
A Practical Application of
Sharing and Freeness Inference

M.J. García de la Banda, M. Hermenegildo

Universidad Politécnica de Madrid (UPM),
Facultad de Informática,

28660-Boadüla del Monte, Madrid - Spain
e-raail maria,herme<5f i.upm.es

(Extended Abstract)

1. Introduction

Abstract Interpretation [6] of logic programs ([1], [14], [8],[19], [2], [4], [13],
[5], [12], [15] ...) is currently proposed as a means for obtaining characteristics
of the program at compile-time, tiras allowing several types of optimizations.
However, only few studies have been reported analyzing the practicality of
analyzers in the task they were designed for [23, 12, 22, 21, 3]. This paper
offers a preliminary analysis of effectiveness of an analyzer which contributes
to fifi this gap and is novel in both the domain and the application: results
are provided for an abstract interpreter based on the sharing + freeness
domain presented in [17] and [7] in the application of automatic program
parallelization.

The analyzer under study was designed to accurately and concisely infer
at compile-time variable groundness, sharing, and freeness information for
a program and a given query form. The abstract domain approximates
this information by combining two components: one provides information
on sharing (aliasing, independence) and groundness; the other encodes
freeness information. Briefly, the former is essentially the abstract domain
of Jacobs and Langen [11] (for efficiency and increased precisión, however,
the analyzer under study uses the efficient abstract unification and top-
down driven abstract interpretation algorithms defined by Muthukumar and
Hermenegildo [18] instead of the puré bottom-up approach used by Jacobs
and Langen). The latter is represented as a list of those program variables
which are known to be free.

Variable sharing is not only required in many types of analysis to ensure
correctness, but is also quite useful in a number of applications and, in
particular, essential in the compile-time detection of strict independence

http://upm.es

among goals (see [10] and its references), a condition which allows efficient
parallelization of programs within the independent and-parallelism model.
Informally, this condition states that a set of goals can run in parallel if
they do not share any variable at run-time. Freeness information itself is
also useful in a number of applications and essential in the detection of
non-strict independence [10] among goals, a condition which extends strict
independence. Furthermore, more accurate information is achieved in each of
the domains by allowing communication between the two domains at some
points of the analysis.

Both the accuracy of the information gathered by the interpreter and
its effectiveness are evaluated during its use in the actual task of automatic
parallelization of logic programs and while the interpreter is embedded in a
real parallel logic programming system: &-Profog [9]. These parameters are
evaluated in terms of ultimate performance, i.e. the speedup obtained with
respect to the sequential versión of the program.

2. Overview of the Evaluation Enviroiinieiit

The h-Prolog system comprises a parallelizing compiler aimed at
uncovering independent and-parallelism and an execution model/run-time
system aimed at exploiting such parallelism. Prolog code is parallelized
automatically by the compiler. Compiler switches determine whether or not
code will be parallelized and through which type of analysis.

The h-Prolog language is a vehicle for expressing and implementing
strict and non-strict independent and-parallelism. &-Prolog is essentially
Prolog, with the addition of the parallel conjunction operator "&", a set
of parallelism-related builtins, which includes several types of groundness
and independence checks, and synchronization primitives. For syntactic
convenience, an additional construct is also provided: the Conditional Graph
Expression (CGE). A CGE has the general form

(i-cond => goal\ & goaÍ2 & . . . & goaljy)

where the goali are either normal Prolog goals or other CGEs and i-cond is
a condition which, if satisfied, guarantees the mutual independence of the
goales. The operational meaning of the CGE is "check i-cond; if it succeeds,
execute the goali in parallel, otherwise execute them sequentially."

There are three different annotators in the &-Prolog system: the CDG,
the UDG and the MEL annotator, whose algorithms are defined in [16].
The CDG annotator seeks to maximize the amount of parallelism available
in a clause, without being concerned with the size of the resultant &-
Prolog expression. In doing this, the annotator may switch the positions

of independent goals. The UDG annotator does essentially the same as the
CDG annotator except that only nnconditional parallelism is exploited, i.e.,
only goals which can be determined to be independent at compile-time are
rnn in parallel. The MEL annotator seeks to maximize the nnmber of goals
to be run in parallel within a CGE, preserving the left-to-right order of
snbgoals in its expressions.

The two abstract interpreters which will be nsed in the evalnation are
the sharing + freeness interpreter object of this stndy and the sharing only
interpreter of [18].

The &-Prolog system can optionally genérate a trace file dnring an
execntion. This file is an encoded description of the events that occnrred
dnring the execntion of a parallelized program. Since &-Prolog generates all
possible parallel tasks dnring execntion of a parallel program, even if there
are only a few processors in the system, all possible parallel program graphs,
with their exact execntion times, can be be constrncted from this data. A
tool has been devised and implemented which takes as inpnt a real execntion
trace file of a parallel program rnn on the &-Prolog system, and gives as
a resnlt a new optimized trace file which corresponds to the best possible
execntion which wonld have occnrred assnming a system with an infinite
nnmber of processors. It also provides statistics abont the speednp obtained
and the nnmber of processors needed to achieve it. Since this "ideal" parallel
execntion nses as data a real trace execntion file in which real execution
times of seqnential segments and all delay times are taken into acconnt, it
is possible to consider the resnlts as a very good approximation to the best
possible parallel execntion.

Two broad categories of programs were nsed for the tests: simple
programs and larger ones. Program selection within both categories has been
performed taking into acconnt the programs nsed in those stndies with which
the resnlts of onr tests are going to be compared.

3. Static Tests

We have first compared statically (i.e. lexically) the degree of parallelism
and overhead introdnced in a program which has been parallelized nsing
the information of each analyzer and also nsing no information. We have
parallelized several programs (see Table 1) nsing the MEL annotator.

Table 2 shows the resnlts obtained when parallelizing programs with: no
information (colnmns labeled with w/o) , the information provided by the
sharing analyzer (colnmns labeled with sh) and the information provided by
the sharing + freeness analyzer (colnmns labeled with sh+f). The three main
colnmns have respectively the following meaning: nnmber of CGEs, nnmber

Benchmark Programs
browse
deriv

hanoi
prgeom

qsrt

queens
serialize

vmatrix

Gabriel benchmarks.
Symbolic differentiation, The expression given is: E+E-E*E/E*E/E
where E is the addition of eight snbexpressions
Towers of Hanoi, The rmmber of discs given is 9
Constructs a perfect difference set of order n in increasing order, starting
at 0.
Quick sort algorithm with difference lists, Two lists have been given as
input with lengths: 20 and 100
It solves the n-queens problem.
Takes a list and converts each item to a number which is the position
of that item in the sorted list, The list given as input has 25 characters
It multipfies an N by N matrix and an N by 1 matrix, The input is N = 10

Larger Programs

asm
boyer
peephole
read

The SB-Prolog assembler
The theorem prover kernel in Gabriel Bench,
the peephole optimizer used in SB-Prolog
The pubfic-domain Prolog tokenizer and parser.

Table 1. Programs used in the evaluation

of checks and number of unconditional CGEs in the whole parallelized
program. The three subcolrmins in the last two main columns also show
in parenthesis the ratio between the number of checks and the total number
of CGEs and the number of unconditional CGEs and the total number of
CGEs, respectively.

program

a s m
b o y e r
b r o w s e
p e e p h o l e
p r g e o m
q u e e n s
ser ia l ize
read
v m a t r i x
d e r i v
h a n o i
qsrt

N, of CGEs
w / o

8
3
5
3
2
3
1
5
3

4
1
1

sh
8
3
5
3
2
3
1
5
3

4
1
1

sh+í
8
2
5
2
2
2
1
1
3

4
1
1

N, of checks
w / o

26 (3,25)
9 (3,00)

12 (2,40)
13 (4,33)

4 (2,00)
9 (3,00)
4 (4,00)

15 (3,00)
10 (3,33)

20 (5,00)
4 (4,00)
1 (1,00)

sh
20 (2,5)
6 (2,00)

10 (2,00)
9 (3,00)
1 (0,50)
2 (0,66)
4 (4,00)
5 (1,00)
1 (0,33)

4 (1,00)
0 (0,00)
0 (0,00)

sh+f
12 (1,5)
1 (0,50)

10 (2,00)
3 (1,50)
1 (0,50)
0 (0,00)
1 (1,00)
1 (1,00)
0 (0,00)

0 (0,00)
0 (0,00)
0 (0,00)

N, of uncond, CGEs
w / o

0 (0
0 (0
0 (0
0 (0
0 (0
0 (0
0 (0
0 (0
0 (0

0 (0
0 (0
0 (0

0)
0)
0)
0)
0)
0)
0)
0)

o;
0)
0)
0)

sh
1 (12,5)

0 (0,0)
1 (20,0)
1 (33,3)
1 (50,0)
1 (33,3)
0 (0,0)
0 (0,0)
2 (66,6)

0 (0,0)
1 (100,0)
1 (100,0)

sh+f
3 (37,5)
1 (50,0)
1 (20,0)
1 (50,0)
1 (50,0)
2 (100,0)
0 (0,0)
0 (0,0)
3 (100,0)

4 (100,0)
1 (100,0)
1 (100,0)

Table 2. Static Results for the Sharing and Sharing + Freeness Analyzers

3.1. Dynamic Tests

An arguably better way of measuring the effectiveness of the information
provided by abstract interpretation-based analyzers is to measure the
speedup achieved in the parallel execution time of the program (ideally
for an unbounded number of processors) against the sequential program
execution time, while using the information provided by such analyzers in

the parallelization. This ideal parallel execution time has been obtained using
the tools described in section 2.

A related type of test has also been described in [20]. This paper presents
a high-level sinrulation study of the amount and characteristics of the or-
and (independent) and-parallelism in a wide selection of Prolog programs.
In that study, simple programs were parallelized by hand and the others were
parallelized with the MEL annotator first, and then optimized by hand. The
results presented there will be used here as a reference for the máximum
parallelization that can be achieved.

The results are presented in table 3. This table shows the speedup
obtained by the parallelized program w.r.t. the sequential execution of
the sequential program and the number of processors needed to obtain
it (presented after the @ symbol). The resnlts were obtained with checks
implemented in C. The second block shows the resnlts obtained when
parallelizing the programs by hand (labeled as hand p.), and the
corresponding resnlts presented in [20] (labeled as s. K + H). The first
block of the table is divided into three main rows labeled as MEL, CDG
and UDG, which indicate the annotator nsed for each test. Each main row
is also divided in three rows whose labels show the type of analysis nsed for
the parallelization.

MEL.

CDG.

UDG.

w / o
sil

sh+f
w / o
sil

sh+f
w / o
s h

sh+f
hand p .

s. K + H

d e r i v

0,82 @ 208
23,54 <8 237
42,49 <8 248

0,83 @ 207
28,03 <8 239
42,49 <8 256

1,0 @ 1
1,0 <8 1

42,49 <8 256
42,49 @ 256

84,5 @ 248

h a n o i

17,80 @ 282
41,77 <& 466
41,77 <& 466
21,30 @ 271
41,77 <8 490
41,77 <8 490

1,0 @ 1
41,77 <8 490
41,77 <8 490
41,77 @ 490

52,3 @ 427

v m a t r i x

1,00 @ 20
3,75 <& 24
5,80 <8 28
1,21 @ 20
4,19 <8 22
6,24 <8 23
1,0 @ 1

1,04 <8 12
6,24 <8 23
6,24 @ 23
9,06 @ 18

q s r t (2 0)

0,8 @ 7
1,58 <& 13
1,58 <& 13
1,14 @ 7
1,57 <& 8
1,57 <& 8

1,0 @ 1
1,57 <& 8
1,57 <& 8
1,57 @ 8
1,56 @ 3

q s r t (l O O)

1,78 @ 25
2,79 <8 70
2,79 <8 70
1,92 @ 23
2,79 <8 22
2,79 <8 22

1,0 @ 1
2,79 <8 22
2,79 <8 22
2,79 @ 22
2,80 @ 8

s e r i a l i z e

0,88 @ 4
0,88 <8 4
0,97 «3 4
0,96 @ 5
0,96 «3 5
1,08 <8 4

1,0 @ 1
í.o «a i
í.o <a i

1,09 @ 4
1,08 @ 4

Table 3. Speed up w.r.t. the Sequential Execution of the Sequential Program

3.2. Discussion of the Results

Looking at the static results presented in table 2, the first point that
can be observed is that the number of resulting CGEs can decrease (boyer,
peephole, queens and read) if the information provided by the sharing
+ freeness analyzer is considered. This is due to the freeness information:
ground checks over the variable X can be known to fail if X is known to
be free at this point of the execution, therefore eliminating the CGE and
executing the goals sequentially without tests.

The second point is the improved accuracy of the information provided by
the sharing + freeness analyzer: the results obtained with this analyzer are

always better tlian those obtained without analysis, and equal or better than
those obtained with the sharing analyzer. This conñrms that communication
between abstract domains during the analysis increases the accuracy of the
resulting information.

It can be thought that although the results of table 2 show that sometimes
the sharing + Jreeness analyzer is signiñcatively better than the sharing
analyzer (e.g. the resnlts obtained for asm and peephole), in the rest only a
few checks are eliminated (four in the best case). However, it turns out that
eliminating only one check may produce a great difference in the speedup
achieved: the dynamic tests show for vmatrix a speedup of up to a factor of
6 with only one check of difference.

Before discussing the results obtained in the dynamic tests, a few points
should be made. Firstly, some of the programs used in this test had to be
kept small in size. This is due to the fact that they have small granularity and
genérate a very large number of tasks (in the order of 105) and reach the
hardware and software limitations of our "ideal speedup" tools. Secondly,
since the dynamic tests have been performed with real executions, they
always include some number of interruptions (due to the Unix Operating
System over which the tools are executing) in the parallel execution which
do not allow achieving a real máximum parallel execution time. Furthermore,
these interruptions produce signiñcant variations among the execution times
obtained for the same program. Therefore, the results, which have been
taken as the minimum of the times obtained in different (10) executions,
can lead to somewhat surprising results when execution time is short as for
example in qs r t (20) : while the speedup obtained parallelizing by hand is
1.57, automatic parallelization can achieve 1.58. This is simply due to "noise"
in the measurements over real systems.

The results of dynamic tests show the importance of the information
provided by the sharing + Jreeness analyzer and its accuracy, since its results
are always equal or better than the rest, and sometimes much better. This is
particularly evident for the vmatrix and deriv programs, in which speedup is
signiñcatively higher. As mentioned before, the ñrst case is quite interesting
since the difference with the information provided by the sharing analyzer
results in the elimination of only one check.

It is important to note that in most of the cases (all but serialize) hand
parallelization obtains the same results as the analyzer. It is somewhat
surprising that the speedup of the hand parallelization achieved with the
tools used herein is somewhat different in the ñrst three programs from the
speedup obtained with the simulator described in [20]. The answer can be in
the fact that the simulator of [20] takes as time reference the number of head
uniñcations, considering all head uniñcations of equal cost, rather than actual
execution times. Also, the costs of all builtin predicates appearing in the

program are considered equal. We can see in the tables that the differences
between the speedups are larger in those programs in which the amount of
and-parallelism is high and has a balanced and not small granularity (tlms
maintaining the processors active most of the time). It is also interesting to
note that actual speedup is achieved with parallelizations in which not all
checks have been eliminated. This, coupled with the increased accuracy of
the new analyzers, makes the UDG algorithm perhaps not as preferable as
it had seemed at first glance. The results also confirm the superiority of the
CDG annotator comparing to the other two. However, the results are better
at the cost of a great number of processors.

References

[1] M, Bruynooghe, A Framework for the Abstract Interpretation of Logic Programs.
Teclinical Report CW62, Department of Computer Science, Kathofieke Universiteit
Leuven, October 1987,

[2] M, Bruynooghe and G, Janssens, An Instance of Abstract Interpretation Integrating
Type and Mode Inference, In 5th Int. Conf. and Symp, on Logic Prog., pages 669-683,
MIT Press, August 1988.

[3] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. In Fourth IEEE International
Conference on Computer Languages (ICCL'92), San Francisco, CA, April 1992.

[4] C. Codognet, P. Codognet, and M. Corsini. Abstract Interpretation of Concurrent
Logic Languages. In North American Conference on Logic Programmíng, pages 215-
232, October 1990.

[5] M. Corsini and G. Filé. The abstract interpretation of logic programs: A general
algorithm and its correctness. Research report, Department of Puré and Applied
Mathematics, University of Padova, Italy, December 1988.

[6] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Conf. Rec.
4-th Acm Symp. on Prín. of Programmíng Languages, pages 238-252, 1977.

[7] M. Garcia de la Banda and M. Hermenegildo. Effectiveness of combined sharing
and freeness analysis using abstract interpretation. Technical report, U. of Madrid
(UPM), Facultad Informática UPM, 28660-Boadilla del Monte, Madrid-Spain,
January 1992.

[8] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.
•lournaí of Logic Programmíng, pages 207-229, September 1988.

[9] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-
Parallelism. New Generatíon Computing, 9(3,4):233-257, 1991.

[10] M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990
International Conference on Logic Programmíng, pages 237-252. MIT Press, June
1990.

[11] D, Jacobs and A, Langen, Accurate and Efficient Approximation oí Variable Aliasing
in Logic Programs, In 1989 North American Conference on Logic Programming. MIT
Press, October 1989.

[12] A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The Impact of Abstract
Interpretation: an Experiment in Code Generation. In Síxth International Conference
on Logic Programming, pages 33-47. MIT Press, June 1989.

[13] K. Marriott and H. S0ndergaard. Semantics-based dataflow analysis of logic
programs. Information Processing, pages 601-606, April 1989.

[14] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International
Conference on Logic Programming, number 225 in Lecture Notes in Computer
Science, pages 463-475. Imperial College, Springer-Verlag, July 1986.

[15] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming. MIT Press, October 1989.

[16] K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-
parallelism. In 1990 International Conference on Logic Programming, pages 221-237.
MIT Press, June 1990.

[17] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In 1991
International Conference on Logic Programming. MIT Press, June 1991.

[18] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. lournal of Logic Programming, 13(2 and
3):315-347, July 1992.

[19] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs.
Theoretical Computer Science, 34:227-240, 1984.

[20] K. Shen and M. Hermenegildo. A Simulation Study of Or- and Independent
And-parallelism. In 1991 International Logic Programming Symposium. MIT Press,
October 1991.

[21] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC. Technical
report, Association for Logic Programming, June 1990.

[22] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Analysis for an
Optimizing Prolog Compiler. In Proceedings of the North American Conference on
Logic Programming, pages 501-515. MIT Press, October 1990.

[23] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming. MIT Press, August 1988.

