
Towards Resource Usage Analysis
of MiniZinc Models

F. Bueno1 , María García de la Banda 2 , M. V. Hermenegildo1 '3 ,
P. Lopez-Garcia3 '7 , E. Mera4 , and P. J. Stuckey5 '6

universidad Politécnica de Madrid (UPM), Spain
2Faculty of Information Technology, Monash University, Australia

3IMDEA Software Institute, Spain
4Universidad Complutense de Madrid (UCM), Spain

5 National ICT Australia, Victoria Laboratory
6Dept. of CS & SE, University of Melbourne, Australia

7Spanish Research Council (CSIC), Spain
bueno@fi.upm.es — Haria.GarciadelaBanda@infotech.monash.edu.au

{manuel.hermenegildo.pedro.lopez}@imdea.org
edison@fdi.ucm.es — pjs@cs.mu.oz.au

Abs t r ac t . We present a method for the static resource usage analysis
of MiniZinc models. The analysis can infer upper bounds on the usage
that a MiniZinc model will make of some resources such as the number
of constraints of a given type (equality, disequality, global constraints,
etc.), the number of variables (search variables or temporary variables),
or the size of the expressions before calling the solver. These bounds
are obtained from the models independently of the concrete input data
(the instance data) and are in general functions of sizes of such data. In
our approach, MiniZinc models are translated into Ciao programs which
are then analysed by the CiaoPP system. CiaoPP includes a parametric
analysis framework for resource usage in which the user can define re­
sources and express the resource usage of library procedures (and certain
program construets) by means of a language of assertions. We present
the approach and report on a preliminary implementation, which shows
the feasibility of the approach, and provides encouraging results.

Key words : Resource Usage Analysis, Constraint Modeling Languages,
Constraint Programming, Complexity Analysis.

1 Introduction and Motivation
Inferring information about the resource usage of computations can be useful
for a variety of applications, including resource usage verification and debug-
ging, resource control in parallel /distr ibuted computing, and resource-oriented
specialisation for the selection among different design implementations. Analysis
of a wide range of resources, from execution time and memory to energy con-
sumption, has been studied for several programming paradigms including logic
languages [2,7], functional languages [1,4,9], and imperative languages [10,3].

In this paper we present a method for the static resource usage analysis of
MiniZinc models [8]. The analysis can infer upper bounds on the usage tha t a

mailto:bueno@fi.upm.es
mailto:Haria.GarciadelaBanda@infotech.monash.edu.au
mailto:edison@fdi.ucm.es
mailto:pjs@cs.mu.oz.au

MiniZinc model will make of resources such as the number of constraints of a
given type (equality, disequality, global constraints, etc.), the number of variables
(search variables or temporary variables), or the size of the expressions before
calling the solver. This is, to our knowledge, the first proposal for resource usage
analysis in constraint programming.

An interesting feature of our approach is that the bounds on resource us-
ages are obtained from the models (which describe the structure of a class of
problems) independently of the (yet unknown) concrete input data (the data
which specifies a particular problem within such class). In general, the inferred
bounds are functions on the size of the input data. These functions, which will
be referred to as resource usage functions, allow us to apply our method to,
for example, select among different solvers in order to reduce the usage of some
resource, or to verify and debug a given resource usage property.

Our approach leverages on the significant amount of work and tools devel-
oped for resource analysis in the context of logic programming. To this end we
propose a transformation from the MiniZinc model into an operational versión
encoded as a program in the logic programming subset of the Ciao [6] language.
This allows us to analyse this transformed program with Ciao's preprocessor,
CiaoPP [5], which includes a parametric analysis framework for resource usage
that must be instantiated to infer the resources of interest. This instantiation
is done by means of a language of assertions which allows the user to define
resources and express the resource usage of library procedures (and certain pro­
gram constructs). Based on this information, the analyser can infer bounds on
the resource usage of the whole program. This paper presents the CiaoPP in­
stantiation that we have developed and applied to the transformed MiniZinc
programs, obtaining the desired bounds. The final step is to map the informa­
tion inferred by the analysis of the Ciao program back to the original MiniZinc
model. Note that there is no disadvantage in translating a restricted language
like MiniZinc into a richer language and then performing the analysis. For ex­
ample, the "where" MiniZinc clauses (to be described later) add considerable
complexity to the resulting Ciao programs. Moreover, the CiaoPP approach ef-
ficiently deals with program schemas resulting from the translation of simple
MiniZinc loops and has certain accuracy guarantees.

2 The MiniZinc Modeling Language
A MiniZinc [8] problem specification has two parts: (a) the model, which de­
scribes the structure of a class of problems; and (b) the input data, which pro­
vides valúes to the parameters in the model and, thus, specifies a particular
problem within this class. The pairing of a model with a particular data set is
referred to clS el model instance (or simply instance).

The model and the data often appear in sepárate files, with data files sim­
ply containing assignments to the parameters declared in the model. Users can
specify the particular data files to be used by a model through the command
line, rather than naming them in the model file, thus ensuring the model is not
tied to any particular data file. This separation of data and model is important
for the purposes of this paper, since we wish to analyse the model independently

1 % (squa re) job shop sched u I i ng in MiniZinc
2 i n t : s i z e ; % size of problem
3 a r ray [1 . . s i z e , 1 . . s i z e] o f i n t : d ; % task durations
4 i n t : t o t a l = sum(i , j in 1 . . s i ze) (d [i , j]) ; % total d uration
5 a r ray [l . . s i z e , 1 . . s i ze] o f var 0 . . t o t a l : s ; % start times
6 var 0 . . t o t a l : end ; % total end time
7
8 p r e d í c a t e no_over I a p (v a r i n t : s l , i n t : d l , var i n t : s 2 , i n t : d 2) =
9 s i + d i <= s2 \ / s2 + d2 <= s i ;

10
11 c o n s t r a i n t
12 f o r a l l (i in 1 .. s i z e) (
13 f o r a l l (j in 1 . . s ize - 1) (s [i , j] + d [i , j] < = s [i , j + 1]) / \
14 s [i , s i z e] + d [i , s i z e] < = end / \
15 f o r a l l (j , k i n 1 . . s i ze where j < k) (
16 n o _ o v e r l a p (s [j , i] , d [j , i] , s [k , i] , d [k , i])
17)
18);
19
20 solve min imize end ;
21
22 output [s h o w (s [i , j]) + + i f j = s i ze then " \ n " e lse " " e n d i f |
23 i , j i n 1 . . s i z e] ;

Fig. 1. MiniZinc model (jobshop.mzn) for the job shop problem.

of the data with the aim of learning generic formulas about resource usage that
are dependent on the as yet unknown data of a given instance.

A MiniZinc Example Each MiniZinc model is a sequence of ítems, which may
appear in any order. Let us introduce the main kinds of Ítems that can appear
in a MiniZinc model and their characteristics by means of the example model
shown in Figure 1 for a restricted kind of job shop scheduling problem.

Line 1 shows a comment, since it is introduced by the 7o' character.
Lines 2-6 show different variable declaratíon ítems. In particular, lines 2-4

declare three parameters, Le., variables that are fixed in the model and will be
assigned a valué by means of an assígnment ítem either in the data file (as is
the case for integer parameter s ize and 2D array of integers d), or in the model
(as it is the case for total) . In contrast, line 5 declares s to be a 2D array of
decisión variables, and line 6 declares end to be an integer decisión variable with
a restricted range. Note that variables are known to be decisión variables if and
only if they are declared with the var prefix, and parameters otherwise.

Lines 8-9 show a user-defined predícate ítem, no_overlap, which uses dis-
junction and implication over the start times and durations of two tasks to
ensure they do not overlap in time. Lines 11-18 show a constraint ítem. It uses
the built-in fora l l to loop over each job ensuring that: (line 13) the tasks are
in order; (line 14) they finish no later than end; and (lines 15-17) no two tasks
in the same column overlap in time. Múltiple constraint Ítems can appear in a
model and, if so, they are implicitly conjoined.

Every model must include exactly one solve ítem. In our example, this item
appears in line 20 indicating we want a solution that minimises the end time. We

s i z e = 2 ;
d = [2 , 5 ,

3 , 4] ;

Fig. 2. MiniZinc data (jobshop2x2.data) for the job shop problem.

can also maximise a variable or just look for any solution ("solve sa t i s fy") .
Models can also have output ítems, such as the one given in lines 22-23, specifying
how to display the results of the optimisation.

Figure 2 shows a possible data file for our model, containing 2 assignment
Ítems in lines 24-26 assigning valúes to the s ize and d parameters.

3 The Ciao Programming Language
Ciao [6] is a general-purpose programming language that supports a number
of programming paradigms including functional, logic, and constraint program­
ming. In this paper we use Ciao's logic programming subset (i.e., the Prolog
syntax and operational semantics) and its programming environment, which
provides a powerful assertion language. In particular, as we will show later,
we transíate MiniZinc programs into Ciao programs composed of one or more
modules containing Horn clauses and assertions. The procedural interpretation
of these Ciao programs, coupled with resource-related information contained in
the assertions, will allow the resource analysis capabilities of its preprocessor
(CiaoPP [5]) to infer static bounds on the resource consumption of the Ciao
programs that are applicable to the original MiniZinc model. We also take ad-
vantage of Ciao's novel module system [6] that allows writing language extensions
(packages) by grouping together syntactic definitions, compilation options, and
plugins to the compiler.

We use a subset of the Ciao assertion language which allows expressing global
"computational" properties and, in particular, resource usage. While a detailed
introduction to the assertion language can be found in [5], for brevity, we only
introduce here the class of pred assertions, which describes a particular pred-
icate and, in general, follows the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].
where Pred is a predicate symbol applied to distinct free variables while Precond
and Postcond are logic formulae about execution states. An execution state is de-
fined by variable/value bindings in a given execution step. The assertion indicates
that in any cali to Pred, if Precond holds in the calling state and the computation
of the cali succeeds, then Postcond also holds in the success state. Finally, the
Comp-Props field is used to describe properties of the whole computation for
calis to predicate Pred that meet Precond. In our application Comp-Props are
precisely the resource usage properties.

For example, the following assertion for a typical append/3 predicate:
: - t r u s t pred a p p e n d (A , B , C) : (I i s t (A) , I i s t (B) , v a r (C)) = >

(l i s t (A) , l i s t (B) , l i s t (C)) + cos t (ub ,s teps , length (A) + l) .
states that for any cali to predicate append/3 with the first and second arguments
bound to lists and the third one unbound, if the cali succeeds, then the third
argument is also bound to a list. It also states that an upper bound on the

f
f

f
f

o r a l l l j (0 , , ,
o r a l l l _ j (l n d _ j ,

S i ze , S
1 n d _j > 0 ,
1 n d e x _ j i s Uj
1 i s 1 n d e x _ i —
J i s 1 n d e x _ j —
e l e m e n t 2 d _ d i n t
el e m e n t 2 d _i n t (
J l i s J + 1 ,
e l e m e n t 2 d _ d i n t
p l u s (S i j , D i j ,
l e q (A , S i j l) ,
N l n d _ j i s l n d _
f o r a 1 1 l _ j (N l n d

S i ze

o r a l l 2 j (0 , , ,
o r a l l 2 _ j (l n d _ j ,

S i ze , S
1 n d _j > 0 ,
1 n d e x _ j i s Uj
1nd_k is S i z e
f o r a l l 2 _ j k (l n d

I n d
N l n d _ j i s l n d _
f o r a l l 2 _ j (N l n d

,
Uj
, D

1
1

(1

, - , -) •

1 n d e x _ i ,
End) : -

n d _ j + 1 ,

+ 1,
+ 1,
J , S , S i j) ,

1 , J , D , D i j) ,

(1 J l , S , S i j l)

A) ,

j -
- j
,S

Uj
,D

-
_k
ex

j -
- j

1n d e x .

- 1 ,
Uj , 1 nd ex_ i
D . E n d) .

. -) •

1 n d e x _ i ,

:-
n d _ j + 1 ,

í + 1 ,
S i ze , I n d e x

- j , S , D) ,
- 1 ,

U j ,
, S i z e , S , D)

f o r a l l 2 _ j k (0) .
f o r a l l 2 _ j k (l n d _ k , U k , l n d e x _ i , I n d e x _ j ,

S , D) : -
l n d _ k > 0 ,
l n d e x _ k i s Uk - l n d _ k + 1 ,
f o r a l l 2 _ j k _ w h e r e (l n d e x _ i , I n d e x _ j ,

l n d e x _ k , S , D) ,
N l n d _ k is I n d . k - 1 ,
f o r a M 2 _ j k (N l n d _ k , U k , I n d e x J ,

l n d e x _ j , S , D) .

f o r a 11 2 _j k _ w h e r e (I n d ex_ i , l n d e x _ j ,
l n d e x _ k , S , D) : -

l n d e x _ j < l n d e x _ k ,
!
e l e m e n t 2 d _ d i n t (I n d e x _ j , l n d e x _ i , S , S j i) ,
e l e m e n t 2 d _ i n t (I n d e x _ j , l n d e x _ i , D , D j i) ,
e l e m e n t 2 d _ d i n t (l n d e x _ k , I nd ex_ i , S k i) ,
e l e m e n t 2 d _ i n t (l n d e x _ k , l n d e x _ i , D , D k i) ,
n o _ o v e r l a p (S j i , D j i , S k i , D k i) .

f o r a l l 2 _ j k _ w h e r e (_ ,_ ,_ ,_ , _) .

n o _ o v e r l a p (S l , D l , S 2 , D 2) : -
p l u s (S l , D l , A) ,
r e i f _ l e q (A , S 2 , B 1) ,
p l u s (S 2 , D 2 , B) ,
r e i f _ l e q (B , S 1 , B 2) ,
o r (B l , B 2 , l) .

Fig. 3. Ciao code from translation of (parts of) the MiniZinc model in Figure 1.

number of resolution steps required to execute any of such calis is length(A) +1,
a function on the length of list A.

The global non-functional property cost /3 (appearing in the "+" field), is
used for expressing resource usages and follows the schema:

cost(Approx, Res-Name, Arith-Expr)
where Res-Name is a user-provided identifier for the resource the assertion refers
to, Aríth_Expr is an arithmetic function that maps input data sizes to resource
usage, and Approx indicates, for example, whether Aríth-Expr provides an upper
bound (ub) or a lower bound (Ib).

Each assertion can be in a particular status, marked with the keyword pre-
fixes check (indicating the assertion needs to be checked), checked (it has been
checked and proved correct by the system), fa l se (it has been checked and
proved incorrect by the system; a compile-time error is reported in this case),
trust (it provides information coming from the programmer and needs to be
trusted), or true (it is the result of static analysis and thus correct, i.e., safely
approximated). The default status is check.

4 Translating MiniZinc Models into Ciao Programs

As mentioned before, our approach is based on translating MiniZinc programs
into Ciao programs. We now present how this translation is performed.

Transformation Rules Before we formalise the transformation rules used
during our translation, let us introduce some notation. We use p j y to denote
the goal + program resulting from converting the MiniZinc term t into a Prolog
term assigned to Prolog variable T in the context of variable declaration set V. A
set of variable declarations V is stored as a list of pairs of the form (v, T) where

v is a unique ground variable ñame for Prolog variable T. Let { T i , . . . , T n } =
{T | (v,T) G V}. Then, pv(V) represents the sequence T i , . . . , T n , made up of
all the Prolog variables in V separated by commas. In practice, variables tha t
are not used are removed from pv(V). For variable declarations \type : var^v

returns in T a list of variable declarations. We use [[tjy on a Boolean MiniZinc
expression t to denote tha t instead of generating a variable with the valué of the
expression, we simply forcé the Boolean expression to be true.

The transformation rules follows:

lv^v = > e, such tha t (v,T) G V (e denotes an empty sequence of characters).

Iti+hfv^lUfy1, Mi?, p l u s (T l , T 2 , T) .

P i A Í 2 l y ^ p i]] ^ , [[t 2 l f , a n d (B l , B 2 , B) .

IhAtitv^My, ihfv

l if b then t i else í2 endif]]v ==> i f _ t h e n _ e l s e X X (pv(V) , T)
where

i f _ t h e n _ e l s e X X (p í ; (V) , T) : - [6]]^, ! , p j ^ .

i f _ t h e n _ e l s e X X (p ü (y) , T) : - p 2 J y •

Li "uffi , I n d _ i i s U i - L i + 1 , f o r a l l X X (I n d _ i , U i ,pv{V),B)

|[/ora//(¿ in / . .M)(T{«})] | - (/

Plv. H , .
where

f o r a l l X X (0 , _ U i , _ , 1) .
f o r a l l X X (I n d _ i , U i , Í W (V) , B) : -

I n d _ i > 0 ,
I n d e x _ i i s Ui - I n d _ i + 1 ,

NInd_i is Ind_i - 1,
f orallXX(NInd_i ,Ui ,pv(V), B2) ,
and(Bl,B2,B).

\forall(i in /..« where B{«})(T{«})]|-(/ = >

P l v i M ^ » I n d _ i i s U i - L i + 1 , f o r a l l X X (I n d _ i , U i ,pv{V)) .
where

f o r a l l X X (0 , _ U i , _) .
forallXX(Ind_i ,Ui ,pv(V)) :- iorallXX_where(pv{V))

I n d _ i > 0 , HB-íil-111

I n d e x _ i i s Ui - I n d _ i + 1 , l x / J T
f o r a l l X X _ w h e r e (pv(V)) , V{i
N I n d _ i i s I n d _ i - 1 , f o r a l l X X . w h e r e ('_) .
f o r a l l X X (N I n d _ i , U i , p v (V)) .

Note tha t the generalisation of the following rule to n Índices instead of 2 is
straightforward (we chose 2 just for clarity of exposition):
lforall(i in li..ui,j in lj..uj)(T{i,j})}v ==>

l[(i,Index-i)\V] " '

'i%'t\{i,Index_i)\V] •

ll\
where

„Li rr .-nUi
V ' I n d _ i i s U i - L i + 1 , f o r a l l X X (I n d _ i , U i , p v (V)) .

file:///type

f o r a l l X X (0 , _ U i , _) .
f o r a l l X X (I n d _ i ,Ui ,pv(V)) :-

I n d _ i > O,
I n d e x _ i i s Ui - I n d _ i + 1 ,
iforall(j in lj..uj)(T{i,j})t[{iJndex_i)lv]

NInd_i i s I n d _ i - 1 ,
f o r a l l X X (N I n d _ i , U i , p v (V)) .

Itype : varjy ==> ltype]}v , D = [(va r , T)]
Itype : var = val]\y ==> \type\y , [[val}v , T = A, D = [(v a r . T)]

[i n t] ^ ==> t r u e
[var l..ufv = > [[/]]£ , [w j | , T in L . . U
|[array[Z..w] of var dl.Au ^v = >

¥¡v> H y > \\dlivL > lMvU> i n i tXXCL.U.DL.DU.A) .

tta[*]]vT=>[í]v. H y . i n d e x C A . T . A T) .

pet {d,ds} in e } v ==> |[d]]^ , append (V ,U , VU) , [[l e t {ds} in e
[let {} in e \ v = > [e]£.

¡constraint ci A 02]]-̂ = > ¡cijy, [[constraint C2\v.
¡constraint]\v = > 0

1*1 < *2lv = > [í i]^ 1 , p 2 l v 2 ' l e q (T l , T 2) .
P i < í 2] v = > P i l ^ 1 , p 2 l y 2 , r e i f _ l e q (T l) T 2) B)

[[predícate p(_:al,...,_:aN) = b]]y = > p (Al , . . . , AN) = i[(al,Al),...,(aN,AN)] •

The rules for translating arrays deserve special mention. The translation rule
for the indexing construct "a[í]" is implicitely recursive. A multidimensional
indexing of the form "v[i,cj,k]" will be transformed using that rule as if it was
"v[i,j][k]". Thus, Índices i and j will be transíated first recursively as part of
"a", and then Índex k as "í" in the rule. However, in a real implementation of
the translation, specialised versions are used for 2-dimensional, 3-dimensional,
. . . indexing (as illustrated in Figure 3). This leads to more compact code and
simplifies program analysis.

Also, the Prolog predicates initXX/5 and index/3 used in the translations of
MiniZinc constructs "array" and "a[í]", respectively, represent the particular
implementation of arrays used in Prolog. This can be typically done using lists
of lists or, alternatively, nested plain (non-recursive) structures. In the latter
case the predicates would look as follows:

file:///type/y

i n d e x (a r r a y (L , U , A r r) , T , A T) : -
Index is T — L + 1 ,
a r g (I n d e x , A r r , A T) .

i n i t X X (L , U , D L , D U , a r r a y (L , U , A r r)) :
S ize is U - L + 1 ,
f u n c t o r (A r r , a r r a y , S i z e) ,
i n i t X X _ l (S i z e ,DL ,DU, A r r) .

i n i t X X _ l (0) .
i n i t X X _ l (l n d ,DL ,DU, A r r) : -

Ind > O,
a r g (I n d , Ar r , A i) ,
Ai i n D L . . D U ,
Nlnd is Ind - 1 ,
i n i t X X _ l (N l n d ,DL ,DU, A r r)

Note that we could have translated the MiniZinc if-then-else into the Prolog
if-then-else. However, we have used the transformation of the later which is
performed by CiaoPP prior to analysis, i.e., the one actually analysed, to easy
the interpretation of analysis results.

The definitions of the predicates into which the MiniZinc basic constraints
are translated into are provided in a Ciao module. This allows to supply different
implementations (each of them in a module using a different package defining a
particular solver) that can be selected at will. For example, there are definitions
for the following predicates in a module that uses the Ciao "fd" package (as
expressed by the assertion in the first line):

:— u s e _ p a c k a g e (f d) .

p l u s (X , Y , Z) : - Z . = . X + Y .

l e q (X , Y) : - X . = < . Y .

i n (E , D L , D U) : - E in D L . . D U .

Translation Example Each MiniZinc item constructed with the built-in f o r a l l
is translated into one or more recursive predicates that simúlate the iteration.
For example, lines 15-17 in Figure 1 are translated into the Ciao predicate
fora l l2_j /6 (and its auxiliary predicates f oral l2_jk/6 and f orall2_jk_where/5)
as shown in Figure 3.
A Ciao predicate is created for each Índex in the f o r a l l MiniZinc item. In our
example, the fora l l2_j /6 predicate simulates the iteration over Índex j , whose
associated Ciao variable is Index. j . Note that this variable is updated by using
the variables Uj (which stands for "upper limit" of j) and IncLj, and increases in
each iteration (since IncLj decreases by 1 in each recursive cali). The reason for
creating a new Índex IncLj is to allow the resource usage analysis to set up cost
expressions for predicates that are actually difference equations (whose solutions
are closed form resource usage functions). This will be clarified in Section 5.2.

The first argument of fora l l2_j /6 (IncLj) is initialised in the first cali
to fora l l2_j /6 to the number of valúes in the range (1 . . s ize) of Índex j
(i.e., to the valué of s ize , the parameter declared in line 2 in Figure 1, which
is also the upper limit of Índices j and k). The second argument (Uj) is also
initialised in the first cali to fora l l2_j /6 to the valué of s ize, but remains
unchanged through the recursion. The third argument (Index.i) corresponds to
the i Índex in the f o r a l l item in line 12, Figure 1. The remaining arguments
of the predicate (Size, S and D), correspond to the s ize, s and d parameters in
Figure 1, respectively.

Similarly, predicate forall2_jk/6 simulates the iteration over Índex k. It is
called from predicate f orall2_j/6, which initialises its parameters accordingly.
In particular, variables IncLk (the number of valúes in the range of Índex k) and
Uk (the upper limit of Índex k) are both initialised to the valué of s ize.

Predicate f orall2_jk_where/5 in Figure 3 corresponds to the "where" con-
dition (line 15) and the body (line 16) of the f oral l item in lines 15-17, Fig­
ure 1. Line 16 is translated into calis to the predicates element2d_int/4 and
element2d_dint/4 to access the elements of the 2D arrays d and s (which are in-
tegers and decisión variables, respectively), and a cali to predicate no_overlap/4.
The latter predicate is the Ciao translation of the MiniZinc predicate with the
same name/arity defined in lines 8-9 of Figure 1. Note that since the types of the
variables are taken from the variable declaration iteras, it is possible to use spe-
cialised versions of Ciao predicates that access arrays (or other data structures)
to help the static analysis (as we have done in Figure 3).

Finally, predicate fora l l l_ j /7 in Figure 3 corresponds to the f oral l item
in line 13, Figure 1.

5 Resource Usage Analysis
In this section we introduce the CiaoPP general resource usage analysis frame-
work and discuss how to instantiate it for the analysis of the Ciao programs
resulting from the translation of MiniZinc Models. As mentioned before, CiaoPP
includes a global static analyser which is parametric with respect to resources
and type of approximation (lower- and upper-bounds) [7]. The user can define
the parameters of the analysis for a particular resource by means of assertions
that associate basic cost functions with elementary operations of programs, thus
expressing how they affect the usage of a particular resource. The global static
analysis can then infer bounds on the resource usage of all the procedures in
the program, providing such usage bounds as functions of input data sizes. Ex-
amples of resources that can be analysed by instantiating the CiaoPP general
framework are execution time, execution steps, memory, number of accesses to
a datábase, etc.

5.1 Instantiating the General Framework
A resource in our approach is a quite general, user-defined (and possibly application-
dependent) notion that associates a basic cost function with elementary opera­
tions in the base language and/or to some procedures in libraries.

Assume for example that we are interested in estimating upper bounds on the
amount of the following three resources used by the MiniZinc model in Figure 1:
(a) number of basic constraints set up, (b) number of decisión variables created,
and (c) number of calis to the all_dif f erent global constraint primitive.
Defining Resources We start by defining three identifiers ("counters") associ-
ated to each of the mentioned resources, through the following Ciao declarations:
:— resource c o n s t r a i n t s .
:— resource numvars .
:— resource a I Id i f f .

These declarations are included in a Ciao package so that they can be used by
other programs.

Expressing Resource Usages of Library (and External) Predicates
The resource usage of Ciao library predicates resulting from the translation of
basic constraints of MiniZinc models is expressed using "trust" assertions (see
Section 3). For example, the assertions for the Ciao p lus /3 predicate are:

: - t r u s t pred p l u s (X , Y , Z) : (d i n t (X) , d i n t (Y) , d i n t (Z))
= > (d i n t (X) , d i n t (Y) , d i n t (Z))

+ (c o s t (u b , c o n s t r a i n t s , 1) ,
c o s t (u b , n u m v a r s , 0)) .

: - t r u s t pred p l u s (X , Y , Z) : (d i n t (X) , i n t (Y) , v a r (Z))
= > (d i n t (X) , i n t (Y) , d i n t (Z))

+ (c o s t (u b , c o n s t r a i n t s , 1) ,
c o s t (u b , n u m v a r s , 1)) .

The precondition of the second assertion ((dint (X), d in t (Y), d in t (Z)) ex-
presses that X is a decisión variable, Y is bound to an integer, and Z is unbound.
Note that the resource usage of the cali plus (SI,DI, A) in the no_overlap/4
predicate in Figure 3 is obtained from such "trust" assertions. Thus, if SI is a
solver variable, DI is an integer constant, and A a new (Prolog) variable (corre-
sponding to the mode of usage given by the second assertion above), the number
of constraints set up by this cali is 1 (as well as the number of decisión variables
created).

Assertions are also used to express information that is instrumental in the
resource usage analysis, such as determinism. For example, assertion:

:— t r u s t comp p l u s / 3 + i s_det .

indicates that the p lus /3 predicate is deterministic, i.e., it does not créate
choices. There are similar assertions for other Ciao library predicates, such as:

: - t r u s t pred r e i f _ l e q (X , Y , R) : (d i n t (X) , i n t (Y) , v a r (R))
= > (d i n t (X) , i n t (Y) , d i n t (R))

+ (c o s t (u b , c o n s t r a i n t s , 1) ,
c o s t (u b , numvars , 1)) .

: - t r u s t pred a n d (X , Y , R) : (d i n t (X) , d i n t (Y) , d i n t (R))
= > (d i n t (X) , d i n t (Y) , d i n t (R))

+ c o s t (u b , c o n s t r a i n t s , 1) .

Expressing Default Resource Usages There are also assertions to express
default valúes to be taken by the analysis for the resource usage of predicates.
For example, the assertion:

:— t r u s t _ d e f a u l t + c o s t (u b , c o n s t r a i n t s , 0) .

states that when there is no "trust" assertion available expressing an upper
bound (ub) on the usage of the resource named cons t r a in t s for any (library
or external) predicate, then the (default) valué taken by the analysis should be
0. In our implementation, there are similar assertions for the resources numvars
and a l ld i f f .

Expressing Resource Usages of Basic Program Constructs
The head_cost(j4ppro2;, Res_name, AH) declarations are used to describe how
predicates in general update the valué for those resources that are applicable

to predícate heads (such as counting the number of arguments passed or total
resolution steps). While Approx and Resáname are as before, AH : clJiead —>
arith-expr is a function that takes a clause head and returns an arithmetic
resource usage expression. This function is provided by means of a user-defined
(or imported) predícate, written in the source language, which will be called by
the analyser when the clause head is analysed. This code gets loaded into the
compiler in a similar way to, e.g., macro expansión code.

The literal-cost(Approx, Resáname, AL) declarations describe how predi-
cate bodies update the valué of resources that are applicable to body literals (such
as the number of unifications). In this case, AL : bodyJit —> arith_expr is also
user- (or library-)provided code which will be executed when the body literals of
different predicates are analysed. We use the notation S(Approx, Resáname) and
(¡¡(Approx, Resáname) for referring to the functions AH and AL, respectively. In
our implementation, both AL and AH are constant functions that return zero
for the three resources under consideration. This is expressed, for example, with
the following assertions for the resource constraints:

:— h e a d _ c o s t (u b , c o n s t r a i n t s , 0) .
:— I i t e r a I _ c o s t (u b , c o n s t r a i n t s , 0) .

5.2 Performing the Analysis
Once the parameters of the general resource analysis framework have been de-
fined and assertions for library predicates have been provided, the CiaoPP global
static analysis can infer the resource usage of all the procedures in the program
(as functions of input data sizes). A full description of how this is done can be
found in [7]. In the following we sketch the main steps of the approach assuming,
for simplicity, that we are only interested in upper bound estimations.
Mode Analysis determines for each argument in each predícate to be analysed
whether the argument acts as an input or an output argument. This is done using
the (very accurate) information from the CiaoPP "sharing + freeness" (shfr)
abstract domain. Accuracy is critical here to set up meaningful and solvable
recurrence expressions for resource usages (as we will see later).
Size Measure Analysis: CiaoPP currently uses some predefined measures for
the size of an input, such as the actual valué of an integer (int), the number of
constant and function symbols of a term (size), the length of a list (length), or
the depth of the tree representation of a term (depth). These are automatically
assigned to each argument of the predicates involved in the analysis according
to their type (in turn inferred using the eterms abstract domain). A new, exper­
imental versión of the size analysers is in development to deal with user-defined
size metrics (Le., predicates) and to synthesise automatically size measures.
Size Analysis determines the relative sizes of variable bindings at different
program points. A directed acyclic graph for each clause representing data de-
pendencies between argument positions (argument dependency graph) is built
and used for this purpose. The size analysis (as well as the resource usage analy­
sis) is performed for each strongly-connected component of the cali graph of the
program in reverse topological order. For each clause, size relations are prop-
agated to transform each size relation corresponding to an input position in a

body literal into a function over the size of the input arguments of the clause
head. However, for recursive clauses, we first need to solve the symbolic expres-
sion due to recursive literals into an explicit function. Thus, in general the size
analysis sets up difference equations representing the size of each output argu-
ment as a function of the input argument sizes, and computes bounds to the
solutions of these equations. The result is a closed form function for each output
argument which provides (an upper bound on) its size as a function of the sizes
of the input arguments.

Resource Usage Analysis uses the size information inferred by the size anal­
ysis to set up difference equations representing the resource usage of predicates,
and computes bounds to their solutions. As a result, we obtain a closed form
function for each predicate giving (an upper bound on) its resource usage as a
function of its input argument sizes.

Let BX5(p, ap, r, ñ) denote the units of resource r used during the computation
of predicate p for a vector of input argument sizes ñ with approximation ap.
Let us illustrate the analysis by means of an example. Assume that the (upper-
bound) resource usage analysis has been performed for predicates no_overlap/4
and f orall2_jk_where/5 in Figure 3, inferring that:

RU(no_overlap,ub, cons t r a in t s ,ñ) = 5 and
RU(f orall2_jk_where,ub, cons t r a in t s ,ñ) = 5.

Such information is expressed via the following assertions, which are part of
the analysis output:
: - t r u e p red no_over I a p (S I , D I , S 2 , D 2)

: (d i n t (S l) , i n t (D l) , d i n t (S 2) , i n t (D 2))
+ (c o s t (u b , a l l d i f f , 0) , c o s t (u b , c o n s t r a i n t s , 5) ,

c o s t (u b , numvars , 4)) .

:— t r u e p red f o r a M 2 _ j k _ w h e r e (l n d e x _ i , l n d e x _ j , l n d e x _ k , S , D)
(i n t (l n d e x _ i) , i n t (I n d e x _ j) , i n t (l n d e x _ k) ,

a r r a c y _ 2 d _ i n t (S) , a r r a y _ 2 d _ i n t (D))
+ (c o s t (u b , a l l d i f f , 0) , c o s t (u b , c o n s t r a i n t s , 5) ,

c o s t (u b , numvars , 4)) .

Consider now the predicate f oral l2_jk/6 in Figure 3. For simplicity we will
focus only on its first argument, since the others are not relevant for the resource
usage estimation. The first argument has been inferred to be input and of integer
type by previous analyses and, thus, is has been assigned the i n t (integer valué)
size measure.

The resource usage analysis of a clause uses the size relations (previously
inferred) that express the size of input positions in body literals as a func­
tion of the size of the input arguments of the clause head. Consider the re­
cursive clause of predicate f oral l2_jk/6. Let n represent the size of the first
argument (IncLk) in the head (under the size measure in t) . The size analy­
sis infers that the size of the first (input) argument to the recursive (i.e., last)
cali in the body clause equals the size of the first head argument minus one:
s«zeiní(NInd_k) = size iní(Ind_k) — 1 = n — 1. Using this relation, an upper
bound on the resource usage of that clause is expressed as a function of the size

of the first head argument, in terms of the resource usage of its body literals:

RU(f orall2_jk,ub, cons t ra in t s , n) =
S(ub, const ra ints) (fora l l2_jk) + /3(ub, constraints)(>) + RU(>,ub, cons t ra in t s , _) +
/3(ub, cons t ra in t s) (i s) + RU(is,ub, cons t ra in t s , _) +
/3(ub, constraints)(forall2_jk_where) + RU(forall2_jk_where, ub, cons t ra in t s , _) +
/3(ub, cons t ra in t s) (i s) + RU(is,ub, cons t ra in t s , _) +
/3(ub, constra ints)(foral l2_jk) + RU(f orall2_jk,ub, cons t ra in t s , n — 1)

In Section 5.1, both functions S(ub, constraints) and /3(ub, constraints) have
been defined as zero constant functions using assertions of type "heacLcost"
and "l iteral .cost", respectively. Therefore, we have that:
RU(f orall2_jk,ub, cons t ra in t s , n) =
0 + 0 + 0 + 0 + 0 + 0 + 5 + 0 + 0 + 0 + RU(forall2_jk,ub, c o n s t r a i n t s , n - 1) =
5 + RU(forall2_jk,ub, c o n s t r a i n t s , n — 1)

For the non-recursive clause of forall2_jk/6 the analysis infers:
RU(forall2_jk,ub, cons t ra in t s , 0) = 0

which can be used as boundary condition for solving the previous difference
equation, yielding the following closed form resource usage function:

RU(f orall2_jk,ub, cons t ra in t s , n) = 5 n
The analysis proceeds for each strongly-connected component of the cali

graph of the program in reverse topological order. For predicate forall2_j/6
(which corresponds to lines 15-17 in Figure 1) the analysis output includes the
following assertion:
:— true pred f o r a M 2 _ j (l n d _ j , U j , l n d e x _ i , S i z e , S , D)

: (i n t (l n d _ j) , i n t (U j) , i n t (l n d e x _ i) , i n t (S i z e) ,
a r r a y _ 2 d _ i n t (S) , a r r a y _ 2 d _ d i n t (D))

+ (c o s t (u b , a I Id i f f ,0) ,
c o s t (u b , c o n s t r a i n t s , 5 * (i n t (S i z e) * i n t (I n d _j))) ,
c o s t (u b , n u m v a r s , 4 * (i n t (S i z e) * i n t (I n d _j)))) .

Since both IncLj and Size are given the valué of the MiniZinc parameter s ize
at the first cali to predicate f orall2_j/6, an upper bound on the resource usage
(given in number of constraints set up) associated with lines 15-17 in Figure 1
is 5 x s ize 2 (and the number of decisión variables created 4 x s ize 2) .

Similarly, the resource usages associated with the f oral l item in line 13,
Figure 1 are 2 x s ize and s ize for constraints and numvars, respectively. For
the whole constraint defined in lines 11-18, Figure 1 the resource usages are
5 x s i ze 3 + 2 x s ize 2 (for constraints), and 4 x s ize 3 + s ize 2 (for numvars).

Similarly, the resource usages inferred for the f oral l l_j /7 predicate in Fig­
ure 3 in terms of constraints and numvars are 2 x int (IncLj) and int (IncLj),
respectively. Since this predicate corresponds to the f oral l item in line 13, Fig­
ure 1, and its parameter IncLj is given the valué s ize — 1 (where s ize is a
parameter of the MiniZinc model) at the first cali to it in the Ciao program,
we have that the resource usages corresponding to the f oral l item in line 13,
Figure 1 are 2 x s ize — 2 and s ize — 1, respectively.

6 Experimental Results
In order to show the feasibility of our approach we have manually translated
some MiniZinc models into Ciao programs, and analysed these programs with

P r o g r a m

langford
knapsack
photo
que en

jobshop

oss

sudoku

Size
M e a s u r e

int, int
int, int
int, int

int

int

int, int

int

R e s o u r c e U s a g e F u n c t i o n
A p .

E
E
E
E
U
L
E
U
L
E
U
L
E

c o n s t r a i n t s

\x, y.3x¿y¿ + xy — x
Xx, y.xy

Xx,y.5y + 1
Xx.3.5x(x — 1)
Xx.5xd + 2x2

\x.2x2

Xx.2.Sx3 - 0.5a;2

Xx, y.5xy(x + y) + 2xy
Xx, y.2xy

Xx, y.2.^xy{x + y) — 3xy
\x.2x — x
Xx.x — x

\x.2x6 - 2x5

numvars

Xx, y.3x¿y¿ + 3xy — x
Xx, y.xy + x
Xx, y.x + 6y
Xx.2x — x

XxAxd + 2x¿

Xx.2x2

Xx.2x3

Xx, y.3xy(x + y) + xy + 1
Xx, y.xy + 1

Xx, y.l.5xy(x + y) — 2xy + 1
Xx.x
\ 4
Xx.x
\ 4
Xx.x

a l l d i f f

2
0
1
0
0
0
0
0
0
0
0
0
0

T i m e
(m s)

1,440
760
840
380

1,280
1,190

1,690
1,470

1,450
1,340

Table 1. Accuracy and efñciency in milliseconds of the analysis.
constraints

~TT~

Xx.2 + 4/(5cc - 1)

X*y-2+ 5x + Íy-6

^ H ^ + i

Ax.4/(5x - 1) -
, 4

y- 5x + 5y-G
A-4 + ^ -

Xxy.2 + •

Xx.2 + 1/x -
10—2/xy

Xxy. 2 + 2/a:
Áa;. 1 /x -

Table 2. Estimated bound/exact cost ratio and limit when data sizes tend to oo.

CiaoPP. The programs include a "package" (in Ciao terminology) that we have
implemented and which contains all the assertions needed to instantiate the
CiaoPP general resource analysis framework for our purposes (See Section 5.1).

The first column of Table 1 shows the programs analysed. The column Re­
source Usage Function shows resource usage functions, given as lambda
terms, for the resources constraints, numvars and a l ld i f f (as described in
Section 5.1), according to the approximation expressed by column Ap.. Such
functions depends on the size of (some of) the parameters of the MiniZinc model,
or, equivalently, on the size of (some of) the input arguments to the Ciao pro­
gram that the model is translated into. The column Size Measure shows the
size measure used for such input arguments (the relevant arguments). The col­
umn Ap . is used to express the upper- and lower-bounds inferred by the analysis
(U and L respectively), and the actual (exact) resource usage functions (E). For
example, the upper-bound resource usage functions for the jobshop model (the
one used as a running example in this paper) depend on the size (integer valué)
of the parameter s ize. Note that only the valué E is shown in the column Ap.
for the first four programs. This is because the upper- and lower-bounds inferred
by the analysis for such programs are the same, and thus both bounds are equal
to the actual (exact) resource usage function. Finally, the column labeled Time
shows the resource analysis times in milliseconds, taken when run on an Intel
Core i7, 4 cores x 2.67GHz (2 threads per core), 12GB of RAM, running Ubuntu
Linux 10.10 (kernel 2.6.35).

Table 2 shows the deviation of the resource usage bound functions estimated
by the analysis w.r.t. the actual functions. Such deviation is given as the esti­
mated bound/exact function ratio and its limit when data sizes tend to infinity.

The preliminary results are encouraging, showing that the analysis efiiciently
infers the actual resource usage functions for more than half of the programs and
reasonable upper- and lower-bounds for the rest.

file:///x.2x2
file:///x.2x
file:///x.2x6

References

1. R. Benzinger. Automated Higher-Order Complexity Analysis. Theoretical Com­
puter Science, 318(1-2), 2004.

2. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. ofthe 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

3. J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Auto­
matic Identification of Timing Anomalies for Cycle-Accurate Worst-Case Execu-
tion Time Analysis. In Proc. of DDECS'06, pages 15-20. IEEE Computer Society,
2006.

4. G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Lan­
guage. In Proceedings ofthe ACM SIGPLAN 2002 Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, pages 75-88. ACM Press, 2002.

5. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
2005.

6. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 2011. http://arxiv.org/abs/1102.5497.

7. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP'07), volume 4670 of Lecture Notes in Computer Science.
Springer, 2007.

8. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language. In
In: Proc. of 13th International Conference on Principies and Practice of Constraint
Programming, pages 529-543. Springer, 2007.

9. P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Poly-
morphic and Higher-Order Functional Programs. In IFL, volume 3145 of LNCS.
Springer, 2003.

10. Reinhard Wilhelm. Timing Analysis and Timing Predictability. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, edi-
tors, Formal Methods for Components and Objects, Third International Symposium
(FMCO), volume 3657 of LNCS, Revised Lectures, pages 317-323. Springer, 2004.

http://arxiv.org/abs/1102.5497

