
Program Analysis, Debugging,
and Optimization Using the
Ciao System Preprocessor
Manuel V. Hermenegildo
Francisco Bueno
Germán Puebla
Pedro López
{herme,bueno,german,pedro}@fi.upm.es
School of Computer Science, T.U. Madrid (UPM)

Abstract

We present a tutorial overview of Ciaopp, the Ciao system preprocessor.
Ciao is a public-domain, next-generation logic programming system, which
subsumes ISO-Prolog and is specifically designed to a) be highly extensi-
ble via librarles and b) support modular program analysis, debugging, and
optimization. The latter tasks are performed in an integrated fashion by
Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer
properties of program predicates and literals, including types, variable in-
stantiation properties (including modes), non-failure, determinacy, bounds
on computational cost, bounds on sizes of terms in the program, etc. Using
such analysis information, Ciaopp can find errors at compile-time in pro
grams and/or perform partial verification. Ciaopp checks how programs cali
system librarles and also any assertions present in the program or in other
modules used by the program. These assertions are also used to genérate
documentation automatically. Ciaopp also uses analysis information to per
form program transformations and optimizations such as múltiple abstract
specialization, parallelization (including granularity control), and optimiza
tion of run-time tests for properties which cannot be checked completely at
compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks.
By design, Ciaopp is a generic tool, which can be easily tailored to perform
these and other tasks for different LP and CLP dialects.

Keywords: Global Analysis, Debugging, Verification, Parallelization, Optimiza
tion, Partial Evaluation, Múltiple Specialization, Abstract Interpretation.

1 The Ciao Program Development System

Ciao [14] is a public-domain,2 next-generation logic programming environ-
ment. It is intended at the same time as a robust public-domain ISO-Prolog
implementation supporting programming in the large and in the small, and
as an experimentation workbench for new logic programming technology.
The Ciao environment includes an enhanced versión of the interactive shell
found in most Prolog systems, a standalone compiler, a powerful preproces-
sor/debugger, a script interpreter, an automatic documentation generator,
a rich interface to the emacs editor, and some program visualization tools.

The Ciao system has been specifically designed to be highly extensible
and to support modular program analysis, debugging, and optimization. The
language includes a simple kernel with a robust module system, on top of
which extensions are added via libraries. These libraries are generally nor
mal Ciao modules which provide run-time support predicates (including at-
tr ibuted variable handling code) and compile-time support such as operator
declarations and macro expansions. The latter are all local to the modules
which import the library. The Ciao libraries currently support the full ISO-
Prolog standard, several constraint domains, functional and higher order
programming, concurrent and distributed programming, Internet program
ming, objects, persistence, datábase access, rich interfaces to other languages
(such as C, tc l / tk , and Java), etc.

The Ciao compilation process is conceptually divided into two levéis. The
low-level compiler, Ciaoc, itself a Ciao application, is in charge of producing
object code for each module, and linking the object code into executables.
This compilation is performed automatically and incrementally, in the sense
that only necessary modules whose source code has changed are recompiled
when a module is used. Ciaoc generates executables which are small and of
performance which is competitive with state-of-the-art bytecoded systems.3

At a higher level, the preprocessor, Ciaopp, performs modular, incremental
global program analysis based on abstract interpretation [4] to infer infor-
mation on the program. This information is applied in a novel way to aid
the program development and debugging process, as well as in the more
traditional áreas of program transformation and optimization. By design,
Ciaopp is a generic tool, which can be easily tailored to perform these and
other tasks for different LP and CLP dialects.

In the following, we present an overview of Ciaopp at work. Our aim is
to present not the techniques used by Ciaopp, but instead the main func-
tionalities of the system in a tutorial way, by means of examples. However,
we do provide references where the interested reader can find more details on
the actual techniques used.4 Section 2 presents Ciaopp at work performing

The ciao system is available from ht tp : / /www.c l ip .d ia . f i .upm.es .
3In addition, the script processor, allows executing scripts written in Prolog [13].
Space limitations prevent us from providing a complete set of references to related

work on the many topics touched upon in the paper. Thus, we only provide the references

http://www.clip.dia.fi.upm.es

: - module(qsort , [q s o r t / 2] , [a s s e r t i o n s]) .
: - use_module(compare, [geq/2, l t /2]) .

qsor t ([X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2) ,
qsor t (L2,R2) , q so r t (L l ,R1) ,
append(Rl,[X|R2],R).

qsor t ([] , []) .

p a r t i t i o n ([] ,_B, [] , []) .
p a r t i t i o n ([E | R] , C , [E | L e f t l] , R i g h t) : -

l t (E , C) , p a r t i t i o n (R , C , L e f t l , R i g h t) .
p a r t i t i o n ([E | R] , C , L e f t , [E l R i g h t l]) : -

geq(E,C), partition(R,C,Left,Rightl).

a p p e n d ([] , Y s , Y s) .
a p p e n d ([X | X s] , Y s , [X | Z s]) : - a p p e n d (X s , Y s , Z s) .

Figure 1: A modular qsort program.

program analysis, while Section 3 does the same for program debugging and
validation and Section 4 for program transformation and optimization.

2 Static Analysis and Program Assertions

The fundamental functionality behind Ciaopp is static program analysis.
For this task Ciaopp uses the PLAI abstract interpreter [18, 2], its CLP [11]
and incremental [15, 22] versions, and adaptations of Gallagher's regular
type analysis [8]. The system includes several abstract domains and can
infer information on basic properties such as moded types, definiteness,
freeness, and grounding dependencies, as well as on more complex prop
erties such as determinacy, non-failure, bounds on term sizes, and bounds
on computational cost. Ciaopp implements several techniques for dealing
with "difficult" language features (such as side-effects, meta-programming,
higher-order, etc.) and as a result can for example deal safely with arbitrary
ISO-Prolog programs [1]. A unified language of assertions [1, 19] is used to
express the results of analysis, to provide input to the analyzer, and, as we
will see later, to provide program specifications for debugging and validation.

Modular Static Analysis Basics: Ciaopp takes advantage of modular
program structure to perform more precise and efficient, incremental anal
ysis [1]. Consider the program in Figure 1, defining a module which ex-
ports the qsort predícate and imports predicates geq and l t from module
compare. During the analysis of this program, Ciaopp will take advantage
of the fact that the only predícate that can be called from outside is the
exported predícate qsort . This allows Ciaopp to infer more precise infor
mation than if it had to consider that all predicates may be called in any
possible way (as would be true had this been a simple "user" file instead of a

most directly related to Ciaopp, which are typically our own work. We ask the reader to
kindly forgive this. The publications referenced do contain comprehensive references to
related work.

module). Also, assume that the compare module has already been analyzed.
This allows Ciaopp to be more efficient, since it will use the information
obtained for geq and l t during analysis of compare instead of reanalyzing
them. Assuming that geq and l t have a similar binding behavior as the
standard comparison predicates, a mode and independence analysis ("shar-
ing+freeness") of the module using Ciaopp yields the following results:
: - t r ue pred qsort(A,B)

: mshare([[A],[A,B],[B]])
=> mshare([[A,B]]) .

: - t r ue pred part i t ion(A,B,C,D)
: (var(C) , var(D), mshare([[A],[A,B], [B],[C],[D]]))

=> (ground(A), ground(C), ground(D), mshare([[B]])) .
: - t r ue pred append(A,B,C)

: (ground(A), mshare([[B] , [B,C], [C]]))
=> (ground(A), mshare([[B,C]])) .

These assertions express, for example, that the third and fourth arguments
of p a r t i t i o n have "output mode": when p a r t i t i o n is called (:) they are
free unaliased variables and they are ground on success (=>). Also, append
is used in a mode in which the first argument is input (i.e., ground on cali).
Also, upon success the arguments of qsort will share all variables (if any).

Asser t ions and Propert ies : The above output is given in the form of
assertions. Assertions are a means of specifying properties which are (or
should be) true of a given predicate, predicate argument, and/or program
point. If an assertion has been proved to be true it has a prefix true -
like the ones above. Assertions can also be used to provide information to
the analyzer in order to increase its precisión or to describe predicates which
have not been coded yet during program development. These assertions have
a t r u s t prefix [1]. For example, if we commented out the use_module/2
declaration in Figure 1, we could describe the mode of the (now missing)
geq and l t predicates to the analyzer for example as follows:
: - t r u s t pred geq(X,Y) => (ground(X), ground(Y)) .
: - t r u s t pred lt(X,Y) => (ground(X), ground(Y)) .

Finally, assertions with a check prefix can be used to specify the intended
semantics of the program, which can then be used in debugging and/or
validation [19, 20], as we will see in Section 3. The same assertions are also
used to genérate documentation automatically [17].

Assertions refer to certain program points. The t rue pred assertions
above specify in a combined way properties of both the entry (i.e., upon
calling) and exit (i.e., upon success) points of all calis to the predicate. It
is also possible to express properties which hold at points between clause
literals. The following is a fragment of the output produced by Ciaopp for
the program in Figure 1 when information is requested at this level:
qsor t ([X|L] ,R) : -

t rue((ground(X) ,ground(L) ,var (R) ,var (Ll) ,var (L2) ,var (R2) , . . .
p a r t i t i on (L ,X ,L l ,L2) ,
t rue((ground(X),ground(L),ground(Ll) ,ground(L2),var(R),var(R2), . . .
qsor t (L2,R2) , . . .

In Ciaopp properties are just predicates, which may be builtin or user
defined. For example, the property var used in the above examples is the
standard builtin predicate to check for a free variable. The same applies
to ground and mshare. The properties used by an analysis in its output
(such as var, ground, and mshare for the previous mode analysis) are said

to be native for that particular analysis. The system requires that a logic
program (or system builtin) exist defining each property, that it be marked
as such with a prop declaration, and that it be visible to the module in
which the property is used (needed, for example, if a run-time test needs to
be performed -see later). Properties defined in a module can be exported as
any other predicate. For example:
: - prop l i s t / 1 .
l i s t ([]) .
l i s t ([_ | L]) : - l i s t (L) .
defines the property "list". A list is an instance of a very useful class of
user-defined properties called regular types, which is simply a syntactically
restricted class of logic programs. We can mark this fact by stating " : -
regtype l i s t / 1 . " instead of " : - prop l i s t / 1 . " (this can be done au-
tomatically). The definition above can be included in a user program or,
alternatively, it can be imported from a system library, e.g.:
: - use_module(l ibrary(lists) , [l i s t / 1]) .
T y p e Analys is : Ciaopp can infer (parametric) types for programs both
at the predicate level and at the literal level. The output for Figure 1 at the
predicate level, assuming that we have imported the l i s t s library, is:
: - t r ue pred qsort(A,B)

: (term(A), term(B))
=> (l i s t (A) , l i s t (B)) .

: - t r ue pred part i t ion(A,B,C,D)
: (term(A), term(B), term(C), term(D))

=> (l i s t (A) , term(B), l i s t (C) , l i s t (D)) .
: - t r ue pred append(A,B,C)

: (l i s t (A) , l i s t l (B , t e r m) , term(C))
=> (l i s t (A) , l i s t l (B , t e r m) , l i s t l (C , t e r m)) .

where t e rm is any term and prop l i s t l is defined in l i b r a r y (l i s t s) as:
: - regtype l i s t l (L , T) # "OvaríL} i s a l i s t of at l e a s t one @var{T}'s."
l i s t l ([X | R] , T) : - T(X), l i s t (R , T) .
: - regtype l i s t (L , T) # "@var{L} i s a l i s t of @var{T}'s."
l i s t ([] , _ T) .
l i s t ([X | L] , T) : - T (X) , l i s t (L) .
We can use entry assertions [1] (essentially, "trust c a l i s " assertions) to
specify a restricted class of calis to the module entry points as acceptable:
: - entry qsort(A,B) : (l i s t (A , num), va r (B)) .
This informs the analyzer that in all external calis to qsort , the first argu-
ment will be a list of numbers and the second a free variable. Note the use
of builtin properties (i.e., defined in modules which are loaded by default,
such as var, num, l i s t , etc.). Note also that properties natively understood
by different analysis domains can be combined in the same assertion. This
assertion will aid goal-dependent analyses obtain more accurate information.
For example, it allows the type analysis to obtain the following, more precise
information:
:- true pred qsort(A,B)

: (list(A,num), term(B))
=> (list(A,num), list(B,num)).

:- true pred partition(A,B,C,D)
: (list(A,num), num(B), term(C), term(D))

=> (list(A,num), num(B), list(C,num), list(D,num)).
:- true pred append(A,B,C)

: (list(A,num), listl(B,num), term(C))
=> (list(A,num), listl(B,num), listl(C,num)).

Non-fai lure and D e t e r m i n a c y Analys is : Ciaopp includes a non-failure
analysis, based on [6], which can detect procedures and goals that can be
guaranteed not to fail, i.e., to produce at least one solution or not terminate.
It also can detect predicates that are "covered", i.e., such that for any input
(included in the calling type of the predicate), there is at least one clause
whose "test" (head unification and body builtins) succeeds. Ciaopp also
includes a determinacy analysis which can detect predicates which produce
at most one solution, or predicates whose clause tests are disjoint, even if
they are not fully deterministic (because they cali other predicates which
are nondeterministic). For example, the result of these analyses for Figure 1
includes the following assertion:
: - t r ue pred qsort(A,B)

: (l i s t (A,num) , var(B)) => (l i s t (A,num) , l is t(B,num))
+ (n o t _ f a i l , covered, i s_de t , d i s j o i n t) .

(The + field in pred assertions can contain a conjunction of computational
properties which are global to the predicate.)
Size, Cost , and Terminat ion Analys is : Ciaopp can also infer lower
and upper bounds on the sizes of terms and the computational cost of pred
icates [5, 7]. The cost bounds are expressed as functions on the sizes of the
input arguments and yield the number of resolution steps. Various measures
are used for the "size" of an input, such as list-length, term-size, term-depth,
integer-value, etc. Note that obtaining a non-infinite upper bound on cost
also implies proving termination of the predicate.

As an example, the following assertion is part of the output of the upper
bounds analysis:
: - t r ue pred append(A,B,C)

: (l i s t (A,num) , l i s t l (B,num) , var(C))
=> (l i s t (A,num) , l i s t l (B,num) , l i s t l (C,num) ,

upper_size(A,length(A)) , upper_s ize(B, length(B)) ,
upper_size(C,length(B)+length(A)))

+ upper_t ime(length(A)+l) .
Note that in this example the size measure used is list length. The assertion
upper_size(C,length(B)+length(A) means that an (upper) bound on the size
of the third argument of append/3 is the sum of the sizes of the first and
second arguments. The inferred upper bound on computational steps is the
length of the first argument of append /3 .

The following is the output of the lower-bounds analysis:
: - t r ue pred append(A,B,C)

: (l i s t (A,num) , l i s t l (B ,num) , var(C))
=> (l i s t (A,num) , l i s t l (B ,num) , l i s t l (C ,num) ,

lower_size(A,length(A)) , lower_size(B, length(B)) ,
lower_size(C,length(B)+length(A)))

+ (n o t _ f a i l , covered, lower_time(length(A)+l)) .
The lower-bounds analysis uses information from the non-failure analysis,
without which a trivial lower bound of 0 would be derived.

Decidabi l i ty , Approx imat ions , and Safety: As a final note on the
analyses, it should be pointed out that since most of the properties being
inferred are in general undecidable at compile-time, the inference technique
used, abstract interpretation, is necessarily approximate, i.e., possibly impre
cise. On the other hand, such approximations are also always guaranteed to
be safe, in the sense that (modulo bugs, of course) they are never incorrect.

:- module(qsort, [qsort/2], [assertions]).

qsort([X|L],R) :-
partition(L,Ll,X,L2),
qsort(L2,R2), qsort(Ll,R1),
append(R2,[x |Rl] ,R).

qsor t ([] , []) .

p a r t i t i o n ([] ,_B, [] , []) .
p a r t i t i o n ([e | R] , C , [E | L e f t l] , R i g h t) : -

E < C, !, p a r t i t i o n (R , C , L e f t l , R i g h t) .
p a r t i t i o n ([E | R] , C , L e f t , [E l R i g h t l]) : -

E >= C, p a r t i t i o n (R , C , L e f t , R i g h t l) .

append([] ,X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).

Figure 2: A tentative qsort program.

3 Program Debugging and Assertion Validation

Within Ciaopp, global analysis is not only used to infer program properties,
but also to detect classes of errors at compile-time which go well beyond
the usual syntactic checks. Errors can be detected in conventional programs
or, alternatively, assertions can be added to such programs stating intended
program properties, and which can then be validated or falsified, in the latter
case detecting an error.

Stat ic Debugg ing: The idea of using analysis information for debugging
comes naturally after observing analysis outputs for erroneous programs.
Consider the program in Figure 2. The result of regular type analysis for
this program includes the following code:
: - t r ue pred qsort(A,B)

: (term(A), term(B))
=> (l i s t (A , t l l 3) , l i s t (B ,~x)) .

:- regtype ti13/1.
tll3(A) :- arithexpression(A).
tll3([]).
t l l 3 ([A | B]) : - a r i thexpress ion(A) , l i s t (B , t l l 3) .
t l l 3 (e) .
where a r i t h e x p r e s s i o n is a library property which describes arithmetic
expressions and l i s t (B , ~ x) means "a list of x's." A new ñame (t l l 3) is
given to one of the inferred types, and its definition included, because no
definition of this type was found visible to the module. In any case, the
information inferred does not seem compatible with a correct definition of
q s o r t , which clearly points to a bug in the program.

Ciaopp includes a number of facilities to help in the debugging task
beyond manual inspection of the analyzer output . For example, Ciaopp
can find incompatibilities between the ways in which program predicates are
called and their definitions. It can also detect incompatibilities between the
way library predicates are called and their intended mode of use, expressed
in the form of assertions in the libraries themselves. In order to use these
capabilities, we add to the program the same declaration of its intended use
of previous examples:

: - entry qsort(A,B) : (l i s t (A , num), va r (B)) .
Turning on conipile-time error checking and selecting type and mode analysis
produces the following messages:
WARNING: L i t e r a l par t i t ion(L,Ll ,X,L2) at q s o r t / 2 / 1 / 1 does not succeed!
ERROR: Predica te E>=C at p a r t i t i o n / 4 / 3 / 1 i s not ca l l ed as expected:

Called: num>=var
Expected: a r i thexpress ion>=ar i thexpress ion

where q s o r t / 2 / 1 / 1 stands for the first literal in the first clause of qsort and
p a r t i t i o n / 4 / 3 / 1 stands for the first literal in the third clause of p a r t i t i o n .

The first message warns that all calis to p a r t i t i o n will fail, something
normally not intended (e.g., in our case). The second message indicates
a wrong cali to a builtin predicate, which is an obvious error. This error
has been detected by comparing the mode information obtained by global
analysis, which at the corresponding program point indicates that E is a free
variable, with the assertion:
: - check c a l i s A<B (ar i thexpress ion(A) , a r i t hexpres s ion (B)) .
which is present in the default builtins module, and which implies that the
two arguments to </2 should be ground. The message signáis a compile-
time, or abstract, incorrectness symptom [3], indicating that the program
does not satisfy the specification given (that of the builtin predicates, in
this case). Checking the indicated cali to p a r t i t i o n and inspecting its
arguments we detect that in the definition of q s o r t , p a r t i t i o n is called
with the second and third arguments in reversed order - the correct cali is
p a r t i t i o n (L , X , L l , L 2) .

After correcting this bug, we proceed to perform another round of compile-
time checking, which produces the following message:
WARNING: Clause ' p a r t i t i o n / 4 / 2 ' i s incompatible with i t s c a l i type

Head: p a r t i t i o n ([e | R] , C , [E | L e f t l] , R i g h t)
Cali Type: pa r t i t i on (l i s t (num) ,num,va r ,va r)

This time the error is in the second clause of p a r t i t i o n . Checking this
clause we see that in the first argument of the head there is an e which
should be E instead. Compile-time checking of the program with this bug
corrected does not produce any further warning or error messages.

Val idat ion of User Assert ions: In order to be more confident about our
program, we add to it the following check assertions:5

: - c a l i s qsor t (A, B) : l i s t (A , num). '/„ Al
: - success qsort(A,B) => (ground(B) , sorted_num_list(B)) . °/„ A2
: - c a l i s part i t ion(A,B,C,D) : (ground(A) , ground(B)). % A3
: - success part i t ion(A,B,C,D) => (l i s t (C , num) , ground (D)) . °/„ A4
: - c a l i s append(A,B,C) : (l i s t (A,num) , l i s t (B,num)) . °/„ A 5

: - prop sor ted_num_l i s t / l .
so r t ed_num_l i s t ([]) .
sor ted_num_l is t ([X]) : - number(X).
sor ted_num_lis t ([X,Y|Z]) : -

number(X), number(Y), X<Y, sor ted_num_lis t ([Y|Z]) .
where we also use a new property, sorted_num_list, defined in the module
itself. These assertions provide a partial specification of the program. They
can be seen as integrity constraints: if their properties do not hold, the

6The check prefix is assumed when no prefix is given, as in the example shown.

program is incorrect. C a l i s assertions specify properties of all calis to a
predícate, while s u c c e s s assertions specify properties of exit points for all
calis to a predicate. Properties of successes can be restricted to apply only to
calis satisfying certain properties upon entry by adding a : field to s u c c e s s
assertions (see [19]).

Ciaopp can check the assertions above, by comparing them with the
assertions inferred by analysis (see [3, 20] for details), producing:
: - checked c a l i s q s o r t (A , B) : l i s t (A , n u m) . ° / 0 A l
: - check s u c c e s s q s o r t (A,B) => s o r t e d _ n u m _ l i s t (B) . °/,A2
: - checked c a l i s p a r t i t i o n (A , B , C , D) : (ground(A) ,g round(B)) . °/,A3
: - checked s u c c e s s p a r t i t i o n (A , B , C , D) => (l i s t (C,num) ,ground(D)).°/,A4
: - f a l s e c a l i s append(A,B,C) : (l i s t (A,num) , l i s t (B,num)) . °/,A5
Assertion A5 has been detected to be false. This indicates a violation of the
specification given, which is also flagged by Ciaopp as follows:
ERROR: (l n s 22-23) f a l s e c a l i s a s s e r t i o n :

: - c a l i s append(A,B,C) : l i s t (A , n u m) , l i s t (B , n u m)
C a l l e d a p p e n d (l i s t (~ x) , [~ x I l i s t (~ x)] , v a r)

The error is now in the cali append(R2, [x | Rl] ,R) in qsort (x instead of X).
From the rest of the output we can conclude that the rest of the specification
has been partially validated: assertions Al, A3, and A4 have been detected
to hold, but it was not possible to prove statically assertion A2, which has
remained with check status. Ciaopp can, on request, introduce run-time
tests in the program which will cali the definition of sor ted_num_l is t at
the appropriate times. Note that A2 has been simplified, and this is because
the mode analysis has determined that on success the second argument of
qsort is ground, and thus this does not have to be checked at run-time. On
the other hand the analyses used in our session (types and modes) do not
provide enough information to prove that the output of q s o r t is a sorted list
of numbers, since this is not a native property of the analyses being used.
While this property could be captured by including a more refined domain
(such as constrained types), it is interesting to see what happens with the
analyses selected for the example.6

D y n a m i c D e b u g g i n g w i t h R u n - t i m e Checks: Assuming that we stay
with the analyses selected previously, the following step in the development
process is to compile the program obtained above with the "genérate run-
time checks" option. In the current implementation of Ciaopp we obtain
the following code for predicate qsort (the code for p a r t i t i o n and append
remain the same as there is no other assertion left to check):

q s o r t (A , B) : -
n e w _ q s o r t (A , B) ,
p o s t e ([q s o r t (C , D) : t r u e => s o r t e d (D)] , q s o r t (A , B)) .

Not that while property sorted_num_list cannot be proved with only (over approxi-
mations) of mode and regular type information, it may be possible to prove that it does not
hold (an example of how properties which are not natively understood by the analysis can
also be useful for detecting bugs at compile-time): while the regular type analysis cannot
capture perfectly the property sorted_num_list, it can still approximate it (by analyzing
the definition) as l i s t (B , num). If type analysis for the program were to genérate a type
for B not compatible with l i s t (B , num), then a definite error symptom would be detected.

new_qsort([X IL],R) :-
partition(L,X,Ll,L2),
qsort(L2,R2), qsort(Ll,R1),
append(R2,[X|R1],R).

new_qsort ([] , []) .
where pos te is the library predicate in charge of checking postconditions of
predicates. If we now run the program with run-time checks in order to sort,
say, the list [1 , 2] , the Ciao system generates the following error message:
?- qsort([1,2],L).
ERROR: for Goal qsort([1,2], [2,1])
Precondition: true holds, but
Postcondition: sorted_num_list([2,1]) does not.

L = [2,1] ?

Clearly, there is a problem with q s o r t , since [2 ,1] is not the result of
ordering [1 ,2] in ascending order. This is a (now, run-time, or concrete)
incorreetness symptom, which can be used as the starting point of diagnosis.
The result of such diagnosis should indicate that the cali to append (where
Rl and R2 have been swapped) is the cause of the error and that the right
definition of predicate qsort is the one in Figure 1.

4 Source Program Optimization

We now turn our attention to the program optimizations that are available
in Ciaopp. These include abstract specialization, parallelization (including
granularity control), and múltiple program specialization. All of them are
performed as source to source transformations of the program. In most of
them static analysis is instrumental, or, at least, beneficial.

Abstrac t Special izat ion: Program specialization optimizes programs for
known valúes (substitutions) of the input. It is often the case that the set of
possible input valúes is unknown, or this set is infinite. However, a form of
specialization can still be performed in such cases by means of abstract inter-
pretation, specialization then being with respect to abstract valúes, rather
than concrete ones. Such abstract valúes represent of a (possibly infinite)
set of concrete valúes. For example, consider the definition of the property
sorted_num_l is t / l , and assume that regular type analysis has produced:
: - t r ue pred sorted(A) : l ist(A,num) => l i s t (A,num).
Abstract specialization can use this information to optimize the code into:
so r t ed_num_l i s t ([]) .
sorted_num_list([_]).
sor ted_num_lis t ([X,Y|Z]) : - X<Y, sor ted_imm_lis t ([Y|Z]) .
which is clearly more efficient because no number tests are executed. The
optimization above is based on "abstractly executing" the number literals to
the valué true . The notion of abstract executabüity [23, 12] can reduce some
literals to true , f a i l , or a set of primitives (typically, unifications) based
on the information available from abstract interpretation.

Ciaopp can also apply abstract specialization in the optimization of pro
grams with dynamic scheduling (e.g., using de lay declarations) [21]. The
transformations simplify the conditions on the delay declarations and also
move delayed literals later in the rule body, leading to substantial perfor
mance improvement. This is used by Ciaopp, for example, when supporting
complex computation models, such as Andorra-style execution [14].

Paral le l izat ion: Another application of global analysis in Ciaopp is in
automatic program parallelization [2]. It is also performed as a source-to-
source transformation, in which the input program is annotated with parallel
expressions. A number of heuristic parallelization algorithms are available,
which guarantee certain no-slowdown properties [16] for the parallelized pro-
grams. We consider again the program of Figure 1. A possible parallelization
(obtained in this case with the "MEL" annotator) is:

qsor t ([X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2) ,
(indep([[Ll ,L2]]) -> qsort(L2,R2) & qsort(Ll ,R1)

; qsor t (L2,R2) , qsort(Ll ,R1)) ,
append(Rl,[X|R2],R).

which indicates that , provided that Ll and L2 do not have variables in com-
mon (at execution time), then the recursive calis can be run in parallel.
Given the information inferred by, e.g., the mode and independence analysis
(see Section 2), where Ll and L2 are ground after p a r t i t i o n (and therefore
do not share variables) the annotator yields instead:

qsor t ([X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2) ,
qsort(L2,R2) & qsor t (L l ,R1) ,
append(Rl,[X|R2],R).

which is much more emcient since it has no run-time test.

Granulari ty Control: Another application of the information produced
by the Ciaopp analyzers, in this case the cost analysis, is to perform r u n -
time task granularity control [10] of parallelized code. Such parallel code can
be the output of the process mentioned above or code parallelized manually.

In general, this run-time granularity control process involves computing
sizes of terms involved in granularity control, evaluating cost functions, and
comparing the result with a threshold7 to decide for parallel or sequential
execution. Optimizations to this general process include cost function sim-
plification and improved term size computation, both of which are illustrated
in the following example.

Consider again the qsort program in Figure 1. We use Ciaopp to perform
a transformation for granularity control, using the analysis information of
type, sharing+freeness, and upper bound cost analysis, and taking as input
the parallelized code obtained in the previous section. Ciaopp adds a clause
"qsor t (_ l ,_2) : - g_qsort(_1 , _ 2) . " (to preserve the original entry point)
and produces g_qso r t / 2 , the versión of q s o r t / 2 that performs granularity
control (s _ q s o r t / 2 is the sequential versión):

g_qsort([X|L],R) : -
par t i t ion_o3_4(L,X,Ll ,L2 ,_2 ,_ l) ,
(_1>7 -> (_2>7 -> g_qsort(L2,R2) & g_qsort(Ll,R1)

; g_qsort(L2,R2), s_qsort(Ll,R1))
; (_2>7 -> s_qsort(L2,R2), g_qsort(Ll,R1)

; s_qsort(L2,R2), s_qsor t (L l ,R1))) ,
append(Rl,[X|R2],R).

g_qsor t ([] , []) .

7This threshold can be determined experimentally for each parallel system, by taking
the average valué resulting from several runs.

Note that if the lengths of the two input lists to the qsort program are
greater than a threshold (a list length of 7 in this case) then versions which
continué performing granularity control are executed in parallel. Otherwise,
the two recursive calis are executed sequentially. The executed versión of
each of such calis depends on its grain size: if the length of its input list
is not greater than the threshold then a sequential versión which does not
perform granularity control is executed. This is based on the detection of
a recursive invariant: in subsequent recursions this goal will not produce
tasks with input sizes greater than the threshold, and thus, for all of them,
execution should be performed sequentially and, obviously, no granularity
control is needed.

In general, the evaluation of the condition to decide which predicate ver
sions are executed will require the computation of cost functions and a com-
parison with a cost threshold (measured in units of computation). However,
in this example a test simplification has been performed, so that the input
size is simply compared against a size threshold, and thus the cost function
for qsort does not need to be evaluated.8 Predicate part i t ion_o3_4/6:
partition_o3_4([] ,_B, [] , [] ,0,0) .
partit ion_o3_4([E|R],C,[E|Leftl] ,Right,_1,_2) :-

E<C, partition_o3_4(R,C,Leftl ,Right,_3,_2), _l i s _3+l.
partit ion_o3_4([E|R],C,Left,[ElRightl] ,_1,_2) :-

E>=C, partit ion_o3_4(R,C,Left ,Rightl ,_l ,_3) , _2 i s _3+l.
is the transformed versión of p a r t i t i o n / 4 , which "on the fly" computes the
sizes of its third and fourth arguments (the automatically generated variables
_1 and _2 represent these sizes respectively) [9].

Múlt ip le Special izat ion: Sometimes a procedure has different uses within
a program, i.e. it is called from different places in the program with different
(abstract) input valúes. In principie, (abstract) program specialization is
then allowable only if the optimization is applicable to all uses of the pred
icate. However, it is possible that in several different uses the input valúes
allow different and incompatible optimizations and then none of them can
take place. In Ciaopp this problem is overeóme by means of "múltiple pro
gram specialization" where different versions of the predicate are generated
for each use. Each versión is then optimized for the particular subset of in
put valúes with which it is to be used. The abstract múltiple specialization
technique used in Ciaopp [24] has the advantage that it can be incorporated
with little or no modification of some existing abstract interpreters, provided
they are multivariant (PLAI and similar frameworks have this property).

This specialization can be used for example to improve automatic par-
allelization in those cases where run-time tests are included in the resulting
program. In such cases, a good number of run-time tests may be elimi-
nated and invariants extracted automatically from loops, resulting generally
in lower overheads and in several cases in increased speedups. We consider
automatic parallelization of a program for matrix multiplication using the
same analysis and parallelization algorithms as the q s o r t example used be-
fore. This program is automatically parallelized without tests if we provide

This size threshold will obviously be different if the cost function is.

the analyzer (by means of an entry declaration) with accurate information
on the expected modes of use of the program. However, in the interesting
case in which the user does not provide such declaration, the code generated
contains a large number of run-time tests. We include below the code for
predicate mul t ip ly which multiplies a matrix by a vector:
mul t ip ly ([] , _ , []) .
mult iply([VO|Rest] ,V1,[ResultIOthers]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Res t ,Resul t] , [Resul t ,Others]]) ->

vmul(VO,VI,Result) & mult iply(Rest ,VI ,Others)
; vmul(VO,VI,Result), mul t ip ly (Res t ,VI ,Others)) .

Four independence tests and one groundness test nave to be executed prior to
executing in parallel the calis in the body of the recursive clause of mul t ip ly .
However, abstract múltiple specialization generates four versions of the pred
icate mul t ip ly which correspond to the different ways this predicate may be
called (basically, depending on whether the tests succeed or not). Of these
four variants, the most optimized one is:
mul t ip ly3([] , _ , []) .
mul t ip ly3([V0|Rest] ,V1,[Resul t |Others]) : -

(indep([[Resu l t ,Others]]) ->
vmul(VO,VI,Result) & mult iply3(Rest ,VI,Others)

; vmul(VO,VI,Result), mul t ip ly3(Res t ,VI ,Others)) .
where the groundness test and three out of the four independence tests have
been eliminated. Note also that the recursive calis to mul t ip ly use the opti
mized versión mul t ip ly3 . Thus, execution of matrix multiplication with the
expected mode (the only one which will succeed in Prolog) will be quickly
directed to the optimized versions of the predicates and itérate on them.
This is because the specializer has been able to detect this optimization as
an invariant of the loop. The complete code for this example can be found
in [24]. The múltiple specialization implemented incorporates a minimiza-
tion algorithm which keeps in the final program as few versions as possible
while not losing opportunities for optimization. For example, eight ver
sions of predicate vmul (for vector multiplication) would be generated if no
minimizations were performed. However, as múltiple versions do not allow
further optimization, only one versión is present in the final program.

In the context of Ciaopp we have also studied the relationship between
abstract múltiple specialization, abstract interpretation, and partial eval-
uation. Abstract specialization exploits the information obtained by mul-
tivariant abstract interpretation where information about valúes of vari
ables is propagated by simulating program execution and performing fix-
point computations for recursive calis. In contrast, traditional partial eval-
uators (mainly) use unfolding for both propagating valúes of variables and
transforming the program. It is known that abstract interpretation is a bet-
ter technique for propagating success valúes than unfolding. However, the
program transformations induced by unfolding may lead to important opti-
mizations which are not directly achievable in the existing frameworks for
múltiple specialization based on abstract interpretation. In [25] we present
a specialization framework which integrates the better information propaga-
tion of abstract interpretation with the powerful program transformations
performed by partial evaluation.

References
[1] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of

Standard Prolog Programs. In European Symposium on Programming, number
1058 in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

[2] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of
Abstract Interpretation in Automatic Parallelization: A Case Study in Logic
Programming. ACM Transactions on Programming Languages and Systems,
21(2):189-238, March 1999.

[3] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the
3rd. Int'l Workshop on Automated Debugging-AADEBUG'97, pages 155-
170, Linkoping, Sweden, May 1997. U. of Linkoping Press. Available from
f t p : / / c l i p . d i a . f i .upm. es/pub/papers/aadebug_discipldel iv. p s . gz.

[4] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Fourth ACM Symposium on Principies of Programming Languages, pages
238-252, 1977.

[5] S. K. Debray, P. López García, M. Hermenegildo, and N.-W. Lin. Estimating
the Computational Cost of Logic Programs. In Static Analysis Symposium,
SAS'94, number 864 in LNCS, pages 255-265, Namur, Belgium, September
1994. Springer-Verlag.

[6] S. K. Debray, P. López García, and M. Hermenegildo. Non-Failure Analysis
for Logic Programs. In 1997 International Conference on Logic Programming,
pages 48-62, Cambridge, MA, June 1997. MIT Press.

[7] S. K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

[8] J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the llth Interna
tional Conference on Logic Programming, pages 599-613. MIT Press, 1994.

[9] P. López García and M. Hermenegildo. Efficient Term Size Computation for
Granularity Control. In International Conference on Logic Programming, pages
647-661, Cambridge, MA, June 1995. MIT Pres.

[10] P. López García, M. Hermenegildo, and S. K. Debray. A Methodology for Gran
ularity Based Control of Parallelism in Logic Programs. J. of Symbolic Com
putation, Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

[11] M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564-615, 1996.

[12] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance
Detection and Selective Program Specialization. In Proc. Srd. Int'l Symposium
on Programming Language Implementation and Logic Programming, number
528 in LNCS, pages 323-335. Springer-Verlag, August 1991.

[13] M. Hermenegildo. Writing "Shell Scripts" in SlCStus Prolog, April 1996. Avail-
able from h t t p : //www. c l i p . d i a . f i .upm. e s / . Posting in comp. l a n g . p r o l o g .

[14] M. Hermenegildo, F. Bueno, D. Cabeza, M. García de la Banda, P. López, and
G. Puebla. The CIAO Multi-Dialect Compiler and System: An Experimen-
tat ion Workbench for Future (C)LP Systems. In Parallelism and Implemen-
tation of Logic and Constraint Logic Programming. Nova Science, Commack,
NY, USA, April 1999.

[15] M. Hermenegildo, G. Puebla, K. Marriott , and P. Stuckey. Incremental Anal-
ysis of Logic Programs. In International Conference on Logic Programming,
pages 797-811. MIT Press, June 1995.

[16] M. Hermenegildo and F . Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time
Conditions. Journal of Logic Programming, 22 (l) : l -45 , 1995.

[17] M. Hermenegildo and The CLIP Group. An Automatic Documentation Gener-
ator for (C)LP - Reference Manual. The CIAO System Documentation Series
- T R CLIP5/97 .1 , Facultad de Informática, UPM, August 1997.

[18] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

[19] G. Puebla, F . Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. In ILPS'97 WS on Tools and Environ-
ments for (C)LP, October 1997. f t p : / / c l i p . d i a . f i . u p m . e s / p u b / p a p e r s -
/ a s s e r t _ l a n g _ t r _ d i s c i p l d e l i v . ps . gz.

[20] G. Puebla, F. Bueno, and M. Hermenegildo. A Framework for Assertion-
based Debugging in Constraint Logic Programming. In Logic-based Program
Synthesis and Transformation (LOPSTR'99), Venezia, Italy, September 1999.

[21] G. Puebla, M. García de la Banda, K. Marriott , and P. Stuckey. Optimization
of Logic Programs with Dynamic Scheduling. In 1997 International Conference
on Logic Programming, pages 93-107, Cambridge, MA, June 1997. MIT Press.

[22] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremen
tal Analysis of Logic Programs. In International Static Analysis Symposium,
number 1145 in LNCS, pages 270-284. Springer-Verlag, September 1996.

[23] G. Puebla and M. Hermenegildo. Abstract Specialization and its Application
to Program Parallelization. In J. Gallagher, editor, VI International Workshop
on Logic Program Synthesis and Transformation, number 1207 in LNCS, pages
169-186. Springer-Verlag, 1997.

[24] G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its
Application to Program Parallelization. J. of Logic Programming. Special Issue
on Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279-
316, November 1999. In press.

[25] G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Part ia l
Evaluation in a Generic Abstract Interpretation Framework. In O Danvy,
editor, ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM'99), number NS-99-1 in BRISC Series, pages
75-85. University of Aarhus, Denmark, January 1999.

http://clip.dia.fi
ftp://clip.dia.fi.upm.es/pub/papers/assert
ftp://clip.dia.fi.upm.es/pub/papers/assert

