
Estimating the Computational Cost of Logic Programs

S. K. Debray,* P. López García,^ M. Hermenegildo^ N.-W. Lin*

A b s t r a c t

Information about t he computa t iona l cost of programs is potent ial ly

useful for a variety of purposes , including selecting among different al-

gor i thms, guiding program transformations, in granular i ty control and

mapp ing decisions in parallelizing compilers, and query opt imizat ion in

deduct ive da tabases . Cost analysis of logic programs is complicated by

nondeterminism: on the one hand , procedures can re tu rn múlt iple Solu­

tions, making it necessary to es t ímate t he number of solutions in order to

give nontrivial upper bound cost est imates; on t he other hand , t he possi-

bility of failure has to be taken into account while es t imat ing lower bounds .

Here we discuss techniques to address these problems to some extent .

1 Introduction

Information about the computational cost of a program is potentially useful
for a variety of purposes. Programmers can use such information, possibly ob-
tained manually, to choose between different algorithmic solutions to a problem.
Program transformation systems can use cost information to choose between
alternative transformations. Parallezing compilers can use cost estimates for
"granularity control," which tries to balance the overheads of task creation and
manipulation against the benefits of additional parallelism. Information about
message sizes and relative frequency of communication between different pro-
cesses can be used to improve task mapping decisions on distributed memory
systems. Information about the number of solutions in deductive datábase sys­
tems can be used for query optimization purposes. Apart from these applications

Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA.
Email: debrayScs.arizona.edu

Department of Artificial Intelligence, Universidad Politécnica de Madrid, E-28600 Madrid,
Spain. Email: pedroSdia . f i .upm.es , hermeSdia.fi.upm.es

Department of Computer Science and Information Engineering, National Chung Cheng
University, Chiayi, 62107, Taiwan, R.O.C. Email: naiwei@cs.ccu.edu.tw

http://debrayScs.arizona.edu
http://pedroSdia.fi.upm.es
http://hermeSdia.fi.upm.es
mailto:naiwei@cs.ccu.edu.tw

of cost information, the problem of cost analysis may be of some independent
interest to researchers on static analysis of logic programs because (i) it uses a
great deal of information from other kinds of analyses, such as mode and type
analysis, inference of size norms, etc., so that any improvements in these analyses
potentially yield improvements in cost analysis; and (ii) because of the rich va-
riety of algorithms for combinatorial analysis that arise, especially when dealing
with constraints. Here we discuss some of our work to date on (semi-)automatic
worst-case upper and lower bound cost analysis for logic programs.

Cost analysis of functional and imperative programs has been studied by
a number of researchers. A major difference between logic programming lan-
guages and other traditional languages in this regard is that logic programs are
nondeterministic in general, and may produce múltiple solutions, making it nec-
essary to estimate their number to give nontrivial upper bound cost estimates.
A related problem is that failure of execution is not an abnormal situation, and
implicit failures have to be accounted for and dealt with explicitly if meaning-
ful results are to be obtained. For example, in the following program to check
membership of an element in a list, a naive analysis that does not take implicit
failure into account will not have a base case from which to reason about its
cost:

member(X, [X |_]) .
member(X, [_IL]) : - member(X, L).

Failure also poses problems for lower bound analyses, since any attempt to infer
lower bounds has to contend with the possibility that a goal may fail during
head unification, yielding a trivial lower bound of 0.

The work described here had its origins in discussions on task granularity
analysis for parallel logic programs. We hoped, initially, to obtain techniques for
lower bound cost estimation for arbitrary (puré) Prolog programs, but it soon
became clear that on the one hand, nontrivial lower bounds were difncult to
obtain because of the possibility of failure; and on the other hand, upper bound
cost estimation for nondeterministic programs was difncult without information
about the number of solutions a predicate could genérate, which we didn't know
how to estimate. We were forced to scale back our expectations, therefore,
and the work reported in [5] dealt only with upper bound cost estimation for
deterministic programs. Subsequently we were able to make some progress on
estimating (upper bounds on) the number of solutions a procedure might produce
[4]. This resulted in a framework for upper bound analysis of logic programs,
discussed in Section 3 and detailed in [3, 8]. Recently, we have made some
progress on our original goal of lower bound cost estimation: these ideas are

discussed in Section 4, with details in [6]. Together, this provides a framework
for reasoning about the computational cost of a reasonably large class of logic
programs, though there is a great deal of scope for improvements in this área (a
couple of directions for future research are discussed in Section 5).

2 The Overall Approach

In general, the cost of a procedure depends on (some measure of) the size of its
input. Therefore, it is necessary to keep track of the sizes of arguments to proce-
dures at each program point (procedure entry and exit). In addition, in order to
handle nondeterministic procedures, knowledge about the number of solutions
generated by each predicate is required. Not unexpectedly, the size relationships
between arguments, the number of solutions, and the time complexity functions
for recursive procedures are obtained in the form of difference equations. To get
closed form expressions for the cost of a procedure, we have to obtain (possibly
approximate) solutions to these equations.

Our approach to cost analysis of logic programs can be summarized as follows:

1. Carry out mode and data dependency analysis to identify input and out-
put arguments to procedures and dependencies between producers and
consumers of variable bindings.

2. Determine which portions of a program can be executed and therefore
should be considered during cost analysis. For a worst case upper bound
analysis, this step is generally trivial in that all of the program is consid­
ered to be reachable; however, for lower bound analysis, it is necessary
to identify program fragments where failure can be ruled out. This may
require auxiliary information, e.g., types.

3. Use data dependency information to obtain size relationships between vari­
ables in a clause. Use this to infer size relationships between input and
output arguments of procedures.

4. Use argument size information to determine how many solutions a proce­
dure can produce.

5. Use information about argument sizes and number of solutions produced
by various procedures to obtain estimates of their computational costs.

The cali graph of a program is a directed graph whose vértices correspond to
the predicates in the program, and where there is an edge from a vértex p to
a vértex q if there is a literal with predicate symbol q in the body of a clause
defining p. Because of recursion, the cali graph may contain cycles, but if we

construct a derived graph whose vértices correspond to the strongly connected
components of the cali graph and where there is an edge from a vértex p to a
vértex q if there is an edge from some predicate in the strong component of p
to some predicate in the strong component of q, the resulting graph is acyclic.
The various components of cost analysis (argument size, number of solutions,
computational cost) all proceed by traversing the graph of strongly connected
components of the cali graph of the program in topological order starting at
the leaves. At each stage, therefore, we can assume that the costs of predicates
that are "lower" in the graph have been determined. To handle recursion, we
symbolically represent the cost (be it size, number of solutions, or computational
complexity) of the predicate being analyzed as a function of its input sizes. For
recursive clauses, this expresses the cost for a particular input size (corresponding
to the head of the clause) in terms of the costs for smaller inputs (corresponding
to the recursive calis in the body), which can be simplified to obtain difference
equations. Base cases for these difference equations are provided by the non-
recursive clauses (or have to be obtained separately in the case of implicit failure
as in the member/2 predicate described earlier). By solving these equations we
get an expression for the cost of the predicate under consideration.

3 Upper Bound Analyses

In worst case upper bound analyses, we assume that all goals succeed (i.e.,
produce at least one solution) and that all solutions computed by a predicate
are needed.

3.1 Argument Sizes and Space Complexity

In general, the size of the outputs produced by a predicate depends on the size
of its inputs. To simplify the analysis, we assume that the size of each output
argument of a predicate is a function of the sizes of its input arguments. This
works reasonably well in general, but tends to be overly conservative for divide-
and-conquer programs.

Argument sizes are computed using data dependencies. Intuitively, a data
dependency is a binary relation between the different argument positions in a
clause (the latter may be specified, for example, by a pair of integers indicating
a literal in the clause and an argument within that literal): there is a data
dependency from a position a to a position & if a valué deñned (i.e., computed)
at a is used at b.

Various measures can be used to determine the "size" of an input valué, e.g.,
term-size, term-depth, list-length, integer-valué, etc. The measure(s) appropri-
ate in a given situation can in most cases be determined by examining the types

of argument positions, the general idea being to use the "back edges" in the type
graph of a predícate to determine how that predícate recursively traverses its
input terms (or constructs its output terms), and thereby synthesize an appro-
priate measure for the predícate [7]. If we start with a program where clauses
have been rewritten so that each argument in each literal is a variable, with new
unification goals introduced where necessary, then for each variable x we can set
up equations that specify its size in terms of the sizes of other variables and,
possibly, symbolic representations of the output sizes for recursive procedures.
For example, for the clause

nrev(xi,X2) '• —
x\= [2/112/2], nrev(y2,z1), z2 = lyil, append(z1,z2,x2)

assuming that nrev/2 has its first argument as an input argument and its second
as an output argument while for append/3 the first two arguments are inputs
and the third is an output argument, and that the size of each argument is given
by the "list length" function, we get the following equations

x2 = size-nrev(xi) í/2 = xi — 1 z\ = size-nrev (y 2)
X2 = size-append(zi, Z2) 22 = 1

These equations can be simplified to obtain size expressions for the output ar­
guments of the procedure. For recursive clauses this yields a difference equation
that expresses the output size for a given input size in terms of the output size
for smaller inputs. For example, suppose that while processing the cali graph
in topological order, we solve the difference equations obtained for the output
argument size of append/3 to get size-append(x,y) = x + y. Then, for the clause
for nrev/2 given above, we get the difference equation

size-nrev(xi) — size-nrev{x\ — 1) + 1.

3.2 Number of Solutions

To estímate the number of solutions a predícate can return, we estímate the
number of bindings possible for each variable in the clause. We use two simple
rules for this:

(i) If a variable has k occurrences in a clause, and the number of (ground)
bindings possible for these occurrences are estimated as m,...,nk,
then the number of bindings possible for the variable is (at most)
min(ni,... , n^).

(vi) If a variable x is bound to a term containing a set of variables V, and for
each v G V the number of bindings possible for v is given by nv, then the
number of bindings possible for x is (at most) ü^gv n-»-

The second of these rules is fairly conservative in that it assumes that all vari­
able bindings are independent, so that all possible combinations of bindings for
the different variables are possible. It is possible to improve this rule to take
dependences between variables into account; details are given in [3].

These rules work reasonably well for puré Horn clauses. We augment them
with two approximation algorithms for dealing with arithmetic and ñnite-domain
constraints. The first deals with linear binary constraints. Such constraint
satisfaction problems can be represented as a graph where each vértex represents
an assignment of a valué to a variable, and where there is an edge between
two vértices if the corresponding valué assignments are consistent with each
other. Solving a set of constraints over n variables then corresponds to finding
a dique of size n in such a graph, and the number of solutions is given by the
number of such diques. A direct approach to counting the number of diques in a
consistency graph can require exponential time. Instead, we obtain upper bound
approximations to the number of diques by repeatedly simplifying a (weighted
versión of) the consistency graph until we obtain a bipartite graph. The number
of 2-cliques in a bipartite weighted consistency graph is simply the sum of the
weights of its edges, and this can be shown to provide an upper bound on the
number of n-cliques in the original graph. For a set of constraints involving n
variables and m domain valúes, the overall worst case time complexity of this
algorithm is 0(n3m3).

The second approximation algorithm deals with equality and disequality con­
straints over a ñnite domain. It can be shown that the problem of estimating
the number of solutions to a set of such constraints can be transformed into the
problem of computing the chromatic polynomial of a graph. Since the problem
of determining the chromatic number of a graph is NP-complete, that of deter-
mining chromatic polynomials is NP-hard. However, it turns out that if we can
emciently compute a lower bound on the chromatic number of a graph, then
we can emciently compute an upper bound on the chromatic polynomial of a
graph. We use a result by Bondy [1] to obtain a lower bound on the chromatic
number of a graph. For a set of m constraints involving n variables, this yields
a procedure for computing an upper bound estimate on the number of solutions
having a worst case complexity of 0(n2 logn + nm).

For estimating the number of solutions for predicates in a program, we asso-
ciate with each predicate a pair of valúes: one of these is an upper bound on the
relation size for the predicate (for recursive predicates this is infinity), and the

other is a function that gives an upper bound on the number of solutions that
may be obtained for a single input of given size. We combine the algorithms
described above as follows. When type information is available for a predicate,
each of its clauses is first checked to see if it can be unfolded into a conjunction
of binary disequality constraints where the variables range over the same finite
set of constants. In this case, the constraint graph is constructed and the algo-
rithm for estimating the chromatic polynomial of a graph is utilized to estimate
the number of solutions possible for those variables. Otherwise, the clause is
checked to see if it can be unfolded into a conjunction and/or disjunction of
linear constraints over a finite domain. In this case, the algorithm for estimat­
ing the number of n-cliques of a consistency graph is employed to estimate the
number of bindings possible. In other cases, the general algorithm is used. As
in the case of size relationships, recursive literals are handled by using symbolic
expressions to denote the number of solutions generated by them, and solving
(or giving upper bound estimates to) the resulting difference equations.

The number of solutions a predicate can genérate is the máximum of the
number of solutions that can be generated by each mutually exclusive cluster
of clauses (see [2] for a discussion of inference of mutual exclusión); the number
of solutions any cluster can genérate is bounded by the sum of the number of
solutions that can be generated by each clause within the cluster.

3.3 Time Complexity

The worst-case upper bound time complexity of a clause, for a single procedure
cali to that clause, can be obtained as the time taken for head unincation together
with the time to execute its body.

If we express the time complexity in terms of the number of resolution steps,
or procedure calis, then head unincation involves just a single resolution. If
complexity is expressed in terms of the number of unincation operations, then
the cost of head unincation is given by the number of arguments. If we want
to estimate the number of instructions executed, then we have to examine the
unincation algorithm being used in detail, to obtain a precise expression for its
worst-case cost for inputs of a given size, and use this to express the cost of head
unincation. An intermedíate solution is to "peel" head unincation to "normal
form," i.e., represent it as a sequence of atomic Herbrand domain constraints
and count the number of such constraints, or even estimate the cost of each of
them. Mode and type information can help estimate such cost.

The cost of executing the body of the clause can be obtained from the costs of
executing each body literal (as mentioned earlier, recursive literals are handled
using symbolic representations). The input size for each body literal is obtained

as a function of the input sizes for the clause head from argument size analysis.
Number of solutions analysis is used to determine how many times each body
literal is executed: given Prolog's left-to-right execution strategy, for example,
the number of times a body literal is executed is (bounded above by) the product
of (upper bounds on) the number of solutions produced by the literals to its left.

As in the case of estimating the number of solutions, the clauses are par-
titioned into mutually exclusive clusters. The time complexity for each such
cluster can be obtained by summing the time complexity for each of its clauses.
In addition to that, however, we also need to take into account the failure cost
introduced by trying to solve the clauses in other clusters. The failure cost from
solving a clause in another cluster can be estimated by considering the sources
leading to the mutual exclusión among clauses. This information can be easily
produced by mutual exclusión analysis [2]. After the failure costs are added into
the time complexity for each cluster, the time complexity of a predicate is then
obtained as the máximum of the time complexities of these clusters.

4 Lower Bound Cost Analyses

The main problem with the inference of lower bounds on the computational cost
of logic programs is the possibility of failure of execution. Any attempt to infer
lower bounds has to contend with the possibility that a goal may fail during head
unification, yielding a trivial lower bound of 0. An obvious solution would be to
try and rule out "bad" argument valúes by considering the types of predicates.
However, most existing type analyses provide upper approximations, in the sense
that the type of a predicate is a superset of the set of argument valúes that are
actually encountered at runtime. Unfortunately, straightforward attempts to
address this issue, for example by trying to infer lower approximations to the
calling types of predicates, fail to yield nontrivial lower bounds for most cases.
We take a different approach where, given mode and (upper approximation) type
information, we can detect procedures and goals that can be guaranteed to not
fail, using the notion of a set of tests "covering" the type of a variable.

4.1 Coverings and Non-Failure Analysis

The basic idea behind the notion of covering is very simple. We can think of
a test T(X) as denoting a set of terms succ(r(x)), namely, the terms for which
the test succeeds (tests that take more than one argument can be thought of
as unary predicates operating on tupies of the appropriate size). This extends
in the obvious way to sets of tests: a set of tests S = { n (x) , . . . , Tn(x)}, which
represents the disjunction n (x) V • • • Vr„(x), denotes the set of terms succ(S) —
Lif=1succ(Ti(x)). Now suppose that the variable x has type T, where a type
intuitively denotes a set of terms. If T C succ(S), then it must be the case that

for any possible valué that x can take on (this valué must lie in the set of terms
T) at least one of the tests in the set S will succeed. In this case, we say that
the set of tests S covers the type T of x. The idea can be generalized easily to
type assignments on múltiple variables.

We can think of each clause in a program as consisting of an "input test",
which is a conjunction of head unifications and tests on the input arguments,
followed by a sequence of output unifications and calis to other predicates. The
basic idea behind our approach is to determine whether the set of input tests of
a predicate cover the type of its input arguments: if it does, we can guarantee
that at least one of these tests will succeed for any cali to that predicate, and
therefore that if such a cali fails it must be due to the failure of a body goal.
Information about the possible failure of body goals is obtained by processing
the strongly connected components of the cali graph in topological order.

The main technical problem here, then, is that of determining whether a set
of tests covers a type assignment. It turns out that in the presence of arbitrary
arithmetic operations the problem is undecidable in general, even if the set of
tests under consideration is a singleton (the proof is a straightforward reduction
from Matijasevic's proof of the unsolvabihty of Hilbert's tenth problem [9]), and
is co-NP-hard even if we restrict ourselves to finite types. We therefore have to
resort to sound (but obviously incomplete) algorithms for checking coverings. A
linear time algorithm for this is described in [6].

Using the notion of coverings, it is straightforward to identify the non-failing
goals and predicates in a program. This simply involves a depth-first traversal
of a graph derived from the the cali graph of the program, starting from literals
whose types are not covered by the input tests of the called predicate, marking
each visited node (literal as well as predicate) as "possibly failing." When this
is over the unmarked predicates and literals are guaranteed to be non-failing.

4.2 Argument Size

After non-failing goals have been identified, lower-bound argument size analysis
proceeds essentially as described in Section 3.1, with two obvious differences:
first, the output sizes for a clause that may fail are O;1 and second, the output
size of a predicate is obtained by taking the min of the output sizes of its clauses.

1 This works because we consider only the non-failing literals to the left of the first possibly-
failing literal when estimating the computational cost of a clause (see Section 4.4).

4.3 Number of Solutions

It is tempting to try and estimate a lower bound on the number of solutions
generated by a clause lH : — B\,..., B„' from lower bounds on the number of
solutions generated by each of the body literals B¿, in a manner analogous to
the estimation of upper bounds on the number of solutions. Unfortunately, this
doesnotwork. For example, given a clause 'p(X) :— q(X),r(X)', whereX is an
output variable, suppose that q and r genérate ng and nr bindings, respectively,
for X, then min(ng,nr) is not a lower bound on the number of solutions the
clause can genérate. To see this, suppose that q can bind X to either a or b,
while r can bind X to either b or c: thus, min(ng,nr) = min(2,2) = 2, but
the number of solutions for the clause is 1. The problem in this case is that
the goals q(X) and r(X) "interfere" with each other in terms of the bindings
they allow for X. We can give more restrictive rules that essentially rule out
such interference, for example by requiring that output variables be distinct and
unaliased and occur at most once in the clause body. The approach can be
extended to handle equality and disequality constraints by computing a lower
bound on the chromatic polynomial of the associated graph.

Once we have computed lower bounds on the number of solutions a single
clause can yield, we can estimate lower bounds on the number of solutions pro-
duced by a set of clauses. In general, this is given by the min of the number of
solutions due to the individual clauses. However, if we can show that a set of
clauses have "equivalent" input tests, so that if one of them succeeds for a cali
then all of them do, then we can improve our lower bound estimate to be the
sum of the lower bounds of the individual clauses in that set.

These restrictions may seem serious, but they nevertheless allow us to infer
interesting lower bounds for a reasonably large class of programs. For example,
given the program

: - mode subse t (in , o u t) .
subse t ([] , X) : - X = [] .
subse t ([H |L] , X) : - X = [H|X1], subset(L, XI) .
subse t ([H |L] , X) : - subset(L, X).

we can infer that given an input list of length n, this predicate produces at least
2™ solutions.

4.4 Computational Cost

Once information about non-failure and argument sizes has been computed,
the estimation of lower bounds on the computational cost of a predicate is not

difficult. If we cannot guarantee that all solutions to a predícate are needed,
then the cost of a clause is at least the cost of the input tests together with the
sum of the costs of the body literals upto the leftmost "possibly failing" goal. In
contexts where all solutions are required, e.g., within a setof or in a distributed
implementation, this can be improved by taking the number of solutions into
account to estimate how many times each of these literals must be executed. The
cost of a predícate is at least the min of the costs of its clauses. This estimate
can be improved with knowledge about the order in which clauses are tried and
about the indexing scheme used.

5 Directions for Future Work

There are many directions in which the work described can be extended: here
we consider just two. A significant shortcoming of our current approach is that
the size of each output argument is treated as a function of the input sizes,
independent of the sizes of other output arguments. As a result, relationships
between the sizes of different output arguments are lost. This, in turn, can
cause a signiñcant loss in precisión, especially in divide-and-conquer programs.
For example, in a quicksort program where a list of numbers is split into two
lists that are recursively sorted, our approach determines that given an input list
of length n, each of the lists obtained from the splitting can have length n — 1 in
the worst case: the information that their lengths must also sum to n — 1 is lost.
Because of this, we infer an exponential upper bound on the time complexity of
the quicksort program: this is sound, but somewhat less precise than we would
like. It may be possible to alleviate this problem by using constraint-based
reasoning both for expressing output sizes in terms of input sizes, and also for
expressing relationships between the sizes of different variables in a clause. On
the other hand, as a pragmatic short-term solution it may be possible to get a
lot of mileage simply by identifying and treating divide-and-conquer programs
specially.

Another interesting área of investigation is average case analysis. For most
of the applications identified at the beginning of this paper, the average cost
of a program is far more interesting, and appropriate, than the worst case.
Obviously, giving an acceptable defmition of "average" requires defining a prob-
ability distribution on the possible inputs, and this seems nontrivial. However,
one can imagine that profiling techniques might be usable for estimating input
distributions, so techniques for average case analysis that assume that the input
distributions are given are worth investigating.

References

[1] J. A. Bondy, "Bounds for the Chromatic Number of a Graph," Journal of
Combinatorial Theory 7, (1969), pp. 96-98.

[2] S. K. Debray and D. S. Warren, "Functional Computations in Logic Pro­
grams," ACM Transactions on Programming Languages and Systems 11,3
(July 1989), pp. 451-481.

[3] S. K. Debray and N.-W. Lin, "Cost Analysis of Logic Programs", ACM
Transactions on Programming Languages and Systems, vol. 15 no. 5, Nov.
1993, pp. 826-875.

[4] S. K. Debray and N. Lin, "Static Estimation of Query Sizes in Horn Pro­
grams," Proc. Third International Conference on Datábase Theory, Paris,
France, December 1990, pp. 514-528.

[5] S. K. Debray, N.-W. Lin, and M. Hermenegildo, "Task Granularity Analysis
in Logic Programs", Proc. of the 1990 ACM Conf. on Programming Lan-
guage Design and Implementation, pp. 174-188. ACM Press, June 1990.

[6] S. K. Debray, P. López García, M. Hermenegildo, and N.-W. Lin, "Lower
Bound Cost Estimation for Logic Programs", manuscript, April 1994.

[7] S. Decorte, D. De Schreye, and M. Fabris, "Automatic Inference of Norms:
A Missing Link in Automatic Termination Analysis", Proc. 1993 Interna­
tional Symposium on Logic Programming, 1993, pp. 420-436. MIT Press.

[8] N.-W. Lin, Automatic Complexity Analysis of Logic Programs, Ph.D. Dis-
sertation, The University of Arizona, 1993.

[9] Ju. V. Matijasevic, "Enumerable Sets are Diophantine", Doklady Akademii
Nauk SSSR, 191 (1970), 279-282 (in Russian; English translation in Soviet
Mathematics—Doklady, 11 (1970), 354-357).

