
Agent Programming in Ciao Prolog 

Francisco Bueno and the CLIP Group* 
Facultad de Informática - UPM 

bueno@ft.upm.es 

The agent programming landscape has been revealed as a natural framework 
for developing "intelligence" in AL This can be seen from the extensive use of 
the agent concept in presenting (and developing) AI systems, the proliferation 
of agent theories, and the evolution of concepts such as agent societies (social 
intelligence) and coordination. 

Although a definition of what is an agent might still be controversial, agents 
have particular characteristics that define them, and are commonly accepted. 
An agent has autonomy, reactivity (to the environment and to other agents), 
intelligence (i.e., reasoning abilities). It behaves as an individual, capable of 
communicating, and capable of modifying its knowledge and its reasoning. 

For programming purposes, and in particular for AI programming, one would 
need a programming language/system that allows to reflect the nature of agents 
in the code: to map code to some abstract entities (the "agents"), to declare 
well-defined interfaces between such entities, their individual execution, possibly 
concurrent, possibly distributed, and their synchronization, and, last but not 
least, to program intelligence. 

It is our thesis that for the last purpose above the best suited languages are 
logic programming languages. It is arguably more difncult (and unnatural) to 
incorpórate reasoning capabilities into, for example, an object oriented language 
than to incorpórate the other capabilities mentioned above into a logic language. 
Our aim is, thus, to do the latter: to offer a logic language that provides the 
features required to program (intelligent) agents comfortably. 

The purpose of this talk, then, is not to introduce sophisticated reasoning 
theories or coordination languages, but to go through the (low-level, if you want) 
features which, in our view, provide for agent programming into a (high-level) 
language, based on logic, which naturally offers the capability of programming 
reasoning. 

The language we present is Ciao, and its relevant features are outlined below. 
Most of them have been included as language-level extensions, thanks to the 
extensibility of Ciao. Hopefully, the Ciao approach will demónstrate how the 
required features can be embedded in a logic programming language in a natural 
way, both for the implementor and for the programmer. 

* Daniel Cabeza, Manuel Carro, Jesús Correas, José M. Gómez, Manuel Hermenegildo, 
Pedro López, Germán Puebla, and Claudio Vaucheret 

mailto:bueno@ft.upm.es


State and its Encapsulation: from Modules to Objects The state that 
is most relevant for programming intelligence is the state of knowledge. Clas-
sically, a logic program models a knowledge state, and, also, logic languages 
provide the means to manipúlate and change this state: the well-known as-
sert/retract operations. These can be used for modeling knowledge evolution. 
On the other hand, state of data and its evolution are arguably best modeled 
with objects. Also, objects are a basic construct for capturing "individuality" 
in the sense of agents. 

What is needed is a neat differentiation between the code that represents 
the state of knowledge and the code that represents the evolution of knowledge. 
A first step towards this is providing state encapsulation. This can be achieved 
with a well-defined, well-behaved module system. This is one of the main princi­
pies that has informed the design of Ciao. Having a language with modules and 
encapsulated state, the step towards objects is an easy one: the only extra thing 
needed is instantiation. Once we add the ability to créate instances of modules, 
we have classes. This has been the approach in O'Ciao, the Ciao sublanguage 
for object orientation. 

Concurrency and Distribution These two features are provided in Ciao at 
two levéis. At the language level, there are constructs for concurrent execution 
and for distributed execution. At the level of "individual entities", concurrency 
and distribution comes through via the concept of active modules/objects. 

Reactivity and Autonomy: Active Modules/Objects A module/object 
is active when it can run as a sepárate process. This concept provides for 
"autonomy" at the execution level. The active module service of Ciao allows 
starting and/or connecting (remote) processes which "serve" a module/object. 
The code served can be conceptually part of the application program, or it can 
be viewed alternatively as a program component: a completely autonomous, 
independent functionality, which is given by its interface. 

Active modules/objects can then be used as "watchers" and "actors" of and 
on the outside world. The natural way to do this is from a well-defined, easy-
to-use foreign language interface that allows to write drivers that interact with 
the environment, but which can be viewed as logic facts (or rules) from the 
programmer's point of view. An example of this is the SQL interface of Ciao to 
sql-based external databases. 

And More Adding more capabilities to the language, in particular, adding 
more sophisticated reasoning schemes, requires that the language be easily ex-
tensible. Extensibility has been another of the guidelines informing the design 
of Ciao: the concept of a package is a good example of this. Packages are 
librarles that allow syntactic, and also semantic, extensions of the language. 
They have been already used in Ciao, among other things (including most of 
the abovementioned features), to provide higher order constructions like predi-
cate abstractions, and also fuzzy reasoning abilities. 


