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A b s t r a c t 

Information about t he computa t iona l cost of programs is potent ial ly 

useful for a variety of purposes , including selecting among different al-

gor i thms, guiding program transformations, in granular i ty control and 

mapp ing decisions in parallelizing compilers, and query opt imizat ion in 

deduct ive da tabases . Cost analysis of logic programs is complicated by 

nondeterminism: on the one hand , procedures can re tu rn múlt iple Solu­

tions, making it necessary to es t ímate t he number of solutions in order to 

give nontrivial upper bound cost est imates; on t he other hand , t he possi-

bility of failure has to be taken into account while es t imat ing lower bounds . 

Here we discuss techniques to address these problems to some extent . 

1 Introduction 

Information about the computational cost of a program is potentially useful 
for a variety of purposes. Programmers can use such information, possibly ob-
tained manually, to choose between different algorithmic solutions to a problem. 
Program transformation systems can use cost information to choose between 
alternative transformations. Parallezing compilers can use cost estimates for 
"granularity control," which tries to balance the overheads of task creation and 
manipulation against the benefits of additional parallelism. Information about 
message sizes and relative frequency of communication between different pro-
cesses can be used to improve task mapping decisions on distributed memory 
systems. Information about the number of solutions in deductive datábase sys­
tems can be used for query optimization purposes. Apart from these applications 
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of cost information, the problem of cost analysis may be of some independent 
interest to researchers on static analysis of logic programs because (i) it uses a 
great deal of information from other kinds of analyses, such as mode and type 
analysis, inference of size norms, etc., so that any improvements in these analyses 
potentially yield improvements in cost analysis; and (ii) because of the rich va-
riety of algorithms for combinatorial analysis that arise, especially when dealing 
with constraints. Here we discuss some of our work to date on (semi-)automatic 
worst-case upper and lower bound cost analysis for logic programs. 

Cost analysis of functional and imperative programs has been studied by 
a number of researchers. A major difference between logic programming lan-
guages and other traditional languages in this regard is that logic programs are 
nondeterministic in general, and may produce múltiple solutions, making it nec-
essary to estimate their number to give nontrivial upper bound cost estimates. 
A related problem is that failure of execution is not an abnormal situation, and 
implicit failures have to be accounted for and dealt with explicitly if meaning-
ful results are to be obtained. For example, in the following program to check 
membership of an element in a list, a naive analysis that does not take implicit 
failure into account will not have a base case from which to reason about its 
cost: 

member(X, [X |_] ) . 
member(X, [_IL]) : - member(X, L). 

Failure also poses problems for lower bound analyses, since any attempt to infer 
lower bounds has to contend with the possibility that a goal may fail during 
head unification, yielding a trivial lower bound of 0. 

The work described here had its origins in discussions on task granularity 
analysis for parallel logic programs. We hoped, initially, to obtain techniques for 
lower bound cost estimation for arbitrary (puré) Prolog programs, but it soon 
became clear that on the one hand, nontrivial lower bounds were difncult to 
obtain because of the possibility of failure; and on the other hand, upper bound 
cost estimation for nondeterministic programs was difncult without information 
about the number of solutions a predicate could genérate, which we didn't know 
how to estimate. We were forced to scale back our expectations, therefore, 
and the work reported in [5] dealt only with upper bound cost estimation for 
deterministic programs. Subsequently we were able to make some progress on 
estimating (upper bounds on) the number of solutions a procedure might produce 
[4]. This resulted in a framework for upper bound analysis of logic programs, 
discussed in Section 3 and detailed in [3, 8]. Recently, we have made some 
progress on our original goal of lower bound cost estimation: these ideas are 



discussed in Section 4, with details in [6]. Together, this provides a framework 
for reasoning about the computational cost of a reasonably large class of logic 
programs, though there is a great deal of scope for improvements in this área (a 
couple of directions for future research are discussed in Section 5). 

2 The Overall Approach 

In general, the cost of a procedure depends on (some measure of) the size of its 
input. Therefore, it is necessary to keep track of the sizes of arguments to proce-
dures at each program point (procedure entry and exit). In addition, in order to 
handle nondeterministic procedures, knowledge about the number of solutions 
generated by each predicate is required. Not unexpectedly, the size relationships 
between arguments, the number of solutions, and the time complexity functions 
for recursive procedures are obtained in the form of difference equations. To get 
closed form expressions for the cost of a procedure, we have to obtain (possibly 
approximate) solutions to these equations. 

Our approach to cost analysis of logic programs can be summarized as follows: 

1. Carry out mode and data dependency analysis to identify input and out-
put arguments to procedures and dependencies between producers and 
consumers of variable bindings. 

2. Determine which portions of a program can be executed and therefore 
should be considered during cost analysis. For a worst case upper bound 
analysis, this step is generally trivial in that all of the program is consid­
ered to be reachable; however, for lower bound analysis, it is necessary 
to identify program fragments where failure can be ruled out. This may 
require auxiliary information, e.g., types. 

3. Use data dependency information to obtain size relationships between vari­
ables in a clause. Use this to infer size relationships between input and 
output arguments of procedures. 

4. Use argument size information to determine how many solutions a proce­
dure can produce. 

5. Use information about argument sizes and number of solutions produced 
by various procedures to obtain estimates of their computational costs. 

The cali graph of a program is a directed graph whose vértices correspond to 
the predicates in the program, and where there is an edge from a vértex p to 
a vértex q if there is a literal with predicate symbol q in the body of a clause 
defining p. Because of recursion, the cali graph may contain cycles, but if we 



construct a derived graph whose vértices correspond to the strongly connected 
components of the cali graph and where there is an edge from a vértex p to a 
vértex q if there is an edge from some predicate in the strong component of p 
to some predicate in the strong component of q, the resulting graph is acyclic. 
The various components of cost analysis (argument size, number of solutions, 
computational cost) all proceed by traversing the graph of strongly connected 
components of the cali graph of the program in topological order starting at 
the leaves. At each stage, therefore, we can assume that the costs of predicates 
that are "lower" in the graph have been determined. To handle recursion, we 
symbolically represent the cost (be it size, number of solutions, or computational 
complexity) of the predicate being analyzed as a function of its input sizes. For 
recursive clauses, this expresses the cost for a particular input size (corresponding 
to the head of the clause) in terms of the costs for smaller inputs (corresponding 
to the recursive calis in the body), which can be simplified to obtain difference 
equations. Base cases for these difference equations are provided by the non-
recursive clauses (or have to be obtained separately in the case of implicit failure 
as in the member/2 predicate described earlier). By solving these equations we 
get an expression for the cost of the predicate under consideration. 

3 Upper Bound Analyses 

In worst case upper bound analyses, we assume that all goals succeed (i.e., 
produce at least one solution) and that all solutions computed by a predicate 
are needed. 

3.1 Argument Sizes and Space Complexity 

In general, the size of the outputs produced by a predicate depends on the size 
of its inputs. To simplify the analysis, we assume that the size of each output 
argument of a predicate is a function of the sizes of its input arguments. This 
works reasonably well in general, but tends to be overly conservative for divide-
and-conquer programs. 

Argument sizes are computed using data dependencies. Intuitively, a data 
dependency is a binary relation between the different argument positions in a 
clause (the latter may be specified, for example, by a pair of integers indicating 
a literal in the clause and an argument within that literal): there is a data 
dependency from a position a to a position & if a valué deñned (i.e., computed) 
at a is used at b. 

Various measures can be used to determine the "size" of an input valué, e.g., 
term-size, term-depth, list-length, integer-valué, etc. The measure(s) appropri-
ate in a given situation can in most cases be determined by examining the types 



of argument positions, the general idea being to use the "back edges" in the type 
graph of a predícate to determine how that predícate recursively traverses its 
input terms (or constructs its output terms), and thereby synthesize an appro-
priate measure for the predícate [7]. If we start with a program where clauses 
have been rewritten so that each argument in each literal is a variable, with new 
unification goals introduced where necessary, then for each variable x we can set 
up equations that specify its size in terms of the sizes of other variables and, 
possibly, symbolic representations of the output sizes for recursive procedures. 
For example, for the clause 

nrev(xi,X2) '• — 
x\= [2/112/2], nrev(y2,z1), z2 = lyil, append(z1,z2,x2) 

assuming that nrev/2 has its first argument as an input argument and its second 
as an output argument while for append/3 the first two arguments are inputs 
and the third is an output argument, and that the size of each argument is given 
by the "list length" function, we get the following equations 

x2 = size-nrev(xi) í/2 = xi — 1 z\ = size-nrev (y 2) 
X2 = size-append(zi, Z2) 22 = 1 

These equations can be simplified to obtain size expressions for the output ar­
guments of the procedure. For recursive clauses this yields a difference equation 
that expresses the output size for a given input size in terms of the output size 
for smaller inputs. For example, suppose that while processing the cali graph 
in topological order, we solve the difference equations obtained for the output 
argument size of append/3 to get size-append(x,y) = x + y. Then, for the clause 
for nrev/2 given above, we get the difference equation 

size-nrev(xi) — size-nrev{x\ — 1) + 1. 

3.2 Number of Solutions 

To estímate the number of solutions a predícate can return, we estímate the 
number of bindings possible for each variable in the clause. We use two simple 
rules for this: 

(i) If a variable has k occurrences in a clause, and the number of (ground) 
bindings possible for these occurrences are estimated as m,...,nk, 
then the number of bindings possible for the variable is (at most) 
min(ni,... , n^). 



(vi) If a variable x is bound to a term containing a set of variables V, and for 
each v G V the number of bindings possible for v is given by nv, then the 
number of bindings possible for x is (at most) ü^gv n-»-

The second of these rules is fairly conservative in that it assumes that all vari­
able bindings are independent, so that all possible combinations of bindings for 
the different variables are possible. It is possible to improve this rule to take 
dependences between variables into account; details are given in [3]. 

These rules work reasonably well for puré Horn clauses. We augment them 
with two approximation algorithms for dealing with arithmetic and ñnite-domain 
constraints. The first deals with linear binary constraints. Such constraint 
satisfaction problems can be represented as a graph where each vértex represents 
an assignment of a valué to a variable, and where there is an edge between 
two vértices if the corresponding valué assignments are consistent with each 
other. Solving a set of constraints over n variables then corresponds to finding 
a dique of size n in such a graph, and the number of solutions is given by the 
number of such diques. A direct approach to counting the number of diques in a 
consistency graph can require exponential time. Instead, we obtain upper bound 
approximations to the number of diques by repeatedly simplifying a (weighted 
versión of) the consistency graph until we obtain a bipartite graph. The number 
of 2-cliques in a bipartite weighted consistency graph is simply the sum of the 
weights of its edges, and this can be shown to provide an upper bound on the 
number of n-cliques in the original graph. For a set of constraints involving n 
variables and m domain valúes, the overall worst case time complexity of this 
algorithm is 0(n3m3). 

The second approximation algorithm deals with equality and disequality con­
straints over a ñnite domain. It can be shown that the problem of estimating 
the number of solutions to a set of such constraints can be transformed into the 
problem of computing the chromatic polynomial of a graph. Since the problem 
of determining the chromatic number of a graph is NP-complete, that of deter-
mining chromatic polynomials is NP-hard. However, it turns out that if we can 
emciently compute a lower bound on the chromatic number of a graph, then 
we can emciently compute an upper bound on the chromatic polynomial of a 
graph. We use a result by Bondy [1] to obtain a lower bound on the chromatic 
number of a graph. For a set of m constraints involving n variables, this yields 
a procedure for computing an upper bound estimate on the number of solutions 
having a worst case complexity of 0(n2 logn + nm). 

For estimating the number of solutions for predicates in a program, we asso-
ciate with each predicate a pair of valúes: one of these is an upper bound on the 
relation size for the predicate (for recursive predicates this is infinity), and the 



other is a function that gives an upper bound on the number of solutions that 
may be obtained for a single input of given size. We combine the algorithms 
described above as follows. When type information is available for a predicate, 
each of its clauses is first checked to see if it can be unfolded into a conjunction 
of binary disequality constraints where the variables range over the same finite 
set of constants. In this case, the constraint graph is constructed and the algo-
rithm for estimating the chromatic polynomial of a graph is utilized to estimate 
the number of solutions possible for those variables. Otherwise, the clause is 
checked to see if it can be unfolded into a conjunction and/or disjunction of 
linear constraints over a finite domain. In this case, the algorithm for estimat­
ing the number of n-cliques of a consistency graph is employed to estimate the 
number of bindings possible. In other cases, the general algorithm is used. As 
in the case of size relationships, recursive literals are handled by using symbolic 
expressions to denote the number of solutions generated by them, and solving 
(or giving upper bound estimates to) the resulting difference equations. 

The number of solutions a predicate can genérate is the máximum of the 
number of solutions that can be generated by each mutually exclusive cluster 
of clauses (see [2] for a discussion of inference of mutual exclusión); the number 
of solutions any cluster can genérate is bounded by the sum of the number of 
solutions that can be generated by each clause within the cluster. 

3.3 Time Complexity 

The worst-case upper bound time complexity of a clause, for a single procedure 
cali to that clause, can be obtained as the time taken for head unincation together 
with the time to execute its body. 

If we express the time complexity in terms of the number of resolution steps, 
or procedure calis, then head unincation involves just a single resolution. If 
complexity is expressed in terms of the number of unincation operations, then 
the cost of head unincation is given by the number of arguments. If we want 
to estimate the number of instructions executed, then we have to examine the 
unincation algorithm being used in detail, to obtain a precise expression for its 
worst-case cost for inputs of a given size, and use this to express the cost of head 
unincation. An intermedíate solution is to "peel" head unincation to "normal 
form," i.e., represent it as a sequence of atomic Herbrand domain constraints 
and count the number of such constraints, or even estimate the cost of each of 
them. Mode and type information can help estimate such cost. 

The cost of executing the body of the clause can be obtained from the costs of 
executing each body literal (as mentioned earlier, recursive literals are handled 
using symbolic representations). The input size for each body literal is obtained 



as a function of the input sizes for the clause head from argument size analysis. 
Number of solutions analysis is used to determine how many times each body 
literal is executed: given Prolog's left-to-right execution strategy, for example, 
the number of times a body literal is executed is (bounded above by) the product 
of (upper bounds on) the number of solutions produced by the literals to its left. 

As in the case of estimating the number of solutions, the clauses are par-
titioned into mutually exclusive clusters. The time complexity for each such 
cluster can be obtained by summing the time complexity for each of its clauses. 
In addition to that, however, we also need to take into account the failure cost 
introduced by trying to solve the clauses in other clusters. The failure cost from 
solving a clause in another cluster can be estimated by considering the sources 
leading to the mutual exclusión among clauses. This information can be easily 
produced by mutual exclusión analysis [2]. After the failure costs are added into 
the time complexity for each cluster, the time complexity of a predicate is then 
obtained as the máximum of the time complexities of these clusters. 

4 Lower Bound Cost Analyses 

The main problem with the inference of lower bounds on the computational cost 
of logic programs is the possibility of failure of execution. Any attempt to infer 
lower bounds has to contend with the possibility that a goal may fail during head 
unification, yielding a trivial lower bound of 0. An obvious solution would be to 
try and rule out "bad" argument valúes by considering the types of predicates. 
However, most existing type analyses provide upper approximations, in the sense 
that the type of a predicate is a superset of the set of argument valúes that are 
actually encountered at runtime. Unfortunately, straightforward attempts to 
address this issue, for example by trying to infer lower approximations to the 
calling types of predicates, fail to yield nontrivial lower bounds for most cases. 
We take a different approach where, given mode and (upper approximation) type 
information, we can detect procedures and goals that can be guaranteed to not 
fail, using the notion of a set of tests "covering" the type of a variable. 

4.1 Coverings and Non-Failure Analysis 

The basic idea behind the notion of covering is very simple. We can think of 
a test T(X) as denoting a set of terms succ(r(x)), namely, the terms for which 
the test succeeds (tests that take more than one argument can be thought of 
as unary predicates operating on tupies of the appropriate size). This extends 
in the obvious way to sets of tests: a set of tests S = { n ( x ) , . . . , Tn(x)}, which 
represents the disjunction n (x) V • • • Vr„(x), denotes the set of terms succ(S) — 
Lif=1succ(Ti(x)). Now suppose that the variable x has type T, where a type 
intuitively denotes a set of terms. If T C succ(S), then it must be the case that 



for any possible valué that x can take on (this valué must lie in the set of terms 
T) at least one of the tests in the set S will succeed. In this case, we say that 
the set of tests S covers the type T of x. The idea can be generalized easily to 
type assignments on múltiple variables. 

We can think of each clause in a program as consisting of an "input test", 
which is a conjunction of head unifications and tests on the input arguments, 
followed by a sequence of output unifications and calis to other predicates. The 
basic idea behind our approach is to determine whether the set of input tests of 
a predicate cover the type of its input arguments: if it does, we can guarantee 
that at least one of these tests will succeed for any cali to that predicate, and 
therefore that if such a cali fails it must be due to the failure of a body goal. 
Information about the possible failure of body goals is obtained by processing 
the strongly connected components of the cali graph in topological order. 

The main technical problem here, then, is that of determining whether a set 
of tests covers a type assignment. It turns out that in the presence of arbitrary 
arithmetic operations the problem is undecidable in general, even if the set of 
tests under consideration is a singleton (the proof is a straightforward reduction 
from Matijasevic's proof of the unsolvabihty of Hilbert's tenth problem [9]), and 
is co-NP-hard even if we restrict ourselves to finite types. We therefore have to 
resort to sound (but obviously incomplete) algorithms for checking coverings. A 
linear time algorithm for this is described in [6]. 

Using the notion of coverings, it is straightforward to identify the non-failing 
goals and predicates in a program. This simply involves a depth-first traversal 
of a graph derived from the the cali graph of the program, starting from literals 
whose types are not covered by the input tests of the called predicate, marking 
each visited node (literal as well as predicate) as "possibly failing." When this 
is over the unmarked predicates and literals are guaranteed to be non-failing. 

4.2 Argument Size 

After non-failing goals have been identified, lower-bound argument size analysis 
proceeds essentially as described in Section 3.1, with two obvious differences: 
first, the output sizes for a clause that may fail are O;1 and second, the output 
size of a predicate is obtained by taking the min of the output sizes of its clauses. 

1 This works because we consider only the non-failing literals to the left of the first possibly-
failing literal when estimating the computational cost of a clause (see Section 4.4). 



4.3 Number of Solutions 

It is tempting to try and estimate a lower bound on the number of solutions 
generated by a clause lH : — B\,..., B„' from lower bounds on the number of 
solutions generated by each of the body literals B¿, in a manner analogous to 
the estimation of upper bounds on the number of solutions. Unfortunately, this 
doesnotwork. For example, given a clause 'p(X) :— q(X),r(X)', whereX is an 
output variable, suppose that q and r genérate ng and nr bindings, respectively, 
for X, then min(ng,nr) is not a lower bound on the number of solutions the 
clause can genérate. To see this, suppose that q can bind X to either a or b, 
while r can bind X to either b or c: thus, min(ng,nr) = min(2,2) = 2, but 
the number of solutions for the clause is 1. The problem in this case is that 
the goals q(X) and r(X) "interfere" with each other in terms of the bindings 
they allow for X. We can give more restrictive rules that essentially rule out 
such interference, for example by requiring that output variables be distinct and 
unaliased and occur at most once in the clause body. The approach can be 
extended to handle equality and disequality constraints by computing a lower 
bound on the chromatic polynomial of the associated graph. 

Once we have computed lower bounds on the number of solutions a single 
clause can yield, we can estimate lower bounds on the number of solutions pro-
duced by a set of clauses. In general, this is given by the min of the number of 
solutions due to the individual clauses. However, if we can show that a set of 
clauses have "equivalent" input tests, so that if one of them succeeds for a cali 
then all of them do, then we can improve our lower bound estimate to be the 
sum of the lower bounds of the individual clauses in that set. 

These restrictions may seem serious, but they nevertheless allow us to infer 
interesting lower bounds for a reasonably large class of programs. For example, 
given the program 

: - mode subse t ( in , o u t ) . 
subse t ( [ ] , X) : - X = [] . 
subse t ( [H |L] , X) : - X = [H|X1], subset(L, XI) . 
subse t ( [H |L] , X) : - subset(L, X). 

we can infer that given an input list of length n, this predicate produces at least 
2™ solutions. 

4.4 Computational Cost 

Once information about non-failure and argument sizes has been computed, 
the estimation of lower bounds on the computational cost of a predicate is not 



difficult. If we cannot guarantee that all solutions to a predícate are needed, 
then the cost of a clause is at least the cost of the input tests together with the 
sum of the costs of the body literals upto the leftmost "possibly failing" goal. In 
contexts where all solutions are required, e.g., within a setof or in a distributed 
implementation, this can be improved by taking the number of solutions into 
account to estimate how many times each of these literals must be executed. The 
cost of a predícate is at least the min of the costs of its clauses. This estimate 
can be improved with knowledge about the order in which clauses are tried and 
about the indexing scheme used. 

5 Directions for Future Work 

There are many directions in which the work described can be extended: here 
we consider just two. A significant shortcoming of our current approach is that 
the size of each output argument is treated as a function of the input sizes, 
independent of the sizes of other output arguments. As a result, relationships 
between the sizes of different output arguments are lost. This, in turn, can 
cause a signiñcant loss in precisión, especially in divide-and-conquer programs. 
For example, in a quicksort program where a list of numbers is split into two 
lists that are recursively sorted, our approach determines that given an input list 
of length n, each of the lists obtained from the splitting can have length n — 1 in 
the worst case: the information that their lengths must also sum to n — 1 is lost. 
Because of this, we infer an exponential upper bound on the time complexity of 
the quicksort program: this is sound, but somewhat less precise than we would 
like. It may be possible to alleviate this problem by using constraint-based 
reasoning both for expressing output sizes in terms of input sizes, and also for 
expressing relationships between the sizes of different variables in a clause. On 
the other hand, as a pragmatic short-term solution it may be possible to get a 
lot of mileage simply by identifying and treating divide-and-conquer programs 
specially. 

Another interesting área of investigation is average case analysis. For most 
of the applications identified at the beginning of this paper, the average cost 
of a program is far more interesting, and appropriate, than the worst case. 
Obviously, giving an acceptable defmition of "average" requires defining a prob-
ability distribution on the possible inputs, and this seems nontrivial. However, 
one can imagine that profiling techniques might be usable for estimating input 
distributions, so techniques for average case analysis that assume that the input 
distributions are given are worth investigating. 
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