
Programming with Global Analysis 
M a n u e l H e r m e n e g i l d o 
T h e C L I P Group 
School of C o m p u t e r Science 
Technical Universi ty of Madr id 
herme@fi.upm.es 

Abstract 

Global data-flow analysis of (constraint) logic programs, which is generally 
based on abstract interpretation [7], is reaching a comparatively high level 
of maturity. A natural question is whether it is time for its routine incorpo-
ration in standard compilers, something which, beyond a few experimental 
systems, has not happened to date. Such incorporation arguably makes good 
sense only if: 

• the range of applications of global analysis is large enough to justify 
the additional complication in the compiler, and 

• global analysis technology can deal with all the features of "practical" 
languages (e.g., the ISO-Prolog built-ins) and "scales up" for large 
programs. 

We present a tutorial overview of a number of concepts and techniques 
directly related to the issues above, with special emphasis on the first one. 
In particular, we concéntrate on novel uses of global analysis during program 
development and debugging, rather than on the more traditional application 
área of program optimization. 

The idea of using abstract interpretation for validation and diagnosis has 
been studied in the context of imperative programming [2] and also of logic 
programming. The latter work includes issues such as using approximations 
to reduce the burden posed on programmers by declarative debuggers [6, 3] 
and automatically generating and checking assertions [4, 5] (which includes 
the more traditional type checking of strongly typed languages, such as Gódel 
or Mercury [1, 8, 9]) 

We also review some solutions for scalability including modular analysis, 
incremental analysis, and widening. Finally, we discuss solutions for dealing 
with meta-predicates, side-effects, delay declarations, constraints, dynamic 
predicates, and other such features which may appear in practical languages. 

In the discussion we will draw both from the literature and from our ex-
perience and that of others in the development and use of the CIAO system 
analyzer. In order to emphasize the practical aspects of the solutions dis-
cussed, the presentation of several concepts will be illustrated by examples 

mailto:herme@fi.upm.es


run on the CIAO system, which makes extensive use of global analysis and 
assertions. 

References 
[1] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes 

through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994. 

[2] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In 
Programming Languages Design and Implementation'93, pages 46-55, 1993. 

[3] J. Boye, W. Drabent, and J. Maluszyñski. Declarative diagnosis of constraint 
programs: an assertion-based approach. In Proc. of the 3rd. Int'l Workshop on 
Automated Debugging-AADEBUG'97, pages 123-141, Linkoping, Sweden, May 
1997. U. of Linkoping Press. 

[4] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of 
Standard Prolog Programs. In European Symposium on Programming, number 
1058 in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag. 

[5] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, 
J. Maluszyñski, and G. Puebla. On the Role of Semantic Approximations in 
Validation and Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l 
Workshop on Automated Debugging-AADEBUG'97, pages 155-170, Linkoping, 
Sweden, May 1997. U. of Linkoping Press. 

[6] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic 
programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification 
of Múltiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture 
Notes in Computer Science, pages 22-50. Springer-Verlag, 1996. 

[7] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for 
Static Analysis of Programs by Construction or Approximation of Fixpoints. 
In Fourth ACM Symposium on Principies of Programming Languages, pages 
238-252, 1977. 

[8] P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge 
MA, 1994. 

[9] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. JLP, 29(1-3), 
October 1996. 


