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Abstract 

We present a tutorial overview of Ciaopp, the Ciao system preprocessor. 
Ciao is a public-domain, next-generation logic programming system, which 
subsumes ISO-Prolog and is specifically designed to a) be highly extensi-
ble via librarles and b) support modular program analysis, debugging, and 
optimization. The latter tasks are performed in an integrated fashion by 
Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer 
properties of program predicates and literals, including types, variable in-
stantiation properties (including modes), non-failure, determinacy, bounds 
on computational cost, bounds on sizes of terms in the program, etc. Using 
such analysis information, Ciaopp can find errors at compile-time in pro
grams and/or perform partial verification. Ciaopp checks how programs cali 
system librarles and also any assertions present in the program or in other 
modules used by the program. These assertions are also used to genérate 
documentation automatically. Ciaopp also uses analysis information to per
form program transformations and optimizations such as múltiple abstract 
specialization, parallelization (including granularity control), and optimiza
tion of run-time tests for properties which cannot be checked completely at 
compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks. 
By design, Ciaopp is a generic tool, which can be easily tailored to perform 
these and other tasks for different LP and CLP dialects. 

Keywords: Global Analysis, Debugging, Verification, Parallelization, Optimiza
tion, Partial Evaluation, Múltiple Specialization, Abstract Interpretation. 



1 The Ciao Program Development System 

Ciao [14] is a public-domain,2 next-generation logic programming environ-
ment. It is intended at the same time as a robust public-domain ISO-Prolog 
implementation supporting programming in the large and in the small, and 
as an experimentation workbench for new logic programming technology. 
The Ciao environment includes an enhanced versión of the interactive shell 
found in most Prolog systems, a standalone compiler, a powerful preproces-
sor/debugger, a script interpreter, an automatic documentation generator, 
a rich interface to the emacs editor, and some program visualization tools. 

The Ciao system has been specifically designed to be highly extensible 
and to support modular program analysis, debugging, and optimization. The 
language includes a simple kernel with a robust module system, on top of 
which extensions are added via libraries. These libraries are generally nor
mal Ciao modules which provide run-time support predicates (including at-
tr ibuted variable handling code) and compile-time support such as operator 
declarations and macro expansions. The latter are all local to the modules 
which import the library. The Ciao libraries currently support the full ISO-
Prolog standard, several constraint domains, functional and higher order 
programming, concurrent and distributed programming, Internet program
ming, objects, persistence, datábase access, rich interfaces to other languages 
(such as C, tc l / tk , and Java), etc. 

The Ciao compilation process is conceptually divided into two levéis. The 
low-level compiler, Ciaoc, itself a Ciao application, is in charge of producing 
object code for each module, and linking the object code into executables. 
This compilation is performed automatically and incrementally, in the sense 
that only necessary modules whose source code has changed are recompiled 
when a module is used. Ciaoc generates executables which are small and of 
performance which is competitive with state-of-the-art bytecoded systems.3 

At a higher level, the preprocessor, Ciaopp, performs modular, incremental 
global program analysis based on abstract interpretation [4] to infer infor-
mation on the program. This information is applied in a novel way to aid 
the program development and debugging process, as well as in the more 
traditional áreas of program transformation and optimization. By design, 
Ciaopp is a generic tool, which can be easily tailored to perform these and 
other tasks for different LP and CLP dialects. 

In the following, we present an overview of Ciaopp at work. Our aim is 
to present not the techniques used by Ciaopp, but instead the main func-
tionalities of the system in a tutorial way, by means of examples. However, 
we do provide references where the interested reader can find more details on 
the actual techniques used.4 Section 2 presents Ciaopp at work performing 

The ciao system is available from ht tp : / /www.c l ip .d ia . f i .upm.es . 
3In addition, the script processor, allows executing scripts written in Prolog [13]. 
Space limitations prevent us from providing a complete set of references to related 

work on the many topics touched upon in the paper. Thus, we only provide the references 

http://www.clip.dia.fi.upm.es


: - module(qsort , [ q s o r t / 2 ] , [ a s s e r t i o n s ] ) . 
: - use_module(compare, [geq/2, l t /2]) . 

qsor t ( [X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2 ) , 
qsor t (L2,R2) , q so r t (L l ,R1) , 
append(Rl,[X|R2],R). 

qsor t ([] , [ ] ) . 

p a r t i t i o n ( [ ] ,_B, [ ] , [ ] ) . 
p a r t i t i o n ( [ E | R ] , C , [ E | L e f t l ] , R i g h t ) : -

l t ( E , C ) , p a r t i t i o n ( R , C , L e f t l , R i g h t ) . 
p a r t i t i o n ( [ E | R ] , C , L e f t , [ E l R i g h t l ] ) : -

geq(E,C), partition(R,C,Left,Rightl). 

a p p e n d ( [ ] , Y s , Y s ) . 
a p p e n d ( [ X | X s ] , Y s , [ X | Z s ] ) : - a p p e n d ( X s , Y s , Z s ) . 

Figure 1: A modular qsort program. 

program analysis, while Section 3 does the same for program debugging and 
validation and Section 4 for program transformation and optimization. 

2 Static Analysis and Program Assertions 

The fundamental functionality behind Ciaopp is static program analysis. 
For this task Ciaopp uses the PLAI abstract interpreter [18, 2], its CLP [11] 
and incremental [15, 22] versions, and adaptations of Gallagher's regular 
type analysis [8]. The system includes several abstract domains and can 
infer information on basic properties such as moded types, definiteness, 
freeness, and grounding dependencies, as well as on more complex prop
erties such as determinacy, non-failure, bounds on term sizes, and bounds 
on computational cost. Ciaopp implements several techniques for dealing 
with "difficult" language features (such as side-effects, meta-programming, 
higher-order, etc.) and as a result can for example deal safely with arbitrary 
ISO-Prolog programs [1]. A unified language of assertions [1, 19] is used to 
express the results of analysis, to provide input to the analyzer, and, as we 
will see later, to provide program specifications for debugging and validation. 

Modular Static Analysis Basics: Ciaopp takes advantage of modular 
program structure to perform more precise and efficient, incremental anal
ysis [1]. Consider the program in Figure 1, defining a module which ex-
ports the qsort predícate and imports predicates geq and l t from module 
compare. During the analysis of this program, Ciaopp will take advantage 
of the fact that the only predícate that can be called from outside is the 
exported predícate qsort . This allows Ciaopp to infer more precise infor
mation than if it had to consider that all predicates may be called in any 
possible way (as would be true had this been a simple "user" file instead of a 

most directly related to Ciaopp, which are typically our own work. We ask the reader to 
kindly forgive this. The publications referenced do contain comprehensive references to 
related work. 



module). Also, assume that the compare module has already been analyzed. 
This allows Ciaopp to be more efficient, since it will use the information 
obtained for geq and l t during analysis of compare instead of reanalyzing 
them. Assuming that geq and l t have a similar binding behavior as the 
standard comparison predicates, a mode and independence analysis ("shar-
ing+freeness") of the module using Ciaopp yields the following results: 
: - t r ue pred qsort(A,B) 

: mshare([[A],[A,B],[B]]) 
=> mshare([[A,B]]) . 

: - t r ue pred part i t ion(A,B,C,D) 
: ( var(C) , var(D), mshare([[A],[A,B], [B],[C],[D]]) ) 

=> ( ground(A), ground(C), ground(D), mshare( [ [B]]) ) . 
: - t r ue pred append(A,B,C) 

: ( ground(A), mshare([[B] , [B,C], [C]]) ) 
=> ( ground(A), mshare([[B,C]]) ) . 

These assertions express, for example, that the third and fourth arguments 
of p a r t i t i o n have "output mode": when p a r t i t i o n is called (:) they are 
free unaliased variables and they are ground on success (=>). Also, append 
is used in a mode in which the first argument is input (i.e., ground on cali). 
Also, upon success the arguments of qsort will share all variables (if any). 

Asser t ions and Propert ies : The above output is given in the form of 
assertions. Assertions are a means of specifying properties which are (or 
should be) true of a given predicate, predicate argument, and/or program 
point. If an assertion has been proved to be true it has a prefix true -
like the ones above. Assertions can also be used to provide information to 
the analyzer in order to increase its precisión or to describe predicates which 
have not been coded yet during program development. These assertions have 
a t r u s t prefix [1]. For example, if we commented out the use_module/2 
declaration in Figure 1, we could describe the mode of the (now missing) 
geq and l t predicates to the analyzer for example as follows: 
: - t r u s t pred geq(X,Y) => ( ground(X), ground(Y) ) . 
: - t r u s t pred lt(X,Y) => ( ground(X), ground(Y) ) . 

Finally, assertions with a check prefix can be used to specify the intended 
semantics of the program, which can then be used in debugging and/or 
validation [19, 20], as we will see in Section 3. The same assertions are also 
used to genérate documentation automatically [17]. 

Assertions refer to certain program points. The t rue pred assertions 
above specify in a combined way properties of both the entry (i.e., upon 
calling) and exit (i.e., upon success) points of all calis to the predicate. It 
is also possible to express properties which hold at points between clause 
literals. The following is a fragment of the output produced by Ciaopp for 
the program in Figure 1 when information is requested at this level: 
qsor t ( [X|L] ,R) : -

t rue( (ground(X) ,ground(L) ,var (R) ,var (Ll ) ,var (L2) ,var (R2) , . . . 
p a r t i t i on (L ,X ,L l ,L2 ) , 
t rue((ground(X),ground(L),ground(Ll) ,ground(L2),var(R),var(R2), . . . 
qsor t (L2,R2) , . . . 

In Ciaopp properties are just predicates, which may be builtin or user 
defined. For example, the property var used in the above examples is the 
standard builtin predicate to check for a free variable. The same applies 
to ground and mshare. The properties used by an analysis in its output 
(such as var, ground, and mshare for the previous mode analysis) are said 



to be native for that particular analysis. The system requires that a logic 
program (or system builtin) exist defining each property, that it be marked 
as such with a prop declaration, and that it be visible to the module in 
which the property is used (needed, for example, if a run-time test needs to 
be performed -see later). Properties defined in a module can be exported as 
any other predicate. For example: 
: - prop l i s t / 1 . 
l i s t ( [ ] ) . 
l i s t ( [ _ | L ] ) : - l i s t ( L ) . 
defines the property "list". A list is an instance of a very useful class of 
user-defined properties called regular types, which is simply a syntactically 
restricted class of logic programs. We can mark this fact by stating " : -
regtype l i s t / 1 . " instead of " : - prop l i s t / 1 . " (this can be done au-
tomatically). The definition above can be included in a user program or, 
alternatively, it can be imported from a system library, e.g.: 
: - use_module(l ibrary(lists) , [ l i s t / 1 ] ) . 
T y p e Analys is : Ciaopp can infer (parametric) types for programs both 
at the predicate level and at the literal level. The output for Figure 1 at the 
predicate level, assuming that we have imported the l i s t s library, is: 
: - t r ue pred qsort(A,B) 

: ( term(A), term(B) ) 
=> ( l i s t ( A ) , l i s t ( B ) ) . 

: - t r ue pred part i t ion(A,B,C,D) 
: ( term(A), term(B), term(C), term(D) ) 

=> ( l i s t ( A ) , term(B), l i s t ( C ) , l i s t ( D ) ) . 
: - t r ue pred append(A,B,C) 

: ( l i s t ( A ) , l i s t l ( B , t e r m ) , term(C) ) 
=> ( l i s t ( A ) , l i s t l ( B , t e r m ) , l i s t l ( C , t e r m ) ) . 

where t e rm is any term and prop l i s t l is defined in l i b r a r y ( l i s t s ) as: 
: - regtype l i s t l ( L , T ) # "OvaríL} i s a l i s t of at l e a s t one @var{T}'s." 
l i s t l ( [ X | R ] , T ) : - T(X), l i s t ( R , T ) . 
: - regtype l i s t ( L , T ) # "@var{L} i s a l i s t of @var{T}'s." 
l i s t ( [ ] , _ T ) . 
l i s t ( [ X | L ] , T ) : - T ( X ) , l i s t ( L ) . 
We can use entry assertions [1] (essentially, "trust c a l i s " assertions) to 
specify a restricted class of calis to the module entry points as acceptable: 
: - entry qsort(A,B) : ( l i s t ( A , num), va r (B) ) . 
This informs the analyzer that in all external calis to qsort , the first argu-
ment will be a list of numbers and the second a free variable. Note the use 
of builtin properties (i.e., defined in modules which are loaded by default, 
such as var, num, l i s t , etc.). Note also that properties natively understood 
by different analysis domains can be combined in the same assertion. This 
assertion will aid goal-dependent analyses obtain more accurate information. 
For example, it allows the type analysis to obtain the following, more precise 
information: 
:- true pred qsort(A,B) 

: ( list(A,num), term(B) ) 
=> ( list(A,num), list(B,num) ). 

:- true pred partition(A,B,C,D) 
: ( list(A,num), num(B), term(C), term(D) ) 

=> ( list(A,num), num(B), list(C,num), list(D,num) ). 
:- true pred append(A,B,C) 

: ( list(A,num), listl(B,num), term(C) ) 
=> ( list(A,num), listl(B,num), listl(C,num) ). 



Non-fai lure and D e t e r m i n a c y Analys is : Ciaopp includes a non-failure 
analysis, based on [6], which can detect procedures and goals that can be 
guaranteed not to fail, i.e., to produce at least one solution or not terminate. 
It also can detect predicates that are "covered", i.e., such that for any input 
(included in the calling type of the predicate), there is at least one clause 
whose "test" (head unification and body builtins) succeeds. Ciaopp also 
includes a determinacy analysis which can detect predicates which produce 
at most one solution, or predicates whose clause tests are disjoint, even if 
they are not fully deterministic (because they cali other predicates which 
are nondeterministic). For example, the result of these analyses for Figure 1 
includes the following assertion: 
: - t r ue pred qsort(A,B) 

: ( l i s t (A,num) , var(B) ) => ( l i s t (A,num) , l is t(B,num) ) 
+ ( n o t _ f a i l , covered, i s_de t , d i s j o i n t ) . 

(The + field in pred assertions can contain a conjunction of computational 
properties which are global to the predicate.) 
Size, Cost , and Terminat ion Analys is : Ciaopp can also infer lower 
and upper bounds on the sizes of terms and the computational cost of pred
icates [5, 7]. The cost bounds are expressed as functions on the sizes of the 
input arguments and yield the number of resolution steps. Various measures 
are used for the "size" of an input, such as list-length, term-size, term-depth, 
integer-value, etc. Note that obtaining a non-infinite upper bound on cost 
also implies proving termination of the predicate. 

As an example, the following assertion is part of the output of the upper 
bounds analysis: 
: - t r ue pred append(A,B,C) 

: ( l i s t (A,num) , l i s t l (B,num) , var(C) ) 
=> ( l i s t (A,num) , l i s t l (B,num) , l i s t l (C,num) , 

upper_size(A,length(A)) , upper_s ize(B, length(B)) , 
upper_size(C,length(B)+length(A) ) ) 

+ upper_t ime(length(A)+l) . 
Note that in this example the size measure used is list length. The assertion 
upper_size(C,length(B)+length(A) means that an (upper) bound on the size 
of the third argument of append/3 is the sum of the sizes of the first and 
second arguments. The inferred upper bound on computational steps is the 
length of the first argument of append /3 . 

The following is the output of the lower-bounds analysis: 
: - t r ue pred append(A,B,C) 

: ( l i s t (A,num) , l i s t l (B ,num) , var(C) ) 
=> ( l i s t (A,num) , l i s t l (B ,num) , l i s t l (C ,num) , 

lower_size(A,length(A)) , lower_size(B, length(B)) , 
lower_size(C,length(B)+length(A)) ) 

+ ( n o t _ f a i l , covered, lower_time(length(A)+l) ) . 
The lower-bounds analysis uses information from the non-failure analysis, 
without which a trivial lower bound of 0 would be derived. 

Decidabi l i ty , Approx imat ions , and Safety: As a final note on the 
analyses, it should be pointed out that since most of the properties being 
inferred are in general undecidable at compile-time, the inference technique 
used, abstract interpretation, is necessarily approximate, i.e., possibly impre
cise. On the other hand, such approximations are also always guaranteed to 
be safe, in the sense that (modulo bugs, of course) they are never incorrect. 



:- module(qsort, [qsort/2], [assertions]). 

qsort([X|L],R) :-
partition(L,Ll,X,L2), 
qsort(L2,R2), qsort(Ll,R1), 
append(R2,[x |Rl] ,R). 

qsor t ([] , [ ] ) . 

p a r t i t i o n ( [ ] ,_B, [ ] , [ ] ) . 
p a r t i t i o n ( [ e | R ] , C , [ E | L e f t l ] , R i g h t ) : -

E < C, !, p a r t i t i o n ( R , C , L e f t l , R i g h t ) . 
p a r t i t i o n ( [ E | R ] , C , L e f t , [ E l R i g h t l ] ) : -

E >= C, p a r t i t i o n ( R , C , L e f t , R i g h t l ) . 

append([] ,X,X). 
append([H|X],Y,[H|Z]):- append(X,Y,Z). 

Figure 2: A tentative qsort program. 

3 Program Debugging and Assertion Validation 

Within Ciaopp, global analysis is not only used to infer program properties, 
but also to detect classes of errors at compile-time which go well beyond 
the usual syntactic checks. Errors can be detected in conventional programs 
or, alternatively, assertions can be added to such programs stating intended 
program properties, and which can then be validated or falsified, in the latter 
case detecting an error. 

Stat ic Debugg ing: The idea of using analysis information for debugging 
comes naturally after observing analysis outputs for erroneous programs. 
Consider the program in Figure 2. The result of regular type analysis for 
this program includes the following code: 
: - t r ue pred qsort(A,B) 

: ( term(A), term(B) ) 
=> ( l i s t ( A , t l l 3 ) , l i s t (B ,~x ) ) . 

:- regtype ti13/1. 
tll3(A) :- arithexpression(A). 
tll3([]). 
t l l 3 ( [ A | B ] ) : - a r i thexpress ion(A) , l i s t ( B , t l l 3 ) . 
t l l 3 ( e ) . 
where a r i t h e x p r e s s i o n is a library property which describes arithmetic 
expressions and l i s t ( B , ~ x ) means "a list of x's." A new ñame ( t l l 3 ) is 
given to one of the inferred types, and its definition included, because no 
definition of this type was found visible to the module. In any case, the 
information inferred does not seem compatible with a correct definition of 
q s o r t , which clearly points to a bug in the program. 

Ciaopp includes a number of facilities to help in the debugging task 
beyond manual inspection of the analyzer output . For example, Ciaopp 
can find incompatibilities between the ways in which program predicates are 
called and their definitions. It can also detect incompatibilities between the 
way library predicates are called and their intended mode of use, expressed 
in the form of assertions in the libraries themselves. In order to use these 
capabilities, we add to the program the same declaration of its intended use 
of previous examples: 



: - entry qsort(A,B) : ( l i s t ( A , num), va r (B) ) . 
Turning on conipile-time error checking and selecting type and mode analysis 
produces the following messages: 
WARNING: L i t e r a l par t i t ion(L,Ll ,X,L2) at q s o r t / 2 / 1 / 1 does not succeed! 
ERROR: Predica te E>=C at p a r t i t i o n / 4 / 3 / 1 i s not ca l l ed as expected: 

Called: num>=var 
Expected: a r i thexpress ion>=ar i thexpress ion 

where q s o r t / 2 / 1 / 1 stands for the first literal in the first clause of qsort and 
p a r t i t i o n / 4 / 3 / 1 stands for the first literal in the third clause of p a r t i t i o n . 

The first message warns that all calis to p a r t i t i o n will fail, something 
normally not intended (e.g., in our case). The second message indicates 
a wrong cali to a builtin predicate, which is an obvious error. This error 
has been detected by comparing the mode information obtained by global 
analysis, which at the corresponding program point indicates that E is a free 
variable, with the assertion: 
: - check c a l i s A<B (ar i thexpress ion(A) , a r i t hexpres s ion (B) ) . 
which is present in the default builtins module, and which implies that the 
two arguments to </2 should be ground. The message signáis a compile-
time, or abstract, incorrectness symptom [3], indicating that the program 
does not satisfy the specification given (that of the builtin predicates, in 
this case). Checking the indicated cali to p a r t i t i o n and inspecting its 
arguments we detect that in the definition of q s o r t , p a r t i t i o n is called 
with the second and third arguments in reversed order - the correct cali is 
p a r t i t i o n ( L , X , L l , L 2 ) . 

After correcting this bug, we proceed to perform another round of compile-
time checking, which produces the following message: 
WARNING: Clause ' p a r t i t i o n / 4 / 2 ' i s incompatible with i t s c a l i type 

Head: p a r t i t i o n ( [ e | R ] , C , [ E | L e f t l ] , R i g h t ) 
Cali Type: pa r t i t i on ( l i s t (num) ,num,va r ,va r ) 

This time the error is in the second clause of p a r t i t i o n . Checking this 
clause we see that in the first argument of the head there is an e which 
should be E instead. Compile-time checking of the program with this bug 
corrected does not produce any further warning or error messages. 

Val idat ion of User Assert ions: In order to be more confident about our 
program, we add to it the following check assertions:5 

: - c a l i s qsor t (A, B) : l i s t ( A , num). '/„ Al 
: - success qsort(A,B) => (ground(B) , sorted_num_list(B)) . °/„ A2 
: - c a l i s part i t ion(A,B,C,D) : (ground(A) , ground(B)). % A3 
: - success part i t ion(A,B,C,D) => ( l i s t ( C , num) , ground (D)) . °/„ A4 
: - c a l i s append(A,B,C) : ( l i s t (A,num) , l i s t (B,num) ) . °/„ A 5 

: - prop sor ted_num_l i s t / l . 
so r t ed_num_l i s t ( [ ] ) . 
sor ted_num_l is t ( [X]) : - number(X). 
sor ted_num_lis t ( [X,Y|Z]) : -

number(X), number(Y), X<Y, sor ted_num_lis t ( [Y|Z]) . 
where we also use a new property, sorted_num_list, defined in the module 
itself. These assertions provide a partial specification of the program. They 
can be seen as integrity constraints: if their properties do not hold, the 

6The check prefix is assumed when no prefix is given, as in the example shown. 



program is incorrect. C a l i s assertions specify properties of all calis to a 
predícate, while s u c c e s s assertions specify properties of exit points for all 
calis to a predicate. Properties of successes can be restricted to apply only to 
calis satisfying certain properties upon entry by adding a : field to s u c c e s s 
assertions (see [19]). 

Ciaopp can check the assertions above, by comparing them with the 
assertions inferred by analysis (see [3, 20] for details), producing: 
: - checked c a l i s q s o r t ( A , B ) : l i s t ( A , n u m ) . ° / 0 A l 
: - check s u c c e s s q s o r t (A,B) => s o r t e d _ n u m _ l i s t (B) . °/,A2 
: - checked c a l i s p a r t i t i o n ( A , B , C , D ) : (ground(A) ,g round(B) ) . °/,A3 
: - checked s u c c e s s p a r t i t i o n ( A , B , C , D ) => ( l i s t (C,num) ,ground(D) ).°/,A4 
: - f a l s e c a l i s append(A,B,C) : ( l i s t (A,num) , l i s t (B,num) ) . °/,A5 
Assertion A5 has been detected to be false. This indicates a violation of the 
specification given, which is also flagged by Ciaopp as follows: 
ERROR: ( l n s 22-23) f a l s e c a l i s a s s e r t i o n : 

: - c a l i s append(A,B,C) : l i s t ( A , n u m ) , l i s t ( B , n u m ) 
C a l l e d a p p e n d ( l i s t ( ~ x ) , [ ~ x I l i s t ( ~ x ) ] , v a r ) 

The error is now in the cali append(R2, [x | Rl] ,R) in qsort (x instead of X). 
From the rest of the output we can conclude that the rest of the specification 
has been partially validated: assertions Al, A3, and A4 have been detected 
to hold, but it was not possible to prove statically assertion A2, which has 
remained with check status. Ciaopp can, on request, introduce run-time 
tests in the program which will cali the definition of sor ted_num_l is t at 
the appropriate times. Note that A2 has been simplified, and this is because 
the mode analysis has determined that on success the second argument of 
qsort is ground, and thus this does not have to be checked at run-time. On 
the other hand the analyses used in our session (types and modes) do not 
provide enough information to prove that the output of q s o r t is a sorted list 
of numbers, since this is not a native property of the analyses being used. 
While this property could be captured by including a more refined domain 
(such as constrained types), it is interesting to see what happens with the 
analyses selected for the example.6 

D y n a m i c D e b u g g i n g w i t h R u n - t i m e Checks: Assuming that we stay 
with the analyses selected previously, the following step in the development 
process is to compile the program obtained above with the "genérate run-
time checks" option. In the current implementation of Ciaopp we obtain 
the following code for predicate qsort (the code for p a r t i t i o n and append 
remain the same as there is no other assertion left to check): 

q s o r t ( A , B ) : -
n e w _ q s o r t ( A , B ) , 
p o s t e ( [ q s o r t ( C , D ) : t r u e => s o r t e d ( D ) ] , q s o r t ( A , B ) ) . 

Not that while property sorted_num_list cannot be proved with only (over approxi-
mations) of mode and regular type information, it may be possible to prove that it does not 
hold (an example of how properties which are not natively understood by the analysis can 
also be useful for detecting bugs at compile-time): while the regular type analysis cannot 
capture perfectly the property sorted_num_list, it can still approximate it (by analyzing 
the definition) as l i s t ( B , num). If type analysis for the program were to genérate a type 
for B not compatible with l i s t ( B , num), then a definite error symptom would be detected. 



new_qsort([X IL],R) :-
partition(L,X,Ll,L2), 
qsort(L2,R2), qsort(Ll,R1), 
append(R2,[X|R1],R). 

new_qsort ( [ ] , [ ] ) . 
where pos te is the library predicate in charge of checking postconditions of 
predicates. If we now run the program with run-time checks in order to sort, 
say, the list [ 1 , 2 ] , the Ciao system generates the following error message: 
?- qsort([1,2],L). 
ERROR: for Goal qsort([1,2], [2,1]) 
Precondition: true holds, but 
Postcondition: sorted_num_list([2,1]) does not. 

L = [2,1] ? 

Clearly, there is a problem with q s o r t , since [ 2 ,1 ] is not the result of 
ordering [1 ,2 ] in ascending order. This is a (now, run-time, or concrete) 
incorreetness symptom, which can be used as the starting point of diagnosis. 
The result of such diagnosis should indicate that the cali to append (where 
Rl and R2 have been swapped) is the cause of the error and that the right 
definition of predicate qsort is the one in Figure 1. 

4 Source Program Optimization 

We now turn our attention to the program optimizations that are available 
in Ciaopp. These include abstract specialization, parallelization (including 
granularity control), and múltiple program specialization. All of them are 
performed as source to source transformations of the program. In most of 
them static analysis is instrumental, or, at least, beneficial. 

Abstrac t Special izat ion: Program specialization optimizes programs for 
known valúes (substitutions) of the input. It is often the case that the set of 
possible input valúes is unknown, or this set is infinite. However, a form of 
specialization can still be performed in such cases by means of abstract inter-
pretation, specialization then being with respect to abstract valúes, rather 
than concrete ones. Such abstract valúes represent of a (possibly infinite) 
set of concrete valúes. For example, consider the definition of the property 
sorted_num_l is t / l , and assume that regular type analysis has produced: 
: - t r ue pred sorted(A) : l ist(A,num) => l i s t (A,num). 
Abstract specialization can use this information to optimize the code into: 
so r t ed_num_l i s t ( [ ] ) . 
sorted_num_list([_]). 
sor ted_num_lis t ( [X,Y|Z]) : - X<Y, sor ted_imm_lis t ( [Y|Z]) . 
which is clearly more efficient because no number tests are executed. The 
optimization above is based on "abstractly executing" the number literals to 
the valué true . The notion of abstract executabüity [23, 12] can reduce some 
literals to true , f a i l , or a set of primitives (typically, unifications) based 
on the information available from abstract interpretation. 

Ciaopp can also apply abstract specialization in the optimization of pro
grams with dynamic scheduling (e.g., using de lay declarations) [21]. The 
transformations simplify the conditions on the delay declarations and also 
move delayed literals later in the rule body, leading to substantial perfor
mance improvement. This is used by Ciaopp, for example, when supporting 
complex computation models, such as Andorra-style execution [14]. 



Paral le l izat ion: Another application of global analysis in Ciaopp is in 
automatic program parallelization [2]. It is also performed as a source-to-
source transformation, in which the input program is annotated with parallel 
expressions. A number of heuristic parallelization algorithms are available, 
which guarantee certain no-slowdown properties [16] for the parallelized pro-
grams. We consider again the program of Figure 1. A possible parallelization 
(obtained in this case with the "MEL" annotator) is: 

qsor t ( [X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2 ) , 
( indep([ [Ll ,L2]] ) -> qsort(L2,R2) & qsort(Ll ,R1) 

; qsor t (L2,R2) , qsort(Ll ,R1) ) , 
append(Rl,[X|R2],R). 

which indicates that , provided that Ll and L2 do not have variables in com-
mon (at execution time), then the recursive calis can be run in parallel. 
Given the information inferred by, e.g., the mode and independence analysis 
(see Section 2), where Ll and L2 are ground after p a r t i t i o n (and therefore 
do not share variables) the annotator yields instead: 

qsor t ( [X|L] ,R) : -
pa r t i t i on (L ,X ,L l ,L2 ) , 
qsort(L2,R2) & qsor t (L l ,R1) , 
append(Rl,[X|R2],R). 

which is much more emcient since it has no run-time test. 

Granulari ty Control: Another application of the information produced 
by the Ciaopp analyzers, in this case the cost analysis, is to perform r u n -
time task granularity control [10] of parallelized code. Such parallel code can 
be the output of the process mentioned above or code parallelized manually. 

In general, this run-time granularity control process involves computing 
sizes of terms involved in granularity control, evaluating cost functions, and 
comparing the result with a threshold7 to decide for parallel or sequential 
execution. Optimizations to this general process include cost function sim-
plification and improved term size computation, both of which are illustrated 
in the following example. 

Consider again the qsort program in Figure 1. We use Ciaopp to perform 
a transformation for granularity control, using the analysis information of 
type, sharing+freeness, and upper bound cost analysis, and taking as input 
the parallelized code obtained in the previous section. Ciaopp adds a clause 
"qsor t (_ l ,_2) : - g_qsort(_1 , _ 2 ) . " (to preserve the original entry point) 
and produces g_qso r t / 2 , the versión of q s o r t / 2 that performs granularity 
control ( s _ q s o r t / 2 is the sequential versión): 

g_qsort([X|L],R) : -
par t i t ion_o3_4(L,X,Ll ,L2 ,_2 ,_ l ) , 
( _1>7 -> (_2>7 -> g_qsort(L2,R2) & g_qsort(Ll,R1) 

; g_qsort(L2,R2), s_qsort(Ll,R1)) 
; (_2>7 -> s_qsort(L2,R2), g_qsort(Ll,R1) 

; s_qsort(L2,R2), s_qsor t (L l ,R1) ) ) , 
append(Rl,[X|R2],R). 

g_qsor t ( [ ] , [ ] ) . 

7This threshold can be determined experimentally for each parallel system, by taking 
the average valué resulting from several runs. 



Note that if the lengths of the two input lists to the qsort program are 
greater than a threshold (a list length of 7 in this case) then versions which 
continué performing granularity control are executed in parallel. Otherwise, 
the two recursive calis are executed sequentially. The executed versión of 
each of such calis depends on its grain size: if the length of its input list 
is not greater than the threshold then a sequential versión which does not 
perform granularity control is executed. This is based on the detection of 
a recursive invariant: in subsequent recursions this goal will not produce 
tasks with input sizes greater than the threshold, and thus, for all of them, 
execution should be performed sequentially and, obviously, no granularity 
control is needed. 

In general, the evaluation of the condition to decide which predicate ver
sions are executed will require the computation of cost functions and a com-
parison with a cost threshold (measured in units of computation). However, 
in this example a test simplification has been performed, so that the input 
size is simply compared against a size threshold, and thus the cost function 
for qsort does not need to be evaluated.8 Predicate part i t ion_o3_4/6: 
partition_o3_4([] ,_B, [] , [] ,0,0) . 
partit ion_o3_4([E|R],C,[E|Leftl] ,Right,_1,_2) :-

E<C, partition_o3_4(R,C,Leftl ,Right,_3,_2), _l i s _3+l. 
partit ion_o3_4([E|R],C,Left,[ElRightl] ,_1,_2) :-

E>=C, partit ion_o3_4(R,C,Left ,Rightl ,_l ,_3) , _2 i s _3+l. 
is the transformed versión of p a r t i t i o n / 4 , which "on the fly" computes the 
sizes of its third and fourth arguments (the automatically generated variables 
_1 and _2 represent these sizes respectively) [9]. 

Múlt ip le Special izat ion: Sometimes a procedure has different uses within 
a program, i.e. it is called from different places in the program with different 
(abstract) input valúes. In principie, (abstract) program specialization is 
then allowable only if the optimization is applicable to all uses of the pred
icate. However, it is possible that in several different uses the input valúes 
allow different and incompatible optimizations and then none of them can 
take place. In Ciaopp this problem is overeóme by means of "múltiple pro
gram specialization" where different versions of the predicate are generated 
for each use. Each versión is then optimized for the particular subset of in
put valúes with which it is to be used. The abstract múltiple specialization 
technique used in Ciaopp [24] has the advantage that it can be incorporated 
with little or no modification of some existing abstract interpreters, provided 
they are multivariant (PLAI and similar frameworks have this property). 

This specialization can be used for example to improve automatic par-
allelization in those cases where run-time tests are included in the resulting 
program. In such cases, a good number of run-time tests may be elimi-
nated and invariants extracted automatically from loops, resulting generally 
in lower overheads and in several cases in increased speedups. We consider 
automatic parallelization of a program for matrix multiplication using the 
same analysis and parallelization algorithms as the q s o r t example used be-
fore. This program is automatically parallelized without tests if we provide 

This size threshold will obviously be different if the cost function is. 



the analyzer (by means of an entry declaration) with accurate information 
on the expected modes of use of the program. However, in the interesting 
case in which the user does not provide such declaration, the code generated 
contains a large number of run-time tests. We include below the code for 
predicate mul t ip ly which multiplies a matrix by a vector: 
mul t ip ly ( [ ] , _ , [ ] ) . 
mult iply([VO|Rest] ,V1,[ResultIOthers] ) : -

(ground(Vl), 
indep([ [VO,Rest ] , [VO,Others] , [Res t ,Resul t ] , [Resul t ,Others] ] ) -> 

vmul(VO,VI,Result) & mult iply(Rest ,VI ,Others) 
; vmul(VO,VI,Result), mul t ip ly (Res t ,VI ,Others ) ) . 

Four independence tests and one groundness test nave to be executed prior to 
executing in parallel the calis in the body of the recursive clause of mul t ip ly . 
However, abstract múltiple specialization generates four versions of the pred
icate mul t ip ly which correspond to the different ways this predicate may be 
called (basically, depending on whether the tests succeed or not). Of these 
four variants, the most optimized one is: 
mul t ip ly3([ ] , _ , [ ] ) . 
mul t ip ly3([V0|Rest ] ,V1,[Resul t |Others] ) : -

( indep( [ [Resu l t ,Others ] ] ) -> 
vmul(VO,VI,Result) & mult iply3(Rest ,VI,Others) 

; vmul(VO,VI,Result), mul t ip ly3(Res t ,VI ,Others ) ) . 
where the groundness test and three out of the four independence tests have 
been eliminated. Note also that the recursive calis to mul t ip ly use the opti
mized versión mul t ip ly3 . Thus, execution of matrix multiplication with the 
expected mode (the only one which will succeed in Prolog) will be quickly 
directed to the optimized versions of the predicates and itérate on them. 
This is because the specializer has been able to detect this optimization as 
an invariant of the loop. The complete code for this example can be found 
in [24]. The múltiple specialization implemented incorporates a minimiza-
tion algorithm which keeps in the final program as few versions as possible 
while not losing opportunities for optimization. For example, eight ver
sions of predicate vmul (for vector multiplication) would be generated if no 
minimizations were performed. However, as múltiple versions do not allow 
further optimization, only one versión is present in the final program. 

In the context of Ciaopp we have also studied the relationship between 
abstract múltiple specialization, abstract interpretation, and partial eval-
uation. Abstract specialization exploits the information obtained by mul-
tivariant abstract interpretation where information about valúes of vari
ables is propagated by simulating program execution and performing fix-
point computations for recursive calis. In contrast, traditional partial eval-
uators (mainly) use unfolding for both propagating valúes of variables and 
transforming the program. It is known that abstract interpretation is a bet-
ter technique for propagating success valúes than unfolding. However, the 
program transformations induced by unfolding may lead to important opti-
mizations which are not directly achievable in the existing frameworks for 
múltiple specialization based on abstract interpretation. In [25] we present 
a specialization framework which integrates the better information propaga-
tion of abstract interpretation with the powerful program transformations 
performed by partial evaluation. 
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