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(Extended Abstract) 

1. Introduction 

Abstract Interpretation [6] of logic programs ([1], [14], [8],[19], [2], [4], [13], 
[5], [12], [15] ...) is currently proposed as a means for obtaining characteristics 
of the program at compile-time, tiras allowing several types of optimizations. 
However, only few studies have been reported analyzing the practicality of 
analyzers in the task they were designed for [23, 12, 22, 21, 3]. This paper 
offers a preliminary analysis of effectiveness of an analyzer which contributes 
to fifi this gap and is novel in both the domain and the application: results 
are provided for an abstract interpreter based on the sharing + freeness 
domain presented in [17] and [7] in the application of automatic program 
parallelization. 

The analyzer under study was designed to accurately and concisely infer 
at compile-time variable groundness, sharing, and freeness information for 
a program and a given query form. The abstract domain approximates 
this information by combining two components: one provides information 
on sharing (aliasing, independence) and groundness; the other encodes 
freeness information. Briefly, the former is essentially the abstract domain 
of Jacobs and Langen [11] (for efficiency and increased precisión, however, 
the analyzer under study uses the efficient abstract unification and top-
down driven abstract interpretation algorithms defined by Muthukumar and 
Hermenegildo [18] instead of the puré bottom-up approach used by Jacobs 
and Langen). The latter is represented as a list of those program variables 
which are known to be free. 

Variable sharing is not only required in many types of analysis to ensure 
correctness, but is also quite useful in a number of applications and, in 
particular, essential in the compile-time detection of strict independence 
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among goals (see [10] and its references), a condition which allows efficient 
parallelization of programs within the independent and-parallelism model. 
Informally, this condition states that a set of goals can run in parallel if 
they do not share any variable at run-time. Freeness information itself is 
also useful in a number of applications and essential in the detection of 
non-strict independence [10] among goals, a condition which extends strict 
independence. Furthermore, more accurate information is achieved in each of 
the domains by allowing communication between the two domains at some 
points of the analysis. 

Both the accuracy of the information gathered by the interpreter and 
its effectiveness are evaluated during its use in the actual task of automatic 
parallelization of logic programs and while the interpreter is embedded in a 
real parallel logic programming system: &-Profog [9]. These parameters are 
evaluated in terms of ultimate performance, i.e. the speedup obtained with 
respect to the sequential versión of the program. 

2. Overview of the Evaluation Enviroiinieiit 

The h-Prolog system comprises a parallelizing compiler aimed at 
uncovering independent and-parallelism and an execution model/run-time 
system aimed at exploiting such parallelism. Prolog code is parallelized 
automatically by the compiler. Compiler switches determine whether or not 
code will be parallelized and through which type of analysis. 

The h-Prolog language is a vehicle for expressing and implementing 
strict and non-strict independent and-parallelism. &-Prolog is essentially 
Prolog, with the addition of the parallel conjunction operator "&", a set 
of parallelism-related builtins, which includes several types of groundness 
and independence checks, and synchronization primitives. For syntactic 
convenience, an additional construct is also provided: the Conditional Graph 
Expression (CGE). A CGE has the general form 

(i-cond => goal\ & goaÍ2 & . . . & goaljy) 

where the goali are either normal Prolog goals or other CGEs and i-cond is 
a condition which, if satisfied, guarantees the mutual independence of the 
goales. The operational meaning of the CGE is "check i-cond; if it succeeds, 
execute the goali in parallel, otherwise execute them sequentially." 

There are three different annotators in the &-Prolog system: the CDG, 
the UDG and the MEL annotator, whose algorithms are defined in [16]. 
The CDG annotator seeks to maximize the amount of parallelism available 
in a clause, without being concerned with the size of the resultant &-
Prolog expression. In doing this, the annotator may switch the positions 



of independent goals. The UDG annotator does essentially the same as the 
CDG annotator except that only nnconditional parallelism is exploited, i.e., 
only goals which can be determined to be independent at compile-time are 
rnn in parallel. The MEL annotator seeks to maximize the nnmber of goals 
to be run in parallel within a CGE, preserving the left-to-right order of 
snbgoals in its expressions. 

The two abstract interpreters which will be nsed in the evalnation are 
the sharing + freeness interpreter object of this stndy and the sharing only 
interpreter of [18]. 

The &-Prolog system can optionally genérate a trace file dnring an 
execntion. This file is an encoded description of the events that occnrred 
dnring the execntion of a parallelized program. Since &-Prolog generates all 
possible parallel tasks dnring execntion of a parallel program, even if there 
are only a few processors in the system, all possible parallel program graphs, 
with their exact execntion times, can be be constrncted from this data. A 
tool has been devised and implemented which takes as inpnt a real execntion 
trace file of a parallel program rnn on the &-Prolog system, and gives as 
a resnlt a new optimized trace file which corresponds to the best possible 
execntion which wonld have occnrred assnming a system with an infinite 
nnmber of processors. It also provides statistics abont the speednp obtained 
and the nnmber of processors needed to achieve it. Since this "ideal" parallel 
execntion nses as data a real trace execntion file in which real execution 
times of seqnential segments and all delay times are taken into acconnt, it 
is possible to consider the resnlts as a very good approximation to the best 
possible parallel execntion. 

Two broad categories of programs were nsed for the tests: simple 
programs and larger ones. Program selection within both categories has been 
performed taking into acconnt the programs nsed in those stndies with which 
the resnlts of onr tests are going to be compared. 

3. Static Tests 

We have first compared statically (i.e. lexically) the degree of parallelism 
and overhead introdnced in a program which has been parallelized nsing 
the information of each analyzer and also nsing no information. We have 
parallelized several programs (see Table 1) nsing the MEL annotator. 

Table 2 shows the resnlts obtained when parallelizing programs with: no 
information (colnmns labeled with w/o ) , the information provided by the 
sharing analyzer (colnmns labeled with sh) and the information provided by 
the sharing + freeness analyzer (colnmns labeled with sh+f). The three main 
colnmns have respectively the following meaning: nnmber of CGEs, nnmber 



Benchmark Programs 
browse 
deriv 

hanoi 
prgeom 

qsrt 

queens 
serialize 

vmatrix 

Gabriel benchmarks. 
Symbolic differentiation, The expression given is: E+E-E*E/E*E/E 
where E is the addition of eight snbexpressions 
Towers of Hanoi, The rmmber of discs given is 9 
Constructs a perfect difference set of order n in increasing order, starting 
at 0. 
Quick sort algorithm with difference lists, Two lists have been given as 
input with lengths: 20 and 100 
It solves the n-queens problem. 
Takes a list and converts each item to a number which is the position 
of that item in the sorted list, The list given as input has 25 characters 
It multipfies an N by N matrix and an N by 1 matrix, The input is N = 10 

Larger Programs 

asm 
boyer 
peephole 
read 

The SB-Prolog assembler 
The theorem prover kernel in Gabriel Bench, 
the peephole optimizer used in SB-Prolog 
The pubfic-domain Prolog tokenizer and parser. 

Table 1. Programs used in the evaluation 

of checks and number of unconditional CGEs in the whole parallelized 
program. The three subcolrmins in the last two main columns also show 
in parenthesis the ratio between the number of checks and the total number 
of CGEs and the number of unconditional CGEs and the total number of 
CGEs, respectively. 

program 

a s m 
b o y e r 
b r o w s e 
p e e p h o l e 
p r g e o m 
q u e e n s 
ser ia l ize 
read 
v m a t r i x 
d e r i v 
h a n o i 
qsrt 

N, of CGEs 
w / o 

8 
3 
5 
3 
2 
3 
1 
5 
3 

4 
1 
1 

sh 
8 
3 
5 
3 
2 
3 
1 
5 
3 

4 
1 
1 

sh+í 
8 
2 
5 
2 
2 
2 
1 
1 
3 

4 
1 
1 

N, of checks 
w / o 

26 (3,25) 
9 (3,00) 

12 (2,40) 
13 (4,33) 

4 (2,00) 
9 (3,00) 
4 (4,00) 

15 (3,00) 
10 (3,33) 

20 (5,00) 
4 (4,00) 
1 (1,00) 

sh 
20 (2,5) 
6 (2,00) 

10 (2,00) 
9 (3,00) 
1 (0,50) 
2 (0,66) 
4 (4,00) 
5 (1,00) 
1 (0,33) 

4 (1,00) 
0 (0,00) 
0 (0,00) 

sh+f 
12 (1,5) 
1 (0,50) 

10 (2,00) 
3 (1,50) 
1 (0,50) 
0 (0,00) 
1 (1,00) 
1 (1,00) 
0 (0,00) 

0 (0,00) 
0 (0,00) 
0 (0,00) 

N, of uncond, CGEs 
w / o 

0 (0 
0 (0 
0 (0 
0 (0 
0 (0 
0 (0 
0 (0 
0 (0 
0 (0 

0 (0 
0 (0 
0 (0 

0) 
0) 
0) 
0) 
0) 
0) 
0) 
0) 

o; 
0) 
0) 
0) 

sh 
1 (12,5) 

0 (0,0) 
1 (20,0) 
1 (33,3) 
1 (50,0) 
1 (33,3) 
0 (0,0) 
0 (0,0) 
2 (66,6) 

0 (0,0) 
1 (100,0) 
1 (100,0) 

sh+f 
3 (37,5) 
1 (50,0) 
1 (20,0) 
1 (50,0) 
1 (50,0) 
2 (100,0) 
0 (0,0) 
0 (0,0) 
3 (100,0) 

4 (100,0) 
1 (100,0) 
1 (100,0) 

Table 2. Static Results for the Sharing and Sharing + Freeness Analyzers 

3.1. Dynamic Tests 

An arguably better way of measuring the effectiveness of the information 
provided by abstract interpretation-based analyzers is to measure the 
speedup achieved in the parallel execution time of the program (ideally 
for an unbounded number of processors) against the sequential program 
execution time, while using the information provided by such analyzers in 



the parallelization. This ideal parallel execution time has been obtained using 
the tools described in section 2. 

A related type of test has also been described in [20]. This paper presents 
a high-level sinrulation study of the amount and characteristics of the or-
and (independent) and-parallelism in a wide selection of Prolog programs. 
In that study, simple programs were parallelized by hand and the others were 
parallelized with the MEL annotator first, and then optimized by hand. The 
results presented there will be used here as a reference for the máximum 
parallelization that can be achieved. 

The results are presented in table 3. This table shows the speedup 
obtained by the parallelized program w.r.t. the sequential execution of 
the sequential program and the number of processors needed to obtain 
it (presented after the @ symbol). The resnlts were obtained with checks 
implemented in C. The second block shows the resnlts obtained when 
parallelizing the programs by hand (labeled as hand p.), and the 
corresponding resnlts presented in [20] (labeled as s. K + H). The first 
block of the table is divided into three main rows labeled as MEL, CDG 
and UDG, which indicate the annotator nsed for each test. Each main row 
is also divided in three rows whose labels show the type of analysis nsed for 
the parallelization. 

MEL. 

CDG. 

UDG. 

w / o 
sil 

sh+f 
w / o 
sil 

sh+f 
w / o 
s h 

sh+f 
hand p . 

s. K + H 

d e r i v 

0,82 @ 208 
23,54 <8 237 
42,49 <8 248 

0,83 @ 207 
28,03 <8 239 
42,49 <8 256 

1,0 @ 1 
1,0 <8 1 

42,49 <8 256 
42,49 @ 256 

84,5 @ 248 

h a n o i 

17,80 @ 282 
41,77 <& 466 
41,77 <& 466 
21,30 @ 271 
41,77 <8 490 
41,77 <8 490 

1,0 @ 1 
41,77 <8 490 
41,77 <8 490 
41,77 @ 490 

52,3 @ 427 

v m a t r i x 

1,00 @ 20 
3,75 <& 24 
5,80 <8 28 
1,21 @ 20 
4,19 <8 22 
6,24 <8 23 
1,0 @ 1 

1,04 <8 12 
6,24 <8 23 
6,24 @ 23 
9,06 @ 18 

q s r t ( 2 0 ) 

0,8 @ 7 
1,58 <& 13 
1,58 <& 13 
1,14 @ 7 
1,57 <& 8 
1,57 <& 8 

1,0 @ 1 
1,57 <& 8 
1,57 <& 8 
1,57 @ 8 
1,56 @ 3 

q s r t ( l O O ) 

1,78 @ 25 
2,79 <8 70 
2,79 <8 70 
1,92 @ 23 
2,79 <8 22 
2,79 <8 22 

1,0 @ 1 
2,79 <8 22 
2,79 <8 22 
2,79 @ 22 
2,80 @ 8 

s e r i a l i z e 

0,88 @ 4 
0,88 <8 4 
0,97 «3 4 
0,96 @ 5 
0,96 «3 5 
1,08 <8 4 

1,0 @ 1 
í.o «a i 
í.o <a i 

1,09 @ 4 
1,08 @ 4 

Table 3. Speed up w.r.t. the Sequential Execution of the Sequential Program 

3.2. Discussion of the Results 

Looking at the static results presented in table 2, the first point that 
can be observed is that the number of resulting CGEs can decrease (boyer, 
peephole, queens and read) if the information provided by the sharing 
+ freeness analyzer is considered. This is due to the freeness information: 
ground checks over the variable X can be known to fail if X is known to 
be free at this point of the execution, therefore eliminating the CGE and 
executing the goals sequentially without tests. 

The second point is the improved accuracy of the information provided by 
the sharing + freeness analyzer: the results obtained with this analyzer are 



always better tlian those obtained without analysis, and equal or better than 
those obtained with the sharing analyzer. This conñrms that communication 
between abstract domains during the analysis increases the accuracy of the 
resulting information. 

It can be thought that although the results of table 2 show that sometimes 
the sharing + Jreeness analyzer is signiñcatively better than the sharing 
analyzer (e.g. the resnlts obtained for asm and peephole), in the rest only a 
few checks are eliminated (four in the best case). However, it turns out that 
eliminating only one check may produce a great difference in the speedup 
achieved: the dynamic tests show for vmatrix a speedup of up to a factor of 
6 with only one check of difference. 

Before discussing the results obtained in the dynamic tests, a few points 
should be made. Firstly, some of the programs used in this test had to be 
kept small in size. This is due to the fact that they have small granularity and 
genérate a very large number of tasks (in the order of 105) and reach the 
hardware and software limitations of our "ideal speedup" tools. Secondly, 
since the dynamic tests have been performed with real executions, they 
always include some number of interruptions (due to the Unix Operating 
System over which the tools are executing) in the parallel execution which 
do not allow achieving a real máximum parallel execution time. Furthermore, 
these interruptions produce signiñcant variations among the execution times 
obtained for the same program. Therefore, the results, which have been 
taken as the minimum of the times obtained in different (10) executions, 
can lead to somewhat surprising results when execution time is short as for 
example in qs r t (20) : while the speedup obtained parallelizing by hand is 
1.57, automatic parallelization can achieve 1.58. This is simply due to "noise" 
in the measurements over real systems. 

The results of dynamic tests show the importance of the information 
provided by the sharing + Jreeness analyzer and its accuracy, since its results 
are always equal or better than the rest, and sometimes much better. This is 
particularly evident for the vmatrix and deriv programs, in which speedup is 
signiñcatively higher. As mentioned before, the ñrst case is quite interesting 
since the difference with the information provided by the sharing analyzer 
results in the elimination of only one check. 

It is important to note that in most of the cases (all but serialize) hand 
parallelization obtains the same results as the analyzer. It is somewhat 
surprising that the speedup of the hand parallelization achieved with the 
tools used herein is somewhat different in the ñrst three programs from the 
speedup obtained with the simulator described in [20]. The answer can be in 
the fact that the simulator of [20] takes as time reference the number of head 
uniñcations, considering all head uniñcations of equal cost, rather than actual 
execution times. Also, the costs of all builtin predicates appearing in the 



program are considered equal. We can see in the tables that the differences 
between the speedups are larger in those programs in which the amount of 
and-parallelism is high and has a balanced and not small granularity (tlms 
maintaining the processors active most of the time). It is also interesting to 
note that actual speedup is achieved with parallelizations in which not all 
checks have been eliminated. This, coupled with the increased accuracy of 
the new analyzers, makes the UDG algorithm perhaps not as preferable as 
it had seemed at first glance. The results also confirm the superiority of the 
CDG annotator comparing to the other two. However, the results are better 
at the cost of a great number of processors. 
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