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1 Introduction 

This paper presents some on-going work in the ESPRIT project DiSCiPl. The project aims at 
devising advanced tools for debugging of constraint logic programs. 

A central problem in program development is obtaining a program which satisfies the user's 
expectations. When considering a given program, a natural question is then whether or not it 
fulfils expectations of some kind (requirements). To be able to formúlate this question, some 
formal or informal way of specifying such requirements is needed. That is, a (formal or informal) 
program semantics is needed, in which one can express what the program computes and what it 
is required to compute. 

It may then be possible either to verify that the program satisfies the requirement for every 
computation (in the considered class), or to show a specific computation where the requirement 
is violated. The process of identifying the part of the program responsible for the violation is 
referred to as diagnosis. The program then needs to be modified to correct the error. Since 
the requirement documentation is often not complete, the user's requirements are often given as 
approximations, Le., safe specifications of (parts of) the intended semantics of the program. The 
process of debugging consists of the study of the program semantics, observation of error symptoms, 
localization of program "errors" and their correction until no symptom can be observed anymore 
and the program is considered correct. 

Semantic approximations have been used in program validation, in declarative diagnosis, and 
in program analysis. This paper gives a common view of these techniques from the perspective of 
debugging. The objective is to explore possible uses of approximations for debugging purposes. 
The presentation is organized as follows. First, some notions on program semantics are given, 
mainly by means of examples. Then, validation, diagnosis by proofs, and declarative diagnosis are 
described in terms of set-theoretic relations. Next, the effect of using approximations rather than 
the exact sets is studied. Finally, such relations on set approximations are reformulated for the 
special case of abstract interpretation. 
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We keep the basic discussion quite general, in that we impose only some minor restrictions on 
the way the different semantics are formalized. We illustrate the general discussion by very simple 
examples referring to Constraint Logic Programming (CLP) [JM94]. 

2 Actual and Intended Semantics 

Semantics associate a meaning to a given syntax (generally of a program). A particular semantics 
captures some features of the computations of a program (sometimes called the "observables") 
while hiding others. Different kinds of semantics can be used depending of the features to be 
described. 

In this paper we restrict ourselves to the important class of semantics referred to as fixpoint 
semantics. In this approach a (monotonic) semantic operator (which we refer to as Sp) is associ-
ated with each program P . This Sp function operates on a semantic domain which is generally 
assumed to be a complete lattice or, more generally, a chain complete partial order. The meaning 
of the program (which we refer to as [P]) is defined as the least fixpoint of the Sp operator, Le., 
[PJ =lfp(Sp). A well-known result is that if Sp is continuous, the least fixpoint is the limit of an 
iterative process involving at most ui applications of Sp and starting from the bottom element of 
the lattice. 

Example 2.1 An example of a set-based, fixpoint semantics for (constraint) logic programs is the 
traditional least model semantics [JM94]- The semantic ohjects in this case are so called D-atoms. 
A D-atom is an expression p(d\,... ,dn) where p is an n-ary predícate symbol, d\,... ,dn £ D and 
D is the domain of valúes. For example, in classical logic programming D is the Herbrand universe; 
for CLP(R) D is the set of real numbers and of terms (for example lists) containing real numbers1. 
The semantic domain is the lattice of sets of D-atoms. 

The semantic operator for program P is Tp (the immediate consequence operator) and [P] = 
lfp(Tp) = U Í ^ O ^ P W - An important property is that [P] is the least D-model of the program. 
Any ground instance2 of a computed answer (for an atomic query) is a member of [PJ. 

For example, given the following CLP program, over the domain of integers: 

sorted(X) <- X = []. 
sorted(X) <- X = [Y]. 
sorted(X) <- X = [HÍ\TÍ],T1 = [H2\T2],H1 > H2,sorted(Tl). 

we have that [P] = { sorted([}) } U { sorted([X}) | X £ D } U { soríed([Xi,.. .,Xn]) | n > 2, Xx > 
• • • > Xn }. So for instance | P ] contains sorted([7]), sorted([a\), sorted([[]]), sorted([2,1,0]) and 
does not contain sorted([0,2]), sorted([2,l,a\). 

Example 2.2 Another example of a fixpoint semantics is the traditional "call-answer operational 
semantics" for CLP programs (see, e.g., [GHB+ 96]). The semantic objects in this case are pairs of 
constrained atoras. The program is assumed to contain a query or "entry point". JPJ contains all 
the call-answer pairs that appear during program execution for the given query or entry point. For 
example, given the CLP program above and the query "<— X = [l,Y],sorted(X)", and, assuming 
standard left-to-right, depth-first control, we have JPJ = {(sorted(X) •(— X = [1, Y], sorted(X) •(— 
X = [1, Y] A Y < 1), (sorted(X) <- X = [Y], sorted(X) <- X = [Y])}. 

Both program validation and diagnosis, to be discussed more precisely later, compare the ac­
tual semantics of the program, Le., JPJ, with an intended semantics for the same program. This 
intended semantics embodies the user's requirements, Le., it is an expression of the user's ex-
pectations. The nature of the requirements considered in validation and diagnosis is very wide. 
For example, one can discuss declarative diagnosis/validation (when the requirements concern the 

1Usually it is assumed that D is given together with a flxed interpretation of the symbols that can occur in 
constraints. For instance for CLP(R), + is interpreted as addition and > as the "greater than" relation on reals. 

2In CLP, by a ground instance of a constrained atom i < - c w e mean any D-atorn A6 such that c8 is true; here 
A is an atom, c a constraint and 8 is a valuation assigning elements of D to variables. 



relation specified by the program), diagnosis/validation of dynamic properties (when the require-
ments concern properties of the execution states), performance diagnosis/validation (when the 
requirements concern the efficiency of execution), etc. Thus, different kinds of user's expectations 
require different kinds of semantics in order to be able both to adequately express the requirements 
and to extract relevant meaning from the program to compare with the requirements. 

Example 2.3 In CLP, requirements regarding characteristics of the computed answers of a pro­
gram can in general be expressed and checked using the least D-model semantics of Example 2.1, 
whereas if the requirements also refer to characteristics of the calis that occur during execution 
then the operational semantics of Example 2.2 (using sets of pairs of constrained atoms) would 
need to be used. 

We focus here on the common case in which the actual semantics [PJ of a program is a set 
(and the semantic domain is the lattice of sets ordered by set inclusión). A natural question is thus 
how the user's intention can be represented. For the time being, let us assume that 1 belongs to 
the same semantic domain used for [[P]. The semantic object 1 can be seen as the corresponding 
semantics of an intended program. But this program does not exist (neither as program, ñor in 
mind) in general. Thus, usually there is no expression of I , but rather partial descriptions of it. 

Example 2.4 / / the program of Example 2.1 is intended to compute all integer lists that are 
sorted, the programmer may approximate this intention with: 

I\ = {sorted([X]) \ X is an integer] 

I2 = {sorted(L) \ L is an integer list] 

Obviously, I\ represents a subset of the programmer's intention, since it represents only sorted 
integer lists of length one. Similarly, I2 represents a superset of the programmer's intention; it 
does not require that the lists are sorted. 

3 Validation and Diagnosis in a Set Theoretic Framework 

This section summarizes well-known notions related to program validation (see, e.g., [Der93]), di­
agnosis by proof, and declarative diagnosis [Sha82, Fer87]. The problems found in these disciplines 
are summarized and discussed in a set theoretic framework for clarity. They can also be formulated 
in a lattice theoretic setting, but the set theoretic presentation simplifies the discussion. 

3.1 Validation 

Validation aims at proving certain properties of a program which are formally defined as relation-
ships between a specification 1 and the actual program semantics [PJ. Table 1 lists validation 
problems in a set theoretic formulation. 

Property 

P is partially correct w.r.t. I 
P is complete w.r.t. I 
P is incorrect w.r.t. I 
P is incomplete w.r.t. I 

Definition 
M C I 

i c [Pfl 
IP]£I 

1 g [ P ] 

Table 1: Set theoretic formulation of validation problems 

Note that we do not assume that I is unique. We simply denote specifications as I, but it can 
very well be the case that different specifications are given for verifying different properties. In 
particular, when dealing with partial correctness, I describes a property which should be satisfied 



by all elements of the semantics [PJ. In other words, X corresponds to expected properties of 
all results or all behaviours of the program (depending of the kind of semantics). When dealing 
with completeness X characterizes a set of elements which should be in the semantics \P\, i.e., X 
describes some expected results or behaviours of P. Proving incorrectness and incompleteness is 
also of interest, as it indicates that the program does not satisfy the specifications and diagnosis 
of incorrectness or incompleteness should be performed. 

3.2 Diagnosis by Proof 

The existing proof methods for correctness and completeness are usually based on some kind 
of induction. Table 2 presents well-known sufficient conditions which can be used for program 
verification and diagnosis. 

Property 
X inductive for P 
X co-inductive for P 
X not inductive for P 
X not co-inductive for P 

Definition 
SP(X) C X 

X C SP(X) 
SP(X) - X ¿0 
X - SP(X) ¿ 0 

Implies 
P partially correct w.r.t. X 

P complete* w.r.t. X 

Table 2: Set theoretic formulation of diagnosis by proof problems 

In the table (*) stands for an additional requirement. A sufficient condition for completeness 
of P w.r.t. I, requires not only co-inductiveness of I for P but also that Sp has a unique fixpoint. 
This last condition holds for a large class of programs (e.g., the acceptable programs in [AP93]). 

Failures in proving the conditions may possibly indicate that the program has an error. An 
incorrectness error is a part of the program that is the reason for Sp (X) —X^0. An incompleteness 
error is a part of the program that is the reason for X — Sp(X) ^ 0 . The operator Sp in any kind 
of semantics is defined in terms of the constructs of the program P. Thus, it makes it possible to 
define precisely what is meant by the informal statement "is the reason". For CLP programs, an 
incorrectness error is a program clause and an incompleteness error is a program procedure (a set 
of the clauses defining a certain predicate symbol). 

If the program is incorrect or incomplete, then it includes a corresponding error. One can 
try to make a proof that X is inductive (or co-inductive) w.r.t. the program. For an incorrect or 
incomplete program some constructs will be identified where the corresponding conditions cannot 
be proved. These constructs are possible error locations. As the conditions presented in Table 2 
are not necessary, a fragment of the program localized as erroneous may or may not correspond 
to a bug in the program. 

Example 3.1 We show two examples for which a proof of partial correctness is impossible. In both 
cases the specification is not inductive for the program. In the first case the program is incorrect 
w.r.t. the specification. In the second, the program is correct but a correctness error is detected 
because of a too weak specification. The operator Sp is the immediate consequence operator Tp 
for logic programs. 

Consider the program P from Example 2.1 and the specification X^ from Example 2.4 (so the 
arguments of sorted are required to be integer lists). An attempted correctness proof fails, X^ is 
not inductive w.r.t. P. The reason is the clause sorted(X) -(— X = [Y], as sorted([a\) £ Sp(l2) 
and sorted([a\) ^X^. This clause is also the reason that the program is not partially correct w.r.t. 
X2. 

Consider the following CLP program Q, over the domain of integers. It is basically the program 
from Example 2.1 in which the new predicate order/2 has been added and the second clause has 
been corrected. 



sorted(X) <- X = []. 
sorted(X) <- X = [Y],Y > Z. 
sorted(X) ^ X = [H1\T1],T1 = [H2\T2],order(Hl,H2),sorted(Tl). 
order(X, Y) <r- X > Y. 

Assume that a partial speciftcation requires the argument of sorted/1 to be a list of integers. 
Nothing is required about predícate order/2. This means that, in our set-theoretical setting, I 
contains all the D-atoms of the forra order(X, Y) (X, Y £ D) and all the atoras of the forra 
sorted(L), where L is a list of integers. Notice that Q is correct w.r.t. I. However, 1 is not 
inductive w.r.t. Q (as SQ{I) contains for instance sorted([a, 1])). The third clause is the reason. 
Strengthening the speciftcation for order/2 is necessary to obtain a correctness proof. We add a 
requireraent that both arguments of order/2 are integers and obtain I', which is inductive w.r.t. 
Q. 

Note that the situation of weak correctness requirements presented above is equivalent to 
having an incomplete but correct program which presents a correctness error using conditions of 
Table 2 (or vice versa). However, the experience with type checking of logic programs (see, e.g., 
[AM94, HL94] ) shows that failure in proving local validation conditions for a clause is often a 
good indication that the clause is erroneous. 

3.3 Declarative Diagnosis 

In contrast to diagnosis by proof, the declarative diagnosis concerns the case when a particular 
(test) computation does not satisfy a requirement. 

We learn that a program P is incorrect (Le., not partially correct w.r.t. I) when we find out 
that it produces a result x such that x (£ I. Such a result x is called an incorrectness symptom. 
Similarly, a program P is incomplete when it does not produce some expected result, in other 
words when there exists some x C I such that x <¿ [[PJ. Such x is called an incorapleteness 
symptom. 

Example 3.2 In the program of Example 2.1 with the specifications of Example 2.4, note that 
sorted([a\) £ | P ] but sorted([a\) £* X^. Therefore, such an atora is an incorrectness symptom 
w.r.t. X'2- If in that program the second clause was missing then sorted([í\) £ I\ would be an 
incorapleteness symptom w.r.t. I\, since, without that clause, sorted([l]) £" ¡PJ. 

Briefly, declarative diagnosis starts with a symptom of incorrectness (resp. insufnciency) and 
aims at localizing an erroneous fragment of the program. A declarative diagnoser localizes an 
error by comparing elements of the actual semantics involved in computation of the symptom at 
hand with user's expectations. The diagnoser will re-explore computations of symptoms obtained 
w.r.t. I, and identify errors related to such symptoms, Le., parts of the program which explain 
why Sp(l) <¿ 1 (resp. I (£ Sp(l)). The erroneous fragment of the program localized in that way 
depends on the nature of Sp. 

Example 3.3 Consider (constraint) logic programming and its logical semantics. So I and \P\ 
are interpretations over some domain. In the case of incorrectness, if there exists an x s.t. x £ 
Sp(l) and x $ 1 then there exists a clause H 4— B of the program P which is not valid in I (for 
some valuation, H is false and B is true). It can be proved that an incorrectness diagnoser finds 
such a erroneous clause for any incorrectness symptom. In the program of Example 2.1, with T<¡, 
as in Example 2.4, we have: 

TP(12) = {sorted([})} U {sorted([X}) | X £ D} U 
{sorted([X,Y\L]) | X,Yare integers, X > Y, [Y\L] is an integer list } 

in which sorted([a\) is included. The clause responsible for this symptom is the second one in the 
program. 



In the case of incompleteness, if there exists an y s.t. y £ 1 and y $ Sp(I) then for each 
clause H -(— B of P if y is a valué of H under some valuation v (an instance of H) then v(B) is 
false in I. So the erroneous fragment found in this case is a set of clauses (which begin with the 
same predícate symbol). 

In the process of diagnosing, the actual semantics of the program |P]] is compared with the 
user's expectations I. This is achieved by asking queries about elements of both \P\ and I to 
an oracle. In practice the oracle is usually the programmer, although an executable specification 
may also be used (we will come back to this issue later). 

Three families of queries are considered: one used in incorrectness error search and two used 
in incompleteness error search. A universal query asks whether a given subset Q of |P]] is correct 
w.r.t. 1 (i.e. whether Q C I). In the case of CLP, where I is a set of D-atoms, Q is usually the 
set of ground instances of a given constrained atom. An example universal query is: 

Is sorted([X, 1]) <- X > 2 correct? 

The answer is YES, assuming that 1 = {sorted(L) \ L is a sorted integer list}. Under the same 
assumption, the answer to the universal query about sorted([X, 1]) •(— X > 0 is NO. 

An existential query asks whether a given set Q has an element in I (i.e. whether Q Di ^ 0). 
If Q is the set of ground instances of a constrained atom A i- C, then Q n 1 ^ 0 is equivalent to 
satisfiability of the formula C A A in the interpretation I. Here is an example existential query 
(in which the constraint C is empty): 

Is sorted([X, Y]) satisfiable? 

A covering query asks if a given set Q' contains all the elements of a given set Q that are in I 
(so it asks whether Q f l I C Q'). It is a generalization of an existential query (when Q' = 0). An 
example: 

Do {sorted([2, l]),sorted([3,1])} cover all correct instances of sorted([X, 1]) i- X<4 ? 

Query 

Universal 

Existential 

Covering 

Answer 

yes 
no 
yes 
no 
yes 
no 

Definition 

Qci 
Q£l 

Qni¿ 0 
Qni= 0 

( Q n i ) c Q' 
(Qni)g Q' 

Table 3: Set theoretic formulation of problems in a declarative diagnoser 

Table 3 shows for all possible pairs of query/answer used in a declarative diagnoser the corre-
sponding problem in a set theoretic setting. 

4 Approximating the Intended Semantics 

Using the exact intended semantics for automatic validation and diagnosis is in general not realistic, 
since the exact semantics can be only partially known and it is usually too inconvenient to express 
it formally. In this section we consider the debugging process in terms of approximations of the 
intended semantics. Approximations of the actual program semantics will be considered in the 
following sections. 

An over-approximation of a valué A (a "superset" if the semantic domain consists of sets), 
denoted A+, satisfies A C A+. Similarly, two other types of approximation are frequently consid­
ered, under- (or "subset") approximation, denoted A~, A~ C A, and "existential" approximation, 



denoted A-, A C\A ^ 0. In what follows, a prime symbol will used to distinguish an approximation 
A' from the exact valué A. 

Notice that if Af and A+ are over-approximations of A then also Af n A^ is an over-
approximation of A. Moreover, it is a better approximation than either A~[ or A7¡ . A similar 
property holds for under-approximations w.r.t. U. However, existential approximations do not 
enjoy this property. 

Example 4.1 Consider the CLP program given in Example 2.1, and its specifications in Exam­
ple 2.4- We have that I\ is an under-approximation of the intended semantics I, and T-¿ is an 
over-approximation of it. Therefore, I\ (resp. I2) is a specification of kind I~ (resp. 1+), and 
can be used in proving properties w.r.t. I. A different thing is that while trying to prove properties 
w.r.t. I\ (resp. I2) we may try to use also approximations oftheforml^ (resp. X\) orlf (resp. 

We now discuss the use of approximations in program diagnosis. 

4.1 Replacing the Oracle in Declarative Diagnosis 

As seen in Section 3.3, in declarative diagnosis the existence of an oracle is assumed and the 
user is repeatedly asked questions about the intended semantics of the program. An idea is then 
to provide the system with (an approximation of) the intended semantics which can be used to 
automatically answer some of the oracle queries. When no sufficient conditions for a given query 
are satisfied, then the query cannot be answered automatically and the answer has to be provided 
by the user. 

It is very seldom the case that there exists a formal specification 1 which completely describes 
the user's intention. Even less realistic is to expect that there exists such an executable specifi­
cation. However, it is feasible to have formal/executable specifications which are approximations 
I+, T~ or I' of the intended semantics. Such approximate specifications for declarative debug-
ging of logic programs were introduced in [DNTM89], where four kinds of approximations were 
used. In our terminology those approximations were I~, ( I ) ! , I' and 1+ or, equivalently, {I)~ 
(where S denotes the complement of set S). That paper reported on experiments performed with 
a prototype implementation which was used to partially automate the answering of queries (except 
covering queries). User's answers (to the queries not answered automatically) are stored as an 
executable partial specification, which can then be used if the query is repeated. Actually, in some 
cases it can also be used to answer other queries. Table 4 presents a series of sufficient conditions 
which can be used by a declarative diagnoser to automatically answer some of the questions and 
avoid asking the user. 

Ñame 

Universal 

Existential 

Property 
Qci 
Q£l 

Qni= 0 
g n i ^ 0 

Sufficient condition 

Qcr 
Q£1+,OY 

QC\1+ = 0 AQ¿0 
Qf)l+ = 0 

Q n r / 0 , orQcr, or ícg 

Table 4: Sufficient conditions for oracle queries 

Example 4.2 Assume the query {sorted([a])} C I posed during incorrectness diagnosis. An 
approximation I+ containing all the atoms of the form sorted(V) where V is an integer list (such 
as I2 of Example 2.4) is sufficient to obtain a negative answer. 



5 Approximating the Actual Semantics 
The methods of program analysis allow computing approximations of the actual semantics | P ] , 
thus automating validation of programs w.r.t. a priori chosen properties. 

One of the most successful techniques for approximating the actual semantics of a program 
is abstract interpretation [CC77]. In this technique a program is interpreted over a non-standard 
domain called abstract domain Da and the semantics w.r.t. this abstract domain, Le., the abstract 
semantics of the program is computed (or approximated) by replacing the operators in the program 
by their abstract counterparts. 

The idea of using abstract interpretation for validation and diagnosis is not new. Its use for 
debugging of imperative programs has been studied by Bourdoncle [Bou93], and for debugging of 
logic programs by Comini et al. [CLMV96b]. Both approaches focus on some specific semantics 
and specific programming languages. It has also been used in abstract assertion checking pro-
posed in [BCHP96]. This section outlines the use of abstract interpretation for verification and 
diagnosis in a general setting of arbitrary fixpoint (set) semantics. For the time being, we assume 
that specifications are written as Ia (Le., the abstract domain is used as the language to write 
specifications). Thus, we discuss proving properties w.r.t. Ia, and only approximations of the 
actual model are considered. 

5.1 Abstract Interpretation 

An abstract semantic object is a finite representation of a, possibly infinite, set of actual semantic 
objects in the concrete domain (D). The set of all possible abstract semantic valúes represents an 
abstract domain (Da) which is usually a complete lattice or cpo which is ascending chain finite. 
However, for this study, abstract interpretation is restricted to complete lattices over sets both 
for the concrete (D, C) and abstract (Da, Ca) domains. The concrete and abstract domains are 
related via a pair of monotonic mappings (a,j): abstraction a : D i->- Da, and concretization 
7 : Da i-» D, such that 

\fx G D : j(a(x)) D x and \fy £ Da : a{^{y)) = y. (1) 

Note that in general Ca is induced by C and a (in such a way that VA, A' £ Da : A Ca A' <=> 
7(A) C 7(A')), and is not equal to set inclusión. In an abuse of notation, however, we will usually 
write C both for the concrete and abstract domain. Similarly, the operations of least upper bound 
(Ua) and greatest lower bound (flQ) mimic those of D in some precise sense. Again, in an abuse 
of notation, we will use U and fl, respectively (although they are in general not equal). 

By monotonicity, the mappings a and 7 (denoted / in what follows) satisfy: 

xCy ^ f(x) C f(y). (2) 

We will also assume in some cases the following properties for a and 7: 

/ W n / W = N i n ¡ / = í and f(xny) = f(x)nf(y). (3) 

The abstract domain Da is usually constructed with the objective of computing approximations 
of the semantics of a given program. Thus, all operations in the abstract domain also have to 
abstract their concrete counterparts. In particular, if the semantic operator Sp can be decomposed 
in lower level operations, and their abstract counterparts are locally correct w.r.t. them, then 
an abstract semantic operator Sf, can be defined which is correct w.r.t. Sp. This means that 
j(Sp(a(x)) is an approximation of Sp(x) in D, and consequently, ^{IfpiSp)) is an approximation 
of \P\. We will denote lfp(S£) as [P]]a. The following relations hold: 

VxGD: 7(S£(a(x)) D SP(x) (4) 

l(lPía)2lP} equivalently [ P ] a D Q ( [ P ] ) . (5) 



An abstract operator Sp is said to be precise, if instead it satisfies that 

l(ÍPÍa) = ÍPÍ equivalently [P ] Q = a(|[P]). (6) 

Note that the construction presented allows obtaining over-approximations of [PJ. When (1) 
holds, the construction is termed a Galois insertion. If C is used in (1) instead of D, we obtain a 
dual construction, termed a reversed Galois insertion. The dual relations of (4) and (5) also hold 
in this case. 

In practice, the abstract domains should be sufficiently simple to allow effective computation 
of semantic approximations of programs. For example, Herbrand interpretations of some alphabet 
may be mapped into an abstract domain where each element represents a typing of predicates in 
some type system. For a given program P the abstract operator Sp would allow then to compute 
a typing of the predicates in the least Herbrand model of P. 

Example 5.1 A simple example of abstract interpretation in logic programming can be constructed 
as follows. The concrete semantics (least Herbrand model) of a program P is JPJ = Ifp(Tp). So 
the concrete domain is D = p(Bp) (where Bp is the Herbrand base of the program). 

We consider over-approximating [[PJ by the set of "succeeding predicates", i.e. those whose 
predícate symbols appear in [[PJ. A possible abstraction is as follows. The abstract domain is 
Da = p(Bp), where Bp is the set of predícate symbols of P. Let pred(Á) denote the predícate 
symbol for an atom A. We define the abstraction function: 

a : D ->• Da such that a(I) = {pred(A) \ A £ I}. 

The concretization function is defined as: 

7 : Da ->• D such that j(Ia) = {A e BP | pred(A) e Ia}. 

For example, 
a({p(a,b),p(c,d),q(a),r(a)}) = {p,q,r} 

l({p, <?}) = {p(a, a),p(a, b),p(a, c ) , . . . , q(a),q(b),...}. 

Note that (Da,j,D,a) is a Galois insertion. The abstract semantic operator Tp : Da —>• Da is 
defined as: 

í p ( / a ) = {pred(A) | 3(A<-Bu...,Bn) É P V Í É [l,n] : pred(Bi) £ / „ } . 

Since Da is finite and Tp is monotonic, the analysis (applying Tp repeatedly until fixpoint, starting 
from %) will termínate in a finite number of steps n and [P]]a = Tp j n approximates ¡PJ. 

For example, for the following program P, 

p{X) <r- q{X). r(X). p{X) <- r{X). s{X). t(X) <- l(X). m{X). q{a). q(b). r(a). r{c). 

we have Bp = {p, q, r, s, t, l, m}, and: 

T«(0) = {(7,r} T*({q,r}) = {q,r,p} T«({q,r,p}) = {q,r,p} 

SoT£t2 = T£t3 = {q,r,p} = lP]a 

5.2 Abstract Diagnosis 

The technique of abstract diagnosis [CLMV96b, CLMV96a] is based on the use of observables 
which correspond roughly to the abstraction functions a used in abstract interpretation with 
some additional properties. Observables (in a similar way to semantics) allow extracting the 
properties of interest from the execution of a goal, while hiding details which are not relevant. 
The intended semantics with respect to the observable a is denoted Ia and is assumed to be an 
exact description. 



Abstract diagnosis searches for incorrectness and incompleteness errors as defined in Sec-
tion 3.2, using the sufficient conditions given in Table 2. The semantic operator Sp is replaced 
by Sp, in a similar way to abstract interpretation. Unlike abstract interpretation, no fixpoint 
computation is needed and Ifp(Sp) is not computed. 

Two different kind of observables are considered in [CLMV96a]. Complete observables provide 
stronger results but are often not practical because the specification of the intended semantics Xa 

is infinite and diagnosis would not terminate. Such complete observables correspond to the precise 
abstract operators of Section 5.1. The second kind of observables considered in [CLMV96a] are 
called approximate observables and their corresponding operator Sp is correct but not precise (as 
is usually the case in abstract interpretation). 

5.3 Validation using Abstract Interpretation 

Abstract diagnosis localizes suspected program constructs following the diagnosis by proof prin­
cipie. The proof attempt may succeed in which case the program satisfies the requirement I 
(expressed as Xa), and abstract diagnosis works as validation. 

An alternative way of validation is to compute abstract approximations [P] Q of the actual 
semantics of the program |P]] and then use the definitions given in Table 1 instead of the sufficient 
conditions of Table 2 (on which abstract diagnosis is based). This is reasonable if one considers that 
usually program analyses are performed in any case to use the information inferred for optimizing 
the code of the program. 

For now, we assume that the program specification is given as a semantic valué Ia £ Da. 
Comparison between actual and intended semantics of the program should be done in the same 
domain. Thus, for comparison we need in principie cc([[Pj). However, using abstract interpretation, 
we instead compute [P]]Q, which is an approximation of cc([[Pj), and can be compared with 
Ia. We will use the notation [P]]Q,+ to represent that \P\a 2 a ([-?*]])• I-P]Q- indicates that 
[P]]Q C a([[P]]). Table 5 gives sufficient conditions for correctness and completeness w.r.t. Ia 

which can be used when [P] is approximated. 

Property 

P is partially correct w.r.t. Ia 

P is complete w.r.t. Ia 

P is incorrect w.r.t. Ia 

P is incomplete w.r.t. Ia 

Definition 

a(lPl) C la 

la C a(lPj) 

a(lPÍ) <¿ 1* 

la 1 a(lPj) 

Sufficient condition 

PTU c xa 
Za C [Pj„_ 

[ P j a _ £ la, or 
lP}a+ n i a = 0 A [ P ] a # 0 

i« 2 IPU 

Table 5: Validation problems using approximations 

The following conclusions can be drawn from Table 5. Analyses which use a Galois insertion 
( a + , 7 + ) , and thus over-approximate the actual semantics (Le., those denoted as [P] a+) are 
specially suited for proving partial correctness and incompleteness with respect to the abstract 
specification la. It will also be sometimes possible to prove incorrectness in the extreme case in 
which the semantics inferred by the program is incompatible with the abstract specification, Le., 
when [P]]a+ n l „ = 0 . Note that it will only be possible to prove completeness if the abstraction 
is precise. According to Table 5 only [P]]Q- can be used at this end, and in the case we are 
discussing [P]Q+ holds. Thus, the only possibility is that the abstraction is precise. 

On the other hand, if a reversed Galois insertion is used (a~,ry~), and then analysis under-
approximates the actual semantics (the case denoted [ P ] a - ) , it will be possible to prove complete­
ness and incorrectness. Partial correctness and incompleteness can only be proved if the analysis 
is precise. 

Note that the results obtained for direct Galois insertions ( a + , 7 + ) are in essence equivalent 
to the ones presented for abstract diagnosis [CLMV96a] for approximate observables. In the case 



of precise abstractions, also completeness may be derivable, and this corresponds to the complete 
observables of [CLMV96a]. 

Example 5.2 If the abstract interpretation tells that in \P\a+ the type of a predícate p with just 
one argument position is intlist and the user has declared it in Ia as list, then under some natural 
assumptions about ordering in the abstract domain we conclude that [-P]]Q+ C Ia, Le., the program 
is corred w.r.t. the declared Ia (or more precisely w.r.t. j(Ia)). However, the program may still 
be incorrect w.r.t. the precise intention I, which is not given by the declaration. 

Example 5.3 Assume now that [-P]Q+ 2 Za. We cannot conclude that P is corred w.r.t. Ia. 
We cannot conclude the contrary either. For example if the abstract interpretation tells that the 
type of the predícate p with one argument position is list while the user declares it as intlist then 
P may still be corred w.r.t. the declaration. This can be due to the loss of accuracy introduced by 
the abstradion. In any case it may be desirable to localize a fragment of the program responsible 
for this discrepancy. A more careful inspection would then be needed to check whether the fragment 
is erroneous w.r.t. the declaration, or not. 

If analysis information allow us to conclude that the program is incorrect or incomplete w.r.t. 
Ia, an (abstract) symptom has been found which ensures that the program does not satisfy the 
requirement. Thus, a diagnosis should be performed to lócate the program construct responsible 
for the symptom. We are studying the possibility of using for that purpose the conditions in 
Table 2, in a similar way as done in abstract diagnosis [CLMV96b]. 

6 Towards an Integrated Validation and Diagnosis Environ­
ment 

In the previous sections we have addressed the problem of validation and diagnosis of a program 
with respect to incomplete requirements. We have hopefully contributed to clarifying how known 
verification and debugging techniques can be combined to support the process of program devel-
opment, specially in the case in which approximations are used. This final section discusses the 
design of an environment integrating validation and diagnosis tools making an extensive use of 
semantic approximations. The development of an environment of this kind is one of the objectives 
of the DiSCiPl project. The design of the language for expressing semantic approximations is an 
essential part of this task since the language is crucial for the user interface for the integration of 
different tools. We discuss some possibilities regarding the design of this language, some aspects 
of the debugging process, and the structure of the environment itself. 

6.1 Assertion Languages 

An assertion is a linguistic expression which uniquely identifies an element x of the semantic 
domain D. The role of assertions is to express approximations of the program semantics, thus 
we expect that an assertion includes also an indication concerning the kind of approximation it 
is intended to express. The approximations we propose to allow in assertions are again those 
introduced in Section 4, Le., {+, —,!} . In practice, assertions can be used to describe not only the 
intended semantics but also the actual semantics of the program (an example of the latter is the 
use of assertions to express the result of program analysis in [BCHP96]). 

We now consider several possible choices for the language of assertions. Notice that different 
kind of semantics may be used for validation and for debugging, thus the choices discussed below 
are parameterized by the semantic domain used. 

Note that semantic valúes in our setting are sets. Thus the assertions have to describe sets. One 
can adopt for that purpose some of the standard notations. For example formulae of first-order 
predicate calculus with appropriate interpretation may be used for that purpose. 

When using a particular abstract domain for program analysis for abstract debugging, or for 
validation, it may be more convenient to introduce a specialized language referring to the elements 



of this domain. The language of types inferred by some abstract interpretation is a typical example 
of this kind. An assertion of such a language corresponds to an element of the abstract domain. 
The concretization function maps it to the concrete domain. An advantage of using assertions 
specialized for a given abstract domain is that they facilítate interaction between the user and 
the tools. For example, when working with types it can be more natural to express and compare 
types inferred by the system and types declared by the user, rather than types obtained from 
assertions about the program which were not expressed in terms of types. It is also possible to 
consider assertions written in a different abstract domain than the one used for comparison. The 
limitation when using the abstract domain(s) is that the semantic objects which can be described 
are limited to those which are present as elements of the different abstract domains available in 
the tools. 

Another alternative is to express assertions in the (subset of) the same programming language 
Le., an assertion for a program P is another program A, thus the semantic object indicated by A is 
J/l]. For example, Prolog programs are used as assertions in the tool discussed in Section 4.1, and 
the restricted set of regular programs [GdW94] can be used as type assertions in the CIAO system. 
Assertions in the form of programs can be seen as executable specifications. Such a program may 
be used to compute elements of the set specified by it. This technique is especially useful in higher 
level languages such as CLP, where the result of a computation may be a finite representation 
of an infinite set. An additional advantage of using programs as assertions is that the assertions 
themselves can be used as run-time tests in the cases in which the desired properties cannot be 
proven automatically (see Section 6.3). 

Notice that assertions written in different assertion languages refer to the same semantic do­
main. Therefore it may be desirable to develop techniques of combining them for purposes of 
specification. 

Example 6.1 In the case of the D-model semantics a language of D-constraints including some 
basic constraints and closed under conjunction and existential quantiftcation might be an appropri-
ate candidate. Checking the verification conditions would then require a constraint solver capable 
of checking satisfiability and entailment. For the program of Example 2.1, a possible specification 
is the following: 

Ai = ( { sorted(X) : - list(X). list([]). list([-\Y]) : - list(Y). }, +). 

A2 = ( { sorted([X,Y}) :-X>Y.}, - ) . 

which are obviously valid assertions describing over- and under-approximations of the user's in-
tention, respectively. 

6.2 Some Pract ical Aspects of the Debugging Process 

An important aspect of debugging is that in practice the process of program construction is often 
iterative, and the iterations update incrementally not only the program but also the requirements. 
This is related to the observation that user's expectations concerning a program are rarely fully 
described. At each stage of development we have a (possibly empty) subset approximation 1~ 
of the intended semantics and a (possibly empty) superset approximation 1+3 which together 
represent the specification. The program in hand should be complete w.r.t. 1~ and partially 
correct w.r.t. I . In the previous sections we mentioned some well-known proof methods used for 
checking that. 

If the proof fails, the failure points to some fragments of the program, which may possibly 
be erroneous. The failure may be due to: (1) an error in the program causing violation of the 
specification at hand, (2) the specification is too weak, or (3) incompleteness of the prover. Note 
that if an error exists then it can only be due to the fragments identified. The user should inspect 
them in order to identify the reason of failure. If the user identifies that the reason is an error 

3 The other kinds of approximations may also be present but, for simplicity, we will consider these two in this 
discussion. 



then the program has to be corrected. If, on the other hand, the user does not identify an error 
then alternatively it may be possible to strengthen the specification in such a way that a proof 
can be achieved. 

If the proof succeeds we may: (1) stop the development process, or (2) update the specification. 
In particular, the latter is needed if the behavior of the program w.r.t. the first specification is not 
acceptable and the user wants to clarify why. 

Note that even if the proof succeeds some bugs may still be hidden in the program, as specifi-
cations are partial. For example, if the techniques presented in Section 5 are used, some bugs may 
not be captured by the abstract semantics. Thus, if during testing or execution of the program 
some unexpected behaviour is found, diagnosis should start for it. The well-known technique of 
declarative diagnosis is then applicable, which, as we have seen, can also rely on approximations 
of the intended semantics. 

6.3 Which tools are needed 

We believe that an integrated environment incorporating the techniques described so far (as well 
as other techniques, such as procedural debugging and visualization, which are beyond the scope 
of this paper) can be of great help in speeding up the code development process. In this section 
we propose some tools to be included in the environment. The intention is to detect bugs as 
early as possible, Le., during compilation or even editing. This can only be achieved by (semi-) 
automatic analysis of the (not necessarily completely developed) program in the presence of some 
(approximate) specifications. An example of such techniques is type checking, which proved to be 
useful for that purpose. Our approach puts a framework for working with properties that may be 
more general than classical type systems. 

The common integrating concept for the tools proposed is the notion of semantic approximation 
which is involved in 

• describing user's intentions, 

• program analysis, 

• comparing the results of program analysis with the user's intentions, 

• verification, 

• debugging. 

The fundamental technique mentioned in this context is that of abstract interpretation which 
allows for automatic synthesis of semantic approximations, for abstract verification and for abstract 
debugging. 

To support the above mentioned activities we may need the following tools: 

• A program analyzer: it takes the program and the selected abstract domain(s) and generates 
an approximation of the actual semantics of the program. In the case of CLP programs 
standard analysis techniques can be used for this purpose. 

• An assertion translator: if the language for assertions is the underlying programming lan-
guage or an abstract domain different from that used internally by the tool, this translator 
is in charge of transforming the intended semantics into the abstract domain to be used by 
the analyzer. An intelligent translation scheme would be able to select the best among a set 
of abstract domains depending on the requirements expressed by the user in the intended 
model. 

• A comparator: it would compare the user requirements and the information generated by 
the analysis. It can produce three different results: 

— The requirement is verified. 



— The requirement does not hold. An abstract symptom has been found and diagnosis 
should start. 

- None of the above. We cannot prove that the requirement holds ñor that it does not 
hold. Run-time tests could be introduced which would make sure that the requirements 
hold. Clearly, this introduces an important overhead and could be turned on only during 
program testing. 

• A diagnoser based on abstraction: the diagnoser tries to localize the program construct 
responsible for the abstract symptom. It would use algorithms based on the sufficient con-
ditions of Table 2. Thus it will lócate possible error sources. 

• A declarative (concrete) diagnoser: it would be used once all abstract symptoms have been 
diagnosed and eliminated from the program in order to underpin all subsequent bugs in the 
program which appear during program testing and execution. As in Section 4.1, the program 
would store approximations of the intended semantics to avoid asking the user whenever the 
question can be solved using such approximations. 

Partial prototypes of the component tools are mentioned above are currently being developed. 
For example, an assertion language, translator, analyzer, and comparator has been incorporated 
in the CIAO system which works on the domains of moded types, definiteness, freeness, and 
grounding dependencies for CLP programs. 
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