
On the Role of Semantic Approximat ions
in Validation and Diagnosis

of Constraint Logic Programs
(Extended Abstract)

F. Bueno* P. Deransart^ W. Drabent* G. Ferrarte^

M. Hermenegildo* J. Maluszyñski^ G. Puebla*

1 Introduction

This paper presents some on-going work in the ESPRIT project DiSCiPl. The project aims at
devising advanced tools for debugging of constraint logic programs.

A central problem in program development is obtaining a program which satisfies the user's
expectations. When considering a given program, a natural question is then whether or not it
fulfils expectations of some kind (requirements). To be able to formúlate this question, some
formal or informal way of specifying such requirements is needed. That is, a (formal or informal)
program semantics is needed, in which one can express what the program computes and what it
is required to compute.

It may then be possible either to verify that the program satisfies the requirement for every
computation (in the considered class), or to show a specific computation where the requirement
is violated. The process of identifying the part of the program responsible for the violation is
referred to as diagnosis. The program then needs to be modified to correct the error. Since
the requirement documentation is often not complete, the user's requirements are often given as
approximations, Le., safe specifications of (parts of) the intended semantics of the program. The
process of debugging consists of the study of the program semantics, observation of error symptoms,
localization of program "errors" and their correction until no symptom can be observed anymore
and the program is considered correct.

Semantic approximations have been used in program validation, in declarative diagnosis, and
in program analysis. This paper gives a common view of these techniques from the perspective of
debugging. The objective is to explore possible uses of approximations for debugging purposes.
The presentation is organized as follows. First, some notions on program semantics are given,
mainly by means of examples. Then, validation, diagnosis by proofs, and declarative diagnosis are
described in terms of set-theoretic relations. Next, the effect of using approximations rather than
the exact sets is studied. Finally, such relations on set approximations are reformulated for the
special case of abstract interpretation.

'Facultad de Informática, Universidad Politécnica de Madrid, 28660-Boadilla del Monte, Madrid, Spain.
{bueno,herme,german}@fi.upm.es

tlNRIA-Rocquencourt, Projet LOCO, BP 105, F-78153 Le Chesnay Cedex, France. P ie r re .Deransar t@inr ia . f r
í lnsti tute of Computer Science, Polish Academy of Sciences. Poland. wdr@mimuw.edu.pl
§LIFO, University of Orléans, Rué de Chartres B.P. 6759, 45067 Orleans Cedex 2, France.

Gerard.Ferrand@lifo.univ-orleans.fr

^Linkóping University, Department of Computer and Information Science, Ostergótland, S 581 83 Linkóping,
Sweden. jmz@ida.liu.se

http://upm.es
mailto:Pierre.Deransart@inria.fr
mailto:wdr@mimuw.edu.pl
mailto:Gerard.Ferrand@lifo.univ-orleans.fr
mailto:jmz@ida.liu.se

We keep the basic discussion quite general, in that we impose only some minor restrictions on
the way the different semantics are formalized. We illustrate the general discussion by very simple
examples referring to Constraint Logic Programming (CLP) [JM94].

2 Actual and Intended Semantics

Semantics associate a meaning to a given syntax (generally of a program). A particular semantics
captures some features of the computations of a program (sometimes called the "observables")
while hiding others. Different kinds of semantics can be used depending of the features to be
described.

In this paper we restrict ourselves to the important class of semantics referred to as fixpoint
semantics. In this approach a (monotonic) semantic operator (which we refer to as Sp) is associ-
ated with each program P . This Sp function operates on a semantic domain which is generally
assumed to be a complete lattice or, more generally, a chain complete partial order. The meaning
of the program (which we refer to as [P]) is defined as the least fixpoint of the Sp operator, Le.,
[PJ =lfp(Sp). A well-known result is that if Sp is continuous, the least fixpoint is the limit of an
iterative process involving at most ui applications of Sp and starting from the bottom element of
the lattice.

Example 2.1 An example of a set-based, fixpoint semantics for (constraint) logic programs is the
traditional least model semantics [JM94]- The semantic ohjects in this case are so called D-atoms.
A D-atom is an expression p(d\,... ,dn) where p is an n-ary predícate symbol, d\,... ,dn £ D and
D is the domain of valúes. For example, in classical logic programming D is the Herbrand universe;
for CLP(R) D is the set of real numbers and of terms (for example lists) containing real numbers1.
The semantic domain is the lattice of sets of D-atoms.

The semantic operator for program P is Tp (the immediate consequence operator) and [P] =
lfp(Tp) = U Í ^ O ^ P W - An important property is that [P] is the least D-model of the program.
Any ground instance2 of a computed answer (for an atomic query) is a member of [PJ.

For example, given the following CLP program, over the domain of integers:

sorted(X) <- X = [].
sorted(X) <- X = [Y].
sorted(X) <- X = [HÍ\TÍ],T1 = [H2\T2],H1 > H2,sorted(Tl).

we have that [P] = { sorted([}) } U { sorted([X}) | X £ D } U { soríed([Xi,.. .,Xn]) | n > 2, Xx >
• • • > Xn }. So for instance | P] contains sorted([7]), sorted([a\), sorted([[]]), sorted([2,1,0]) and
does not contain sorted([0,2]), sorted([2,l,a\).

Example 2.2 Another example of a fixpoint semantics is the traditional "call-answer operational
semantics" for CLP programs (see, e.g., [GHB+ 96]). The semantic objects in this case are pairs of
constrained atoras. The program is assumed to contain a query or "entry point". JPJ contains all
the call-answer pairs that appear during program execution for the given query or entry point. For
example, given the CLP program above and the query "<— X = [l,Y],sorted(X)", and, assuming
standard left-to-right, depth-first control, we have JPJ = {(sorted(X) •(— X = [1, Y], sorted(X) •(—
X = [1, Y] A Y < 1), (sorted(X) <- X = [Y], sorted(X) <- X = [Y])}.

Both program validation and diagnosis, to be discussed more precisely later, compare the ac­
tual semantics of the program, Le., JPJ, with an intended semantics for the same program. This
intended semantics embodies the user's requirements, Le., it is an expression of the user's ex-
pectations. The nature of the requirements considered in validation and diagnosis is very wide.
For example, one can discuss declarative diagnosis/validation (when the requirements concern the

1Usually it is assumed that D is given together with a flxed interpretation of the symbols that can occur in
constraints. For instance for CLP(R), + is interpreted as addition and > as the "greater than" relation on reals.

2In CLP, by a ground instance of a constrained atom i < - c w e mean any D-atorn A6 such that c8 is true; here
A is an atom, c a constraint and 8 is a valuation assigning elements of D to variables.

relation specified by the program), diagnosis/validation of dynamic properties (when the require-
ments concern properties of the execution states), performance diagnosis/validation (when the
requirements concern the efficiency of execution), etc. Thus, different kinds of user's expectations
require different kinds of semantics in order to be able both to adequately express the requirements
and to extract relevant meaning from the program to compare with the requirements.

Example 2.3 In CLP, requirements regarding characteristics of the computed answers of a pro­
gram can in general be expressed and checked using the least D-model semantics of Example 2.1,
whereas if the requirements also refer to characteristics of the calis that occur during execution
then the operational semantics of Example 2.2 (using sets of pairs of constrained atoms) would
need to be used.

We focus here on the common case in which the actual semantics [PJ of a program is a set
(and the semantic domain is the lattice of sets ordered by set inclusión). A natural question is thus
how the user's intention can be represented. For the time being, let us assume that 1 belongs to
the same semantic domain used for [[P]. The semantic object 1 can be seen as the corresponding
semantics of an intended program. But this program does not exist (neither as program, ñor in
mind) in general. Thus, usually there is no expression of I , but rather partial descriptions of it.

Example 2.4 / / the program of Example 2.1 is intended to compute all integer lists that are
sorted, the programmer may approximate this intention with:

I\ = {sorted([X]) \ X is an integer]

I2 = {sorted(L) \ L is an integer list]

Obviously, I\ represents a subset of the programmer's intention, since it represents only sorted
integer lists of length one. Similarly, I2 represents a superset of the programmer's intention; it
does not require that the lists are sorted.

3 Validation and Diagnosis in a Set Theoretic Framework

This section summarizes well-known notions related to program validation (see, e.g., [Der93]), di­
agnosis by proof, and declarative diagnosis [Sha82, Fer87]. The problems found in these disciplines
are summarized and discussed in a set theoretic framework for clarity. They can also be formulated
in a lattice theoretic setting, but the set theoretic presentation simplifies the discussion.

3.1 Validation

Validation aims at proving certain properties of a program which are formally defined as relation-
ships between a specification 1 and the actual program semantics [PJ. Table 1 lists validation
problems in a set theoretic formulation.

Property

P is partially correct w.r.t. I
P is complete w.r.t. I
P is incorrect w.r.t. I
P is incomplete w.r.t. I

Definition
M C I

i c [Pfl
IP]£I

1 g [P]

Table 1: Set theoretic formulation of validation problems

Note that we do not assume that I is unique. We simply denote specifications as I, but it can
very well be the case that different specifications are given for verifying different properties. In
particular, when dealing with partial correctness, I describes a property which should be satisfied

by all elements of the semantics [PJ. In other words, X corresponds to expected properties of
all results or all behaviours of the program (depending of the kind of semantics). When dealing
with completeness X characterizes a set of elements which should be in the semantics \P\, i.e., X
describes some expected results or behaviours of P. Proving incorrectness and incompleteness is
also of interest, as it indicates that the program does not satisfy the specifications and diagnosis
of incorrectness or incompleteness should be performed.

3.2 Diagnosis by Proof

The existing proof methods for correctness and completeness are usually based on some kind
of induction. Table 2 presents well-known sufficient conditions which can be used for program
verification and diagnosis.

Property
X inductive for P
X co-inductive for P
X not inductive for P
X not co-inductive for P

Definition
SP(X) C X

X C SP(X)
SP(X) - X ¿0
X - SP(X) ¿ 0

Implies
P partially correct w.r.t. X

P complete* w.r.t. X

Table 2: Set theoretic formulation of diagnosis by proof problems

In the table (*) stands for an additional requirement. A sufficient condition for completeness
of P w.r.t. I, requires not only co-inductiveness of I for P but also that Sp has a unique fixpoint.
This last condition holds for a large class of programs (e.g., the acceptable programs in [AP93]).

Failures in proving the conditions may possibly indicate that the program has an error. An
incorrectness error is a part of the program that is the reason for Sp (X) —X^0. An incompleteness
error is a part of the program that is the reason for X — Sp(X) ^ 0 . The operator Sp in any kind
of semantics is defined in terms of the constructs of the program P. Thus, it makes it possible to
define precisely what is meant by the informal statement "is the reason". For CLP programs, an
incorrectness error is a program clause and an incompleteness error is a program procedure (a set
of the clauses defining a certain predicate symbol).

If the program is incorrect or incomplete, then it includes a corresponding error. One can
try to make a proof that X is inductive (or co-inductive) w.r.t. the program. For an incorrect or
incomplete program some constructs will be identified where the corresponding conditions cannot
be proved. These constructs are possible error locations. As the conditions presented in Table 2
are not necessary, a fragment of the program localized as erroneous may or may not correspond
to a bug in the program.

Example 3.1 We show two examples for which a proof of partial correctness is impossible. In both
cases the specification is not inductive for the program. In the first case the program is incorrect
w.r.t. the specification. In the second, the program is correct but a correctness error is detected
because of a too weak specification. The operator Sp is the immediate consequence operator Tp
for logic programs.

Consider the program P from Example 2.1 and the specification X^ from Example 2.4 (so the
arguments of sorted are required to be integer lists). An attempted correctness proof fails, X^ is
not inductive w.r.t. P. The reason is the clause sorted(X) -(— X = [Y], as sorted([a\) £ Sp(l2)
and sorted([a\) ^X^. This clause is also the reason that the program is not partially correct w.r.t.
X2.

Consider the following CLP program Q, over the domain of integers. It is basically the program
from Example 2.1 in which the new predicate order/2 has been added and the second clause has
been corrected.

sorted(X) <- X = [].
sorted(X) <- X = [Y],Y > Z.
sorted(X) ^ X = [H1\T1],T1 = [H2\T2],order(Hl,H2),sorted(Tl).
order(X, Y) <r- X > Y.

Assume that a partial speciftcation requires the argument of sorted/1 to be a list of integers.
Nothing is required about predícate order/2. This means that, in our set-theoretical setting, I
contains all the D-atoms of the forra order(X, Y) (X, Y £ D) and all the atoras of the forra
sorted(L), where L is a list of integers. Notice that Q is correct w.r.t. I. However, 1 is not
inductive w.r.t. Q (as SQ{I) contains for instance sorted([a, 1])). The third clause is the reason.
Strengthening the speciftcation for order/2 is necessary to obtain a correctness proof. We add a
requireraent that both arguments of order/2 are integers and obtain I', which is inductive w.r.t.
Q.

Note that the situation of weak correctness requirements presented above is equivalent to
having an incomplete but correct program which presents a correctness error using conditions of
Table 2 (or vice versa). However, the experience with type checking of logic programs (see, e.g.,
[AM94, HL94]) shows that failure in proving local validation conditions for a clause is often a
good indication that the clause is erroneous.

3.3 Declarative Diagnosis

In contrast to diagnosis by proof, the declarative diagnosis concerns the case when a particular
(test) computation does not satisfy a requirement.

We learn that a program P is incorrect (Le., not partially correct w.r.t. I) when we find out
that it produces a result x such that x (£ I. Such a result x is called an incorrectness symptom.
Similarly, a program P is incomplete when it does not produce some expected result, in other
words when there exists some x C I such that x <¿ [[PJ. Such x is called an incorapleteness
symptom.

Example 3.2 In the program of Example 2.1 with the specifications of Example 2.4, note that
sorted([a\) £ | P] but sorted([a\) £* X^. Therefore, such an atora is an incorrectness symptom
w.r.t. X'2- If in that program the second clause was missing then sorted([í\) £ I\ would be an
incorapleteness symptom w.r.t. I\, since, without that clause, sorted([l]) £" ¡PJ.

Briefly, declarative diagnosis starts with a symptom of incorrectness (resp. insufnciency) and
aims at localizing an erroneous fragment of the program. A declarative diagnoser localizes an
error by comparing elements of the actual semantics involved in computation of the symptom at
hand with user's expectations. The diagnoser will re-explore computations of symptoms obtained
w.r.t. I, and identify errors related to such symptoms, Le., parts of the program which explain
why Sp(l) <¿ 1 (resp. I (£ Sp(l)). The erroneous fragment of the program localized in that way
depends on the nature of Sp.

Example 3.3 Consider (constraint) logic programming and its logical semantics. So I and \P\
are interpretations over some domain. In the case of incorrectness, if there exists an x s.t. x £
Sp(l) and x $ 1 then there exists a clause H 4— B of the program P which is not valid in I (for
some valuation, H is false and B is true). It can be proved that an incorrectness diagnoser finds
such a erroneous clause for any incorrectness symptom. In the program of Example 2.1, with T<¡,
as in Example 2.4, we have:

TP(12) = {sorted([})} U {sorted([X}) | X £ D} U
{sorted([X,Y\L]) | X,Yare integers, X > Y, [Y\L] is an integer list }

in which sorted([a\) is included. The clause responsible for this symptom is the second one in the
program.

In the case of incompleteness, if there exists an y s.t. y £ 1 and y $ Sp(I) then for each
clause H -(— B of P if y is a valué of H under some valuation v (an instance of H) then v(B) is
false in I. So the erroneous fragment found in this case is a set of clauses (which begin with the
same predícate symbol).

In the process of diagnosing, the actual semantics of the program |P]] is compared with the
user's expectations I. This is achieved by asking queries about elements of both \P\ and I to
an oracle. In practice the oracle is usually the programmer, although an executable specification
may also be used (we will come back to this issue later).

Three families of queries are considered: one used in incorrectness error search and two used
in incompleteness error search. A universal query asks whether a given subset Q of |P]] is correct
w.r.t. 1 (i.e. whether Q C I). In the case of CLP, where I is a set of D-atoms, Q is usually the
set of ground instances of a given constrained atom. An example universal query is:

Is sorted([X, 1]) <- X > 2 correct?

The answer is YES, assuming that 1 = {sorted(L) \ L is a sorted integer list}. Under the same
assumption, the answer to the universal query about sorted([X, 1]) •(— X > 0 is NO.

An existential query asks whether a given set Q has an element in I (i.e. whether Q Di ^ 0).
If Q is the set of ground instances of a constrained atom A i- C, then Q n 1 ^ 0 is equivalent to
satisfiability of the formula C A A in the interpretation I. Here is an example existential query
(in which the constraint C is empty):

Is sorted([X, Y]) satisfiable?

A covering query asks if a given set Q' contains all the elements of a given set Q that are in I
(so it asks whether Q f l I C Q'). It is a generalization of an existential query (when Q' = 0). An
example:

Do {sorted([2, l]),sorted([3,1])} cover all correct instances of sorted([X, 1]) i- X<4 ?

Query

Universal

Existential

Covering

Answer

yes
no
yes
no
yes
no

Definition

Qci
Q£l

Qni¿ 0
Qni= 0

(Q n i) c Q'
(Qni)g Q'

Table 3: Set theoretic formulation of problems in a declarative diagnoser

Table 3 shows for all possible pairs of query/answer used in a declarative diagnoser the corre-
sponding problem in a set theoretic setting.

4 Approximating the Intended Semantics

Using the exact intended semantics for automatic validation and diagnosis is in general not realistic,
since the exact semantics can be only partially known and it is usually too inconvenient to express
it formally. In this section we consider the debugging process in terms of approximations of the
intended semantics. Approximations of the actual program semantics will be considered in the
following sections.

An over-approximation of a valué A (a "superset" if the semantic domain consists of sets),
denoted A+, satisfies A C A+. Similarly, two other types of approximation are frequently consid­
ered, under- (or "subset") approximation, denoted A~, A~ C A, and "existential" approximation,

denoted A-, A C\A ^ 0. In what follows, a prime symbol will used to distinguish an approximation
A' from the exact valué A.

Notice that if Af and A+ are over-approximations of A then also Af n A^ is an over-
approximation of A. Moreover, it is a better approximation than either A~[or A7¡ . A similar
property holds for under-approximations w.r.t. U. However, existential approximations do not
enjoy this property.

Example 4.1 Consider the CLP program given in Example 2.1, and its specifications in Exam­
ple 2.4- We have that I\ is an under-approximation of the intended semantics I, and T-¿ is an
over-approximation of it. Therefore, I\ (resp. I2) is a specification of kind I~ (resp. 1+), and
can be used in proving properties w.r.t. I. A different thing is that while trying to prove properties
w.r.t. I\ (resp. I2) we may try to use also approximations oftheforml^ (resp. X\) orlf (resp.

We now discuss the use of approximations in program diagnosis.

4.1 Replacing the Oracle in Declarative Diagnosis

As seen in Section 3.3, in declarative diagnosis the existence of an oracle is assumed and the
user is repeatedly asked questions about the intended semantics of the program. An idea is then
to provide the system with (an approximation of) the intended semantics which can be used to
automatically answer some of the oracle queries. When no sufficient conditions for a given query
are satisfied, then the query cannot be answered automatically and the answer has to be provided
by the user.

It is very seldom the case that there exists a formal specification 1 which completely describes
the user's intention. Even less realistic is to expect that there exists such an executable specifi­
cation. However, it is feasible to have formal/executable specifications which are approximations
I+, T~ or I' of the intended semantics. Such approximate specifications for declarative debug-
ging of logic programs were introduced in [DNTM89], where four kinds of approximations were
used. In our terminology those approximations were I~, (I) ! , I' and 1+ or, equivalently, {I)~
(where S denotes the complement of set S). That paper reported on experiments performed with
a prototype implementation which was used to partially automate the answering of queries (except
covering queries). User's answers (to the queries not answered automatically) are stored as an
executable partial specification, which can then be used if the query is repeated. Actually, in some
cases it can also be used to answer other queries. Table 4 presents a series of sufficient conditions
which can be used by a declarative diagnoser to automatically answer some of the questions and
avoid asking the user.

Ñame

Universal

Existential

Property
Qci
Q£l

Qni= 0
g n i ^ 0

Sufficient condition

Qcr
Q£1+,OY

QC\1+ = 0 AQ¿0
Qf)l+ = 0

Q n r / 0 , orQcr, or ícg

Table 4: Sufficient conditions for oracle queries

Example 4.2 Assume the query {sorted([a])} C I posed during incorrectness diagnosis. An
approximation I+ containing all the atoms of the form sorted(V) where V is an integer list (such
as I2 of Example 2.4) is sufficient to obtain a negative answer.

5 Approximating the Actual Semantics
The methods of program analysis allow computing approximations of the actual semantics | P] ,
thus automating validation of programs w.r.t. a priori chosen properties.

One of the most successful techniques for approximating the actual semantics of a program
is abstract interpretation [CC77]. In this technique a program is interpreted over a non-standard
domain called abstract domain Da and the semantics w.r.t. this abstract domain, Le., the abstract
semantics of the program is computed (or approximated) by replacing the operators in the program
by their abstract counterparts.

The idea of using abstract interpretation for validation and diagnosis is not new. Its use for
debugging of imperative programs has been studied by Bourdoncle [Bou93], and for debugging of
logic programs by Comini et al. [CLMV96b]. Both approaches focus on some specific semantics
and specific programming languages. It has also been used in abstract assertion checking pro-
posed in [BCHP96]. This section outlines the use of abstract interpretation for verification and
diagnosis in a general setting of arbitrary fixpoint (set) semantics. For the time being, we assume
that specifications are written as Ia (Le., the abstract domain is used as the language to write
specifications). Thus, we discuss proving properties w.r.t. Ia, and only approximations of the
actual model are considered.

5.1 Abstract Interpretation

An abstract semantic object is a finite representation of a, possibly infinite, set of actual semantic
objects in the concrete domain (D). The set of all possible abstract semantic valúes represents an
abstract domain (Da) which is usually a complete lattice or cpo which is ascending chain finite.
However, for this study, abstract interpretation is restricted to complete lattices over sets both
for the concrete (D, C) and abstract (Da, Ca) domains. The concrete and abstract domains are
related via a pair of monotonic mappings (a,j): abstraction a : D i->- Da, and concretization
7 : Da i-» D, such that

\fx G D : j(a(x)) D x and \fy £ Da : a{^{y)) = y. (1)

Note that in general Ca is induced by C and a (in such a way that VA, A' £ Da : A Ca A' <=>
7(A) C 7(A')), and is not equal to set inclusión. In an abuse of notation, however, we will usually
write C both for the concrete and abstract domain. Similarly, the operations of least upper bound
(Ua) and greatest lower bound (flQ) mimic those of D in some precise sense. Again, in an abuse
of notation, we will use U and fl, respectively (although they are in general not equal).

By monotonicity, the mappings a and 7 (denoted / in what follows) satisfy:

xCy ^ f(x) C f(y). (2)

We will also assume in some cases the following properties for a and 7:

/ W n / W = N i n ¡ / = í and f(xny) = f(x)nf(y). (3)

The abstract domain Da is usually constructed with the objective of computing approximations
of the semantics of a given program. Thus, all operations in the abstract domain also have to
abstract their concrete counterparts. In particular, if the semantic operator Sp can be decomposed
in lower level operations, and their abstract counterparts are locally correct w.r.t. them, then
an abstract semantic operator Sf, can be defined which is correct w.r.t. Sp. This means that
j(Sp(a(x)) is an approximation of Sp(x) in D, and consequently, ^{IfpiSp)) is an approximation
of \P\. We will denote lfp(S£) as [P]]a. The following relations hold:

VxGD: 7(S£(a(x)) D SP(x) (4)

l(lPía)2lP} equivalently [P] a D Q ([P]) . (5)

An abstract operator Sp is said to be precise, if instead it satisfies that

l(ÍPÍa) = ÍPÍ equivalently [P] Q = a(|[P]). (6)

Note that the construction presented allows obtaining over-approximations of [PJ. When (1)
holds, the construction is termed a Galois insertion. If C is used in (1) instead of D, we obtain a
dual construction, termed a reversed Galois insertion. The dual relations of (4) and (5) also hold
in this case.

In practice, the abstract domains should be sufficiently simple to allow effective computation
of semantic approximations of programs. For example, Herbrand interpretations of some alphabet
may be mapped into an abstract domain where each element represents a typing of predicates in
some type system. For a given program P the abstract operator Sp would allow then to compute
a typing of the predicates in the least Herbrand model of P.

Example 5.1 A simple example of abstract interpretation in logic programming can be constructed
as follows. The concrete semantics (least Herbrand model) of a program P is JPJ = Ifp(Tp). So
the concrete domain is D = p(Bp) (where Bp is the Herbrand base of the program).

We consider over-approximating [[PJ by the set of "succeeding predicates", i.e. those whose
predícate symbols appear in [[PJ. A possible abstraction is as follows. The abstract domain is
Da = p(Bp), where Bp is the set of predícate symbols of P. Let pred(Á) denote the predícate
symbol for an atom A. We define the abstraction function:

a : D ->• Da such that a(I) = {pred(A) \ A £ I}.

The concretization function is defined as:

7 : Da ->• D such that j(Ia) = {A e BP | pred(A) e Ia}.

For example,
a({p(a,b),p(c,d),q(a),r(a)}) = {p,q,r}

l({p, <?}) = {p(a, a),p(a, b),p(a, c) , . . . , q(a),q(b),...}.

Note that (Da,j,D,a) is a Galois insertion. The abstract semantic operator Tp : Da —>• Da is
defined as:

í p (/ a) = {pred(A) | 3(A<-Bu...,Bn) É P V Í É [l,n] : pred(Bi) £ / „ } .

Since Da is finite and Tp is monotonic, the analysis (applying Tp repeatedly until fixpoint, starting
from %) will termínate in a finite number of steps n and [P]]a = Tp j n approximates ¡PJ.

For example, for the following program P,

p{X) <r- q{X). r(X). p{X) <- r{X). s{X). t(X) <- l(X). m{X). q{a). q(b). r(a). r{c).

we have Bp = {p, q, r, s, t, l, m}, and:

T«(0) = {(7,r} T*({q,r}) = {q,r,p} T«({q,r,p}) = {q,r,p}

SoT£t2 = T£t3 = {q,r,p} = lP]a

5.2 Abstract Diagnosis

The technique of abstract diagnosis [CLMV96b, CLMV96a] is based on the use of observables
which correspond roughly to the abstraction functions a used in abstract interpretation with
some additional properties. Observables (in a similar way to semantics) allow extracting the
properties of interest from the execution of a goal, while hiding details which are not relevant.
The intended semantics with respect to the observable a is denoted Ia and is assumed to be an
exact description.

Abstract diagnosis searches for incorrectness and incompleteness errors as defined in Sec-
tion 3.2, using the sufficient conditions given in Table 2. The semantic operator Sp is replaced
by Sp, in a similar way to abstract interpretation. Unlike abstract interpretation, no fixpoint
computation is needed and Ifp(Sp) is not computed.

Two different kind of observables are considered in [CLMV96a]. Complete observables provide
stronger results but are often not practical because the specification of the intended semantics Xa

is infinite and diagnosis would not terminate. Such complete observables correspond to the precise
abstract operators of Section 5.1. The second kind of observables considered in [CLMV96a] are
called approximate observables and their corresponding operator Sp is correct but not precise (as
is usually the case in abstract interpretation).

5.3 Validation using Abstract Interpretation

Abstract diagnosis localizes suspected program constructs following the diagnosis by proof prin­
cipie. The proof attempt may succeed in which case the program satisfies the requirement I
(expressed as Xa), and abstract diagnosis works as validation.

An alternative way of validation is to compute abstract approximations [P] Q of the actual
semantics of the program |P]] and then use the definitions given in Table 1 instead of the sufficient
conditions of Table 2 (on which abstract diagnosis is based). This is reasonable if one considers that
usually program analyses are performed in any case to use the information inferred for optimizing
the code of the program.

For now, we assume that the program specification is given as a semantic valué Ia £ Da.
Comparison between actual and intended semantics of the program should be done in the same
domain. Thus, for comparison we need in principie cc([[Pj). However, using abstract interpretation,
we instead compute [P]]Q, which is an approximation of cc([[Pj), and can be compared with
Ia. We will use the notation [P]]Q,+ to represent that \P\a 2 a ([-?*]])• I-P]Q- indicates that
[P]]Q C a([[P]]). Table 5 gives sufficient conditions for correctness and completeness w.r.t. Ia

which can be used when [P] is approximated.

Property

P is partially correct w.r.t. Ia

P is complete w.r.t. Ia

P is incorrect w.r.t. Ia

P is incomplete w.r.t. Ia

Definition

a(lPl) C la

la C a(lPj)

a(lPÍ) <¿ 1*

la 1 a(lPj)

Sufficient condition

PTU c xa
Za C [Pj„_

[P j a _ £ la, or
lP}a+ n i a = 0 A [P] a # 0

i« 2 IPU

Table 5: Validation problems using approximations

The following conclusions can be drawn from Table 5. Analyses which use a Galois insertion
(a + , 7 +) , and thus over-approximate the actual semantics (Le., those denoted as [P] a+) are
specially suited for proving partial correctness and incompleteness with respect to the abstract
specification la. It will also be sometimes possible to prove incorrectness in the extreme case in
which the semantics inferred by the program is incompatible with the abstract specification, Le.,
when [P]]a+ n l „ = 0 . Note that it will only be possible to prove completeness if the abstraction
is precise. According to Table 5 only [P]]Q- can be used at this end, and in the case we are
discussing [P]Q+ holds. Thus, the only possibility is that the abstraction is precise.

On the other hand, if a reversed Galois insertion is used (a~,ry~), and then analysis under-
approximates the actual semantics (the case denoted [P] a -) , it will be possible to prove complete­
ness and incorrectness. Partial correctness and incompleteness can only be proved if the analysis
is precise.

Note that the results obtained for direct Galois insertions (a + , 7 +) are in essence equivalent
to the ones presented for abstract diagnosis [CLMV96a] for approximate observables. In the case

of precise abstractions, also completeness may be derivable, and this corresponds to the complete
observables of [CLMV96a].

Example 5.2 If the abstract interpretation tells that in \P\a+ the type of a predícate p with just
one argument position is intlist and the user has declared it in Ia as list, then under some natural
assumptions about ordering in the abstract domain we conclude that [-P]]Q+ C Ia, Le., the program
is corred w.r.t. the declared Ia (or more precisely w.r.t. j(Ia)). However, the program may still
be incorrect w.r.t. the precise intention I, which is not given by the declaration.

Example 5.3 Assume now that [-P]Q+ 2 Za. We cannot conclude that P is corred w.r.t. Ia.
We cannot conclude the contrary either. For example if the abstract interpretation tells that the
type of the predícate p with one argument position is list while the user declares it as intlist then
P may still be corred w.r.t. the declaration. This can be due to the loss of accuracy introduced by
the abstradion. In any case it may be desirable to localize a fragment of the program responsible
for this discrepancy. A more careful inspection would then be needed to check whether the fragment
is erroneous w.r.t. the declaration, or not.

If analysis information allow us to conclude that the program is incorrect or incomplete w.r.t.
Ia, an (abstract) symptom has been found which ensures that the program does not satisfy the
requirement. Thus, a diagnosis should be performed to lócate the program construct responsible
for the symptom. We are studying the possibility of using for that purpose the conditions in
Table 2, in a similar way as done in abstract diagnosis [CLMV96b].

6 Towards an Integrated Validation and Diagnosis Environ­
ment

In the previous sections we have addressed the problem of validation and diagnosis of a program
with respect to incomplete requirements. We have hopefully contributed to clarifying how known
verification and debugging techniques can be combined to support the process of program devel-
opment, specially in the case in which approximations are used. This final section discusses the
design of an environment integrating validation and diagnosis tools making an extensive use of
semantic approximations. The development of an environment of this kind is one of the objectives
of the DiSCiPl project. The design of the language for expressing semantic approximations is an
essential part of this task since the language is crucial for the user interface for the integration of
different tools. We discuss some possibilities regarding the design of this language, some aspects
of the debugging process, and the structure of the environment itself.

6.1 Assertion Languages

An assertion is a linguistic expression which uniquely identifies an element x of the semantic
domain D. The role of assertions is to express approximations of the program semantics, thus
we expect that an assertion includes also an indication concerning the kind of approximation it
is intended to express. The approximations we propose to allow in assertions are again those
introduced in Section 4, Le., {+, —,!} . In practice, assertions can be used to describe not only the
intended semantics but also the actual semantics of the program (an example of the latter is the
use of assertions to express the result of program analysis in [BCHP96]).

We now consider several possible choices for the language of assertions. Notice that different
kind of semantics may be used for validation and for debugging, thus the choices discussed below
are parameterized by the semantic domain used.

Note that semantic valúes in our setting are sets. Thus the assertions have to describe sets. One
can adopt for that purpose some of the standard notations. For example formulae of first-order
predicate calculus with appropriate interpretation may be used for that purpose.

When using a particular abstract domain for program analysis for abstract debugging, or for
validation, it may be more convenient to introduce a specialized language referring to the elements

of this domain. The language of types inferred by some abstract interpretation is a typical example
of this kind. An assertion of such a language corresponds to an element of the abstract domain.
The concretization function maps it to the concrete domain. An advantage of using assertions
specialized for a given abstract domain is that they facilítate interaction between the user and
the tools. For example, when working with types it can be more natural to express and compare
types inferred by the system and types declared by the user, rather than types obtained from
assertions about the program which were not expressed in terms of types. It is also possible to
consider assertions written in a different abstract domain than the one used for comparison. The
limitation when using the abstract domain(s) is that the semantic objects which can be described
are limited to those which are present as elements of the different abstract domains available in
the tools.

Another alternative is to express assertions in the (subset of) the same programming language
Le., an assertion for a program P is another program A, thus the semantic object indicated by A is
J/l]. For example, Prolog programs are used as assertions in the tool discussed in Section 4.1, and
the restricted set of regular programs [GdW94] can be used as type assertions in the CIAO system.
Assertions in the form of programs can be seen as executable specifications. Such a program may
be used to compute elements of the set specified by it. This technique is especially useful in higher
level languages such as CLP, where the result of a computation may be a finite representation
of an infinite set. An additional advantage of using programs as assertions is that the assertions
themselves can be used as run-time tests in the cases in which the desired properties cannot be
proven automatically (see Section 6.3).

Notice that assertions written in different assertion languages refer to the same semantic do­
main. Therefore it may be desirable to develop techniques of combining them for purposes of
specification.

Example 6.1 In the case of the D-model semantics a language of D-constraints including some
basic constraints and closed under conjunction and existential quantiftcation might be an appropri-
ate candidate. Checking the verification conditions would then require a constraint solver capable
of checking satisfiability and entailment. For the program of Example 2.1, a possible specification
is the following:

Ai = ({ sorted(X) : - list(X). list([]). list([-\Y]) : - list(Y). }, +).

A2 = ({ sorted([X,Y}) :-X>Y.}, -) .

which are obviously valid assertions describing over- and under-approximations of the user's in-
tention, respectively.

6.2 Some Pract ical Aspects of the Debugging Process

An important aspect of debugging is that in practice the process of program construction is often
iterative, and the iterations update incrementally not only the program but also the requirements.
This is related to the observation that user's expectations concerning a program are rarely fully
described. At each stage of development we have a (possibly empty) subset approximation 1~
of the intended semantics and a (possibly empty) superset approximation 1+3 which together
represent the specification. The program in hand should be complete w.r.t. 1~ and partially
correct w.r.t. I . In the previous sections we mentioned some well-known proof methods used for
checking that.

If the proof fails, the failure points to some fragments of the program, which may possibly
be erroneous. The failure may be due to: (1) an error in the program causing violation of the
specification at hand, (2) the specification is too weak, or (3) incompleteness of the prover. Note
that if an error exists then it can only be due to the fragments identified. The user should inspect
them in order to identify the reason of failure. If the user identifies that the reason is an error

3 The other kinds of approximations may also be present but, for simplicity, we will consider these two in this
discussion.

then the program has to be corrected. If, on the other hand, the user does not identify an error
then alternatively it may be possible to strengthen the specification in such a way that a proof
can be achieved.

If the proof succeeds we may: (1) stop the development process, or (2) update the specification.
In particular, the latter is needed if the behavior of the program w.r.t. the first specification is not
acceptable and the user wants to clarify why.

Note that even if the proof succeeds some bugs may still be hidden in the program, as specifi-
cations are partial. For example, if the techniques presented in Section 5 are used, some bugs may
not be captured by the abstract semantics. Thus, if during testing or execution of the program
some unexpected behaviour is found, diagnosis should start for it. The well-known technique of
declarative diagnosis is then applicable, which, as we have seen, can also rely on approximations
of the intended semantics.

6.3 Which tools are needed

We believe that an integrated environment incorporating the techniques described so far (as well
as other techniques, such as procedural debugging and visualization, which are beyond the scope
of this paper) can be of great help in speeding up the code development process. In this section
we propose some tools to be included in the environment. The intention is to detect bugs as
early as possible, Le., during compilation or even editing. This can only be achieved by (semi-)
automatic analysis of the (not necessarily completely developed) program in the presence of some
(approximate) specifications. An example of such techniques is type checking, which proved to be
useful for that purpose. Our approach puts a framework for working with properties that may be
more general than classical type systems.

The common integrating concept for the tools proposed is the notion of semantic approximation
which is involved in

• describing user's intentions,

• program analysis,

• comparing the results of program analysis with the user's intentions,

• verification,

• debugging.

The fundamental technique mentioned in this context is that of abstract interpretation which
allows for automatic synthesis of semantic approximations, for abstract verification and for abstract
debugging.

To support the above mentioned activities we may need the following tools:

• A program analyzer: it takes the program and the selected abstract domain(s) and generates
an approximation of the actual semantics of the program. In the case of CLP programs
standard analysis techniques can be used for this purpose.

• An assertion translator: if the language for assertions is the underlying programming lan-
guage or an abstract domain different from that used internally by the tool, this translator
is in charge of transforming the intended semantics into the abstract domain to be used by
the analyzer. An intelligent translation scheme would be able to select the best among a set
of abstract domains depending on the requirements expressed by the user in the intended
model.

• A comparator: it would compare the user requirements and the information generated by
the analysis. It can produce three different results:

— The requirement is verified.

— The requirement does not hold. An abstract symptom has been found and diagnosis
should start.

- None of the above. We cannot prove that the requirement holds ñor that it does not
hold. Run-time tests could be introduced which would make sure that the requirements
hold. Clearly, this introduces an important overhead and could be turned on only during
program testing.

• A diagnoser based on abstraction: the diagnoser tries to localize the program construct
responsible for the abstract symptom. It would use algorithms based on the sufficient con-
ditions of Table 2. Thus it will lócate possible error sources.

• A declarative (concrete) diagnoser: it would be used once all abstract symptoms have been
diagnosed and eliminated from the program in order to underpin all subsequent bugs in the
program which appear during program testing and execution. As in Section 4.1, the program
would store approximations of the intended semantics to avoid asking the user whenever the
question can be solved using such approximations.

Partial prototypes of the component tools are mentioned above are currently being developed.
For example, an assertion language, translator, analyzer, and comparator has been incorporated
in the CIAO system which works on the domains of moded types, definiteness, freeness, and
grounding dependencies for CLP programs.

References

[AM94] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through
types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

[AP93] K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG pro­
grams. Information and Computation, 1(106):109-157, 1993.

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard
Prolog Programs. In European Symposium on Programming, number 1058 in LNCS,
pages 108-124, Sweden, April 1996. Springer-Verlag.

[Bou93] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro­
gramming Languages Design and Implementation'93, pages 46-55, 1993.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principies of Programming Languages, pages 238-252, 1977.

[CLMV96a] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Submitted for
publication, 1996.

[CLMV96b] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs
by abstract diagnosis. In M. Dams, editor, Analysis and Verification of Múltiple-Agent
Languages, 5th LOMAPS Workshop, number 1192 in Lecture Notes in Computer
Science, pages 22-50. Springer-Verlag, 1996.

[Der93] P. Deransart. Proof methods of declarative properties of definite programs. Theo-
retical Computer Science, 118:99-166, 1993.

[DNTM89] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with
assertions. In (H. Abramson and M.H.Rogers, editors, Meta-programming in Logic
Programming, pages 501-522. MIT Press, 1989.

[Fer87] G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177-198,
1987.

[GdW94] J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic
programs. In Pascal Van Hentenryck, editor, Proceedings ofthe Eleventh International
Conference on Logic Programming, pages 599-613. The MIT Press, 1994.

[GHB+96] M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs. ACM
Transactions on Programming Languages and Systems, 18(5):564-615, 1996.

[HL94] P. M. Hill and J. W. Lloyd. The Gódel Programming Language. MIT Press, 1994.

[JM94] J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 13/20:503-581, 1994.

[Sha82] E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1982.

