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Abstract 

Global data-flow analysis of (constraint) logic programs, which is generally 
based on abstract interpretation [7], is reaching a comparatively high level 
of maturity. A natural question is whether it is time for its routine incorpo-
ration in standard compilers, something which, beyond a few experimental 
systems, has not happened to date. Such incorporation arguably makes good 
sense only if: 

• the range of applications of global analysis is large enough to justify 
the additional complication in the compiler, and 

• global analysis technology can deal with all the features of "practical" 
languages (e.g., the ISO-Prolog built-ins) and "scales up" for large 
programs. 

We present a tutorial overview of a number of concepts and techniques 
directly related to the issues above, with special emphasis on the first one. 
In particular, we concéntrate on novel uses of global analysis during program 
development and debugging, rather than on the more traditional application 
área of program optimization. 

The idea of using abstract interpretation for validation and diagnosis has 
been studied in the context of imperative programming [2] and also of logic 
programming. The latter work includes issues such as using approximations 
to reduce the burden posed on programmers by declarative debuggers [6, 3] 
and automatically generating and checking assertions [4, 5] (which includes 
the more traditional type checking of strongly typed languages, such as Gódel 
or Mercury [1, 8, 9]) 

We also review some solutions for scalability including modular analysis, 
incremental analysis, and widening. Finally, we discuss solutions for dealing 
with meta-predicates, side-effects, delay declarations, constraints, dynamic 
predicates, and other such features which may appear in practical languages. 

In the discussion we will draw both from the literature and from our ex-
perience and that of others in the development and use of the CIAO system 
analyzer. In order to emphasize the practical aspects of the solutions dis-
cussed, the presentation of several concepts will be illustrated by examples 
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run on the CIAO system, which makes extensive use of global analysis and 
assertions. 
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