

lb.ub: 0.5x2 + 1.5x + 1
x = length(A)

Quick sort

I b : x + 5
ub: (^ = 1 j 2 a " 0 + x 2 a - 1

+2 * 2 a - 1
x = length(A)
Client

ub: 8x
x = length(I)

iíewerse

l b , u b : 4 i r+ 6
x = length(A)

ID

Al

A2

A3

Bl

B2

Cl

C2

DI

D2

D3

E l

Asse r t ion

:- comp fib(N,R)
+ cost(ub,steps,exp(2,int(N))-1000).
:- comp fib(N,R)
+ (cost(ub,steps,exp(2,int(N))-1000),
cost(lb,steps,exp(2,int(N))-10000)).
:- comp fib(N,R)
:(intervals(int(N),[i(l,12)]))
+ (cost(ub,steps,exp(2,int(N))-1000),
cost(lb,steps,exp(2,int(N))-10000)).
:- comp nrev(A,B)
+ (cost(lb,steps,length(A)),
cost(ub,steps,exp(length(A),2))).
:- comp nrev(A,_l)
+ (cost(lb, steps, length(A)),
cost(ub, steps, 10*length(A))).
:- comp qsort(A,B)
+ cost(ub, steps, exp(length(A),2))
:- comp qsort(A,B)
+ cost(ub, steps, exp(length(A),3))

:- pred main(Op, I, B)
+ cost(ub, bits.received,
exp(length(I),2)).
:- pred main(Op, I, B)
+ cost(ub, bits.received,
10*length(I)).
:- pred main(Op, I, B)
: intervals(length(I),[i(l,10),i(100,plusinf)])
+ cost(ub, bits.received,
10*length(I)).
:- pred reverse(A, B)
+ (cost(ub, ticks, 10 * length(A) - 20)).

Verif . Resul t

F in [0,10]
T in [11, oo]
F in [0,10] U [15, oo]
T in [11,14]

F in [0,10]
T in [11,12]

F in [0, 3]
T in [4,oo]

F in [0,0]U[17,oo]
T in [1,16]

F in [0, 2]
C in (2, oo)
F in [0,1]
C in (1, oo)

C in (0, 8)
T in [0,0] U [8, oo]

T in [0, oo]

T in [0,10] U [100, oo]

F in [0,4]
T in [5, oo]

Time
(mS)
60

80

80

36

36

44

52

28

24

28

20

Table 3. Results of the interval-based static assertion checking integrated into CiaoPP.

5 Implementation and Experimental Results

The resource usage veriñcation techniques presented in this paper have been im-
plemented and integrated in a seamless way within the Ciao/CiaoPP framework
that unifies static and run-time veriñcation, as well as unit testing [14].

As mentioned before, for the implementation of the resource usage function
comparison operations we have used the GNU Scientific Library [8]. To this
end we have defined a Ciao-GSL binding through the native code (C) inter-
face. As mentioned before, we have implemented comparisons for polynomial,
exponential, logarithmic and summatory functions, the latter two through safe
approximations via polynomials.

We have also performed an experimental assesment of the accuracy and effi-
ciency of the resource usage veriñcation techniques. Table 3 shows some experi­
mental results obtained with our prototype implementation. The column labeled
Benchmark shows information about the program to be verified, which includes
its ñame and the upper (ub) and lower (ib) bound resource usage functions
inferred by CiaoPP's static analysers.

The columns ID and Asse r t ion show several assertions expressing resource
usages to be statically checked, which are written by the user together with the
source code (ID is just an identifier to facilítate discussion.). We can see that
some assertions only specify upper bounds (e.g., Al, Cl or C2), and other as­
sertions specify both upper and lower bounds (e.g., A2, AS, Bl or B2). Note
also that some assertions include preconditions expressing intervals within which
the input data size of the program is supposed to lie {AS and D3). The column
Check Resul t shows the result of the assertion checking process, which in gen­
eral express intervals of input data sizes for which the assertion is true (T), false
(C) or it has not been posible to determine whether it is true of false (C). Finally,
the column labeled Time shows the resource veriñcation times in milliseconds, on
a Intel Centrino 1.5 GHz with one processor, 768Mb of RAM memory, running
Debían Lenny, kernel 2.6.26-2-686.

Note that we can deal with different types of resource usage functions, as for
example polynomial functions (see e.g. programs naive reverse, client, and re­
verse), exponential functions (see the fibonacci program), and summatory func­
tions (as in the quick sort program).

We can see that in general polynomial functions are faster to check than other
functions, because they do not need additional processing for approximation.
However the additional time to compute approximations is very reasonable in
practice.

Table 4 shows the results of an experiment that we have performed for the
case where assertions include preconditions expressing input data size intervals.
The experiment consists on comparing the method described so far (referred
to as Root in Column Method) with a simple method (referred to as Eval)
consisting on evaluating the resource usage functions (i.e., the ones inferred by
analysis and the ones present in the assertions) for all the valúes in a given
input data size interval (which is a finite set of natural numbers) and comparing
the results. Column ID refers to the assertions in Table 3. Assertion checking

ID

A3

D3

Method

Root
Eval

Root
Eval

Intervals
[1,12]

84
80

32
36

[1,100]

84
84

32
36

[1,1000]

84
132

32
48

[1,10000]

84
644

32
116

[1,1000] U
[1001,10000]

84
628

32
112

Table 4. Comparison of assertion checking times for two methods dealing with pre-
conditions expressing input data size intervals.

times (in milliseconds) are shown for different input data size intervals (columns
under the In tervals label). We can see that checking time grows quite slowly
compared to the length of the interval, which grows exponentially.

6 Conclusions

We have presented several extensions and improvements to our framework for
verification/debugging (implemented in the CiaoPP system) dealing with spec-
ifications about the resource usage of programs, itself and extensión of the
CiaoPP framework for verification of functional or program state properties.
We have provided a full formalization and we have improved the resource usage
function comparison method by extending the class of resource usage functions
that can be compared and providing better algorithms, which in addition allow
for the case when the assertions include preconditions expressing input data size
intervals. We have also reported on a prototype implementation and provided the
first experimental results, which are encouraging, suggesting that our framework
is feasible and accurate in practice.

References

1. E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost
functions in resource analysis. In Ist International Workshop on Foundational
and Practical Aspects of Resource Analysis (FOPARA '09), volume 6234 of Lecture
Notes in Computer Science, pages 1-17. Springer, 2010.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In Proc. of
PLDF03. ACM Press, 2003.

3. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro-
gramming Languages Design and Implementation'93, pages 46-55, 1993.

4. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l WS on Auto-
mated Debugging-AADEBUG, pages 155-170. U. Linkóping Press, May 1997.

5. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of
Logic Programming, 39(l-3):43-93, 1999.

6. M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In 1995
International Logic Programming Symposium, pages 275-287, Portland, Oregon,
December 1995. MIT Press, Cambridge, MA.

7. P. Cousot. Automatic Verincation by Abstract Interpretation, Invited Tutorial.
In Fourih International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI), number 2575 in LNCS, pages 20-24. Springer, January
2003.

8. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth,
and F. Rossi. GNU Scientific Library Reference Manual - Third Edition (vi. 12).
Network Theory Ltd, 2009. Library and Manual also available at ht tp: / /www.
g n u . o r g / s o f t w a r e / g s l / .

9. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifi-
cations, and an Extensible Assertion Language for Program Validation and Debug-
ging. In The Logic Programming Paradigm: a 25-Year Perspective, pages 161-192.
Springer-Verlag, 1999.

10. M. Hermenegildo, G. Puebla, F. Bueno, and P. López García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Gomp. Progr., 58(1-2), 2005.

11. Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In R. A.
Kowalski and K. A. Bowen, editors, Fifth International Conference and Symposium
on Logic Programming, pages 512-531, Seattle, Washington, August 1988. MIT.

12. P. López-García, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In M. Hermenegildo and T. Schaub,
editors, Technical Communications of the 26ih Int'l. Conference on Logic Pro­
gramming (ICLP'10), volume 7 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 104-113, Dagstuhl, Germany, July 2010. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

13. P. López-García, L. Darmawan, F. Bueno, and M. Hermenegildo. To-
wards Resource Usage Function Verification based on Input Data Size In-
tervals. Technical Report CLIP4/2011.0, Technical University of Madrid
(UPM), School of Computer Science, UPM, April 2011. Available at
h t t p : / / c l i p l a b . o r g / p a p e r s / r e s o u r c e - v e r i f - l l - t r . p d f .

14. E. Mera, P. López-García, and M. Hermenegildo. Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (IGLP'09), number 5649 in LNCS, pages 281-
295. Springer-Verlag, July 2009.

15. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-Definable Re­
source Bounds Analysis for Logic Programs. In Proc. of IGLP'07, volume 4670 of
LNCS, pages 348-363. Springer, 2007.

16. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23-61. Springer-Verlag, September 2000.

17. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro­
gram Synihesis and Transformation (LOPSTR'99), number 1817 in LNCS, pages
273-292. Springer-Verlag, March 2000.

http://www
http://cliplab.org/papers/resource-verif-ll-tr.pdf

